

Some plots of unpublished data were removed or altered.

From thallium to calcium

Pushing the limits of CLS at COLLAPS in 2023

The COLLAPS experiment

Advantages: laser spectroscopy (CLS) on radioactive

- \cdot isotopest geometry \rightarrow no doppler broadening,
- · IPPEER MOSTIC STRAIN Inewidth
- Measurement principle: • only needs a single narrowband CW laser
- insensitive to isobaric contamination
- 1) Overlap laser beam and ion bunch collinearly
- 2) Focus ion bunch into optical detection Disadvantages:
- 3) Scan beam energy → scan transition frequency • Limited by photon detection efficiency and
- 4) lespt. we tighte ion bunch via charge exchange
- 5) Measure fluorescence in optical detection → Need more specialized detection setups for very rare cases

Nuclear moments from laser spectroscopy

hyperfine structure → **"nuclear signature"**

- number of peaks \rightarrow spin
- splitting of the peaks
	- magnetic dipole moment
	- electric quadrupole moment

CERN

Charge radii from laser spectroscopy

electron orbitals respond differently to charge distribution of nucleus

 \rightarrow Measure difference in charge radius from shift in resonance

$$
\delta\nu^{AA'} = K_{MS}\cdot\frac{M_{A'}-M_A}{M_AM_{A'}}+F\delta\langle r_c^2\rangle^{AA'}
$$

All observables: Purely based on atomic physics, no nuclear theory input needed!

COLLAPS 2023 overview

Studying ¹⁸³Tl – ²⁰⁵Tl

Quadrupole moments thallium isomers

 $i_{13/2}$ isomers

Single particle picture?

- Protons shouldn't contribute to Q (Pb, Hg closed, Tl defined by $s_{1/2}$)
- \rightarrow Q defined entirely by i_{13/2} neutron orbit
- \rightarrow Simple picture: Should be the same for all three elements
- \rightarrow Measurement: Same trend, different slope and offset

Feasibility of ¹⁴⁷Tm

So far, no laser spectroscopy measurements of proton emitters

- \rightarrow Rare decay mode that only occurs near the proton drip line
- \rightarrow Comparatively low yields
- → **measure charge radius of Tm isotopic chain**

Goal of the LOI:

- 1) Quantify the production of thulium isotopes (and contaminants)
- 2) Test sensitivity of two different laser transitions to charge radius

→ 6 shift LOI together with ISOLTRAP in August

(this is what ChatGPT thinks a proton emitter looks like)

Feasibility of ¹⁴⁷Tm

- Measured from ¹⁵⁵Tm to ¹⁷⁵Tm
- Large Contamination and the very least lived isomers deficient cases
- → bunches evacfilling, greatource saturated
- \rightarrow both tested transitions work
- → full proposal with LIST to reduce contamination

CERN

Measuring neutron rich calcium

Measure Ca across N = 32 shell gap (53,54Ca)

Experimental challenges for laser spectroscopy of ⁵³Ca, ⁵⁴Ca :

- lifetime of 461 ms, 107 ms
- yield of 20 ions/s, 2 ions/s at ISOLDE
- >3 orders of magnitude more stable beam contamination
- \rightarrow needs a more sensitive detection setup than existing fluorescence detection

Evidence for a new nuclear 'magic number' from the level structure of ⁵⁴Ca

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, L. Dee², K. Matsur⁵, S. Michimasa¹, T. Motobayashi², D. Nishimura⁶, T. Otsuka^{1,5}, H. Sakurai^{2,5}, Y. Shiga⁷, P.-A. Söderström², T. Sumikama⁸, H. Sumikama⁸, H. Sumikama⁸, H. Sumikama⁸, H. Sumikama⁸

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{1, 5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kovaiska³, S. Kreim^{b,8}, D. Holt^{6,7}, M. Rosenbusch³, L. Schweikh

Unexpectedly large charge radii of neutron-rich calcium isotopes

R. F. Garcia Ruiz^{1*}, M. L. Bissell^{1,2}, K. Blaum³, A. Ekström^{4,5}, N. Frömmgen⁶, G. Hagen⁴, M. Hammen⁶, K. Hebeler^{7,8}, J. D. Holt⁹, G. R. Jansen^{4,5}, M. Kowalska¹⁰, K. Kreim³, W. Nazarewicz^{4,11,12}, R. Neugart^{3,6}, G. Neyens¹, W. Nörtershäuser^{6,7}, T. Papenbrock^{4,5}, J. Papuga¹, A. Schwenk^{3,7,8}, J. Simonis^{7,8}, K. A. Wendt^{4,5} and D. T. Yordanov^{3,13}

➔ **R**adioactive detection after **o**ptical pumping and state selective **c**harge exchange (ROC)

R F Garcia Ruiz et al, *Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes*

The ROC method

Relevant Ca II level scheme

Idea: Exploit electronic structure of Ca II

Use laser to excite $S\rightarrow P$ transition

 \rightarrow If laser on resonance, electron will be permanently "pumped" to D-states

 \rightarrow Then: detect electronic state change to find out if laser was on resonance

 \rightarrow High efficiency because of particle detection while still retaining the advantages of CLS

Charge exchange as an electronic state detector

Essential ROC setup

 \rightarrow S, D state have different exchange cross sections \rightarrow Use charge exchange as state detector

Separate ions from atoms afterwards for resonance detection

 $29/11/2023$ and 13

Charge exchange as an electronic state detector

Real setup and beamtime summary

Took ISOLDE beam from 27th of September to 2nd of October

Went surprisingly well considering it is a brand-new setup

- Ion tune worked great (70% efficiency to the atom detector)
- New data acquisition system worked well
- Tape station worked flawlessly for the entire run (\approx 50 km)

Some problems with the CEC/HV limited the sensitivity

 \rightarrow Measured ⁵²Ca as a "sanity check" (\approx 200 ions/s) \rightarrow Then measured ⁵³Ca (\approx 20 ions/s)

- **Isotope shift consistent with previous COLLAPS measurement**
- **Reduced measurement time by 8x compared to fluorescence detection!**

⁵³Ca: ROC with hyperfine splitting

Population transfer not only to the Dstates but also between the lower hyperfine states!

