

Towards a high throughput ion source for medical radioisotope production at MEDICIS

ISOLDE Workshop and Users meeting 2023

Ralitsa Mancheva on behalf of the RILIS team

Outline

- What is a laser ion source?
- A new laser ion source for MEDICIS
- What have we tested so far?
- Discussion and outlook

What is a laser ion source?

The ion source up-close

Surface ionization

$$\frac{n_i}{n_0} = \frac{\sigma_i}{\sigma_0} \exp\left(\frac{\varphi - W}{k_B T}\right)$$

- Ion survival?
- Mean number of wall collisions?
- Electron impact ionization from electrons in the extraction potential?
- Neutral density distribution?
- Neutral density influence on ions?

 ${oldsymbol{\Phi}}_p$ - Plasma potential with respect to plasma enclosure

- k_B Boltzmann constant
- e Electron charge
- T Plasma temperature
- n_i lon density
- n_e Electron density
- $\pmb{\varphi}$ Work function of cavity material
- W First ionization potential of atomic species
- σ_i Statistical weight of ionic/atomic ground state

Time structure of extracted ions

- Time structure shows histogram of extracted ions within one laser pulse (100 µs)
- Narrow peak from ions created in the extraction potential
- Main peak from ions extracted along the source
- Good qualitative way to "probe" the ion source

A new laser ion source for MEDICIS

Radioisotope production at MEDICIS

B. Webster et al. Chemical Purification of Terbium-155 from Pseudo-Isobaric Impurities in a Mass Separated Source Produced at CERN

KU LEUVEN

ISOLDE vs. MEDICIS

Half-life of extracted species	Down to ms	A few days
Ion beam magnitude	nA	μA
Production and extraction	Simultaneously (steady-state)	Separate with compressed extraction time
Ion load limit on ion source reached	Sometimes	Often
lon source designed for specific requirements	Yes	No

The high ion throughput problem

- Laser ion extraction reduced at high ion load
- In some cases, no laser effect is present
- Confinement potential breakdown
- lons from the back of the source are not extracted efficiently
- MEDICIS operates at high ion loads

Time structures of a Ta ion source for low, medium and high total ion currents

An ideal high-throughput laser ion source

Fast ion extraction

Good temperature distribution

- Homogenous temperature profile
- No cold spots

Good ion survival

- Strong confinement
- · Low wall collision probability

Appropriate material

- Low work function
- Easy to machine or 3D print
- Robust

What have we tested so far?

Back-of-the-line heating, a state-of-the-art solution?

	RILIS standard design	SPES	SCK
Ion source length	34 mm	33 mm	33 mm
Transfer line length	32 mm	65.2 mm	65 mm
Heated back of transfer line	No	Yes	Yes

RILIS standard - 2064°C

Conclusions and outlook

- A high ion throughput decreases laser ion extraction in laser ion sources
- A new laser ion source design is in development for MEDICIS to improve collection time
- The processes and parameters inside a laser ion source are various and difficult to decouple
- Heating the back of the transfer line improves ion confinement and extraction

Various measurements are planned to further study ion source parameters:

- Injection of neutrals
- Electron emission measurements
- Alternative ion source configurations (e.g. threaded source)
- More measurements with external magnetic field

Thank you for the laser focused attention!

Backup slides

Design comparison

RILIS standard

 - 2000
- 1900
- 1800
- 1700
 - 1600
- 1500
1200
- 1300

	RILIS standard design	SPES	SCK	RILIS with magnet (MLIS)
Ion source length	34 mm	33 mm	33 mm	34 mm
Transfer line length	32 mm	65.2 mm	65 mm	75 mm
Heated back of transfer line	No	Yes	Yes	Yes

SCK

17

Ga timestructures – beam not centered on magnetof

- Decentering beam to reduce current on magnetof
 - Shows overpronounced prompt peak
 - \succ Possibly due to larger energy spread at edges of beam

Ga timestructures – wavelength detuned

- Detuned wavelength to reduce current on magnetof
 - Clear difference from Doppler effect

KU LEUVEN

More SPES

Table 2: Measured ionization efficiency values of gallium at ion source temperature 2200 °C

1 Surface 0.49 ± 0.04 0.49 ± 0.04 2 Laser 27.66 ± 2.07 27.18 ± 1.18 3 Laser 27.64 ± 2.07 27.18 ± 1.18	Test no.	Type	Efficiency(%)	Mean Efficiency (%)
	1	Surface	0.49 ± 0.04	$0.49\ {\pm}0.04$
3 Laser 27.64 ± 2.07 27.18 ± 1.18	2	Laser	27.66 ± 2.07	
4 Lesen 96 99 1 07	3	Laser	27.64 ± 2.07	27.18 ± 1.18

More SCK

RILIS with heated transfer line (Sb -23.10.2023)