 \rightarrow No efficient population transfer possible

Solution: Sequential multi-step pumping

Split up optical interaction region

⁵³Ca: ROC with hyperfine splitting

Optical interaction region configuration

$53Ca -$ spin and magnetic moment

- Excellent ab-initio theory prediction (deviated ≈5%)*
- Single-particle like? In between ⁴¹Ca and ⁴⁹Ca...

* For details on the theory see <https://arxiv.org/pdf/2311.14383.pdf> Special thanks to Takayuki Miyagi and Matthias Heinz for providing the value for 53Ca

- Unambiguous spin assignment $I = \frac{1}{2}$
- Determine magnetic moment from hyperfine splitting

$53Ca - charge$ radius

- With data from:
	- R. F. Garcia Ruiz et al., *Unexpectedly large charge radii of neutron-rich calcium isotopes*
	- Á. Koszorús et al., *Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32*
	- H. Heylen et al. *Changes in nuclear structure along the Mn isotopic chain studied via charge radii*
- ⁵²Ca was "unexpectedly large"
- Seems to flatten out compared to ^{51,52}Ca \rightarrow Could also be larger odd-even staggering
- Need ⁵⁴Ca to make conclusions

Outlook to 2024

Upcoming experiments:

- Fix CEC and measure ⁵⁴Ca!
- Full beamtime on thulium with LIST

Ongoing developments:

- Expand development lab
- **Develop highly sensitive CLS techniques for continuous beam**

→ **State selective reionization**

COLLAPS development lab

- **- Fully funded by a new Max Planck group**
- **- CERN project associate already in place**
- **- CERN PhD student joining in September 2024**
- **- MPIK postdoc joining in August 2024**
- **- Renovation of the lab finished, big thanks to EP!**
- **- New lasers already delivered**
- **- Beamline design on the way**

Quark picture put to the test

Federal Ministry
of Education

and Research

EUR®HLABS

PHYSICAL REVIEW LETTERS 131, 222502 (2023)

Editors' Suggestion Featured in Physics

COLLAPS

199192

Nuclear Charge Radius of ^{26m}Al and Its Implication for V_{ud} in the Quark Mixing Matrix

P. Plattner[®],^{1,2,3,} E. Wood,⁴ L. Al Ayoubi,⁵ O. Beliuskina,⁵ M. L. Bissell,^{6,1} K. Blaum®,³ P. Campbell,⁶ B. Cheal®,⁴ R.P. de Groote, 5.# C.S. Devlin^o,⁴ T. Eronen,⁵ L. Filippin,⁷ R.F. Garcia Ruiz,^{1,8} Z. Ge,⁵ S. Geldhof,⁹ W. Gins,⁵ M. Godefroid®,⁷ H. Heylen,^{1,3} M. Hukkanen,⁵ P. Imgram®,¹⁰ A. Jaries,⁵ A. Jokinen,⁵ A. Kanellakopoulos®,⁹
A. Kankainen,⁵ S. Kaufmann,¹⁰ K. König®,¹⁰ Á. Koszorús,^{4,9,3} S. Kujanpää,⁵ S. Lechner®,¹ S P. Müller®,¹⁰ R. Mathieson,⁴ I. Moore®,⁵ W. Nörtershäuser®,¹⁰ D. Nesterenko,⁵ R. Neugart,^{3,12} G. Neyens (Φ , A. Ariz-Cortes, δ H. Pentilla, S. L. Neyens (Φ , A. Raggio, δ M. Repone, δ S. Rinta-Antila, S. L. V. Rodríguez, δ ^{1,1,13} J. Romero, δ R. Sanchez, $\rm ^{14}$ F. Sommer, $\rm ^{10}$ M. Stryjc

Leftover slides – proceed at own risk

Opportunities for improvement and future

Priority Nr. 1: Fix charge exchange cell

- \rightarrow New design is already in the workshop...
- \rightarrow Hopefully fixes the coating and sparking issues
- \rightarrow Should increase sensitivity by another order of magnitude

Immediate future: improve 53 Ca, add 54 Ca

Afterwards: strontium & barium, maybe more with some development

new cell design

ROC beamtime summary

Took ISOLDE beam from 27th of September to 2nd of October

Went surprisingly well considering it is a brand-new setup

- Ion tune worked great (70% efficiency to the atom detector)
- New data acquisition system worked well
- Tape station worked flawlessly for the entire run (\approx 50 km)

Some problems with the CEC/HV limited the sensitivity in the end

 \rightarrow Measured ⁵²Ca as a "sanity check" (\approx 200 ions/s) \rightarrow Then measured ⁵³Ca (\approx 20 ions/s)

