In-source laser spectroscopy at ISOLDE – revealing peaks and plateaus in nuclear charge radii in the lead region

James Cubiss – University of York – james.cubiss@york.ac.uk

On behalf of the RILIS–Windmill–ISOLTRAP–IDS–Paris–Bruxelles collaboration

Bismuth, Z=83

Gold, **Z**=79

UNIVERSITY

Collaborators

University of York, United Kingdom

A. N. Andreyev, J. G. Cubiss, R. Harding, C. Raison, C. Page, Z. Yue...

Université Paris-Saclay

S. Hilaire, S. Péru,

Universite Libre de Bruxelles

S. Goriely

RILIS, CRIS and ISOLDE, Geneva, Switzerland

B. A. Marsh, K. Chrysalidis, R. Heinke, C. Bernerd, V. N. Fedosseev, M. D. Seliverstov,

K. Lynch, T. Day Goodacre...

Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany

S. Raeder, K. D. A. Wendt

Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Leuven, Belgium

S. Sels, L. Ghys, C. Van Beveren, E. Rapisarda, D. Pauwels, D. Radulov, H. De Witte, Yu. Kudryavtsev, M. Huyse, P. Van Duppen, K. Rezynkina, L. Gaffney, T. E. Cocolios...

Comenius University, Bratislava, Slovakia

S. Antalic, B. Andel....

PNPI, Gatchina, Russian Federation

A. E. Barzakh, D. V. Fedorov, P. Molkanov

MR-TOF@ISOLTRAP team:

S. Kreim, V. Manea, F. Wienholtz, M. Meugeot, M. Rosenbusch, L. Neis +...

Univeristy of Surrey, United Kingdom

Z. Podolyak, S. Pascu...

University of Manchester, UK

J. Billowes, M. Bissel...

Shape coexistence

- Co-existing structures competing at low energies with distinctly different shapes
- Subtle interplay between stabilizing effects of closed shells and residual interactions between protons and neutrons
- Experimental data crucial for constraining models
- Appears all over the nuclear landscape

The observation that a particular atomic nucleus (N, Z combination) can exhibit eigenstates with different shapes appears to be a unique type of behavior in finite many-body quantum systems. Understanding the occurrence of shape coexistence in atomic nuclei is arguably one of the greatest challenges faced by theories of nuclear structure.

Heyde and Wood, Rev. Mod. Phy. 83, 1467 (2011).

Shape coexistence in Pb region

Heyde and Wood, Rev. Mod. Phys. 83, 1467 (2011)

 "Classical" description is of particle-hole excitations across shell gaps, populating "intruder" states - energies of which reduced by residual interactions between nucleons

3

Culprits in the Pb region:

2f_{7/2} 2f_{7/2} **Excitations to** 1i_{13/2} 1i_{13/2} intruder states 1h_{9/2} 1h_{9/2} above Z=82 Z=82 **Z=82 Excitation from** 3s_{1/2} 3s_{1/2} intruder states 2d_{3/2} $2d_{3/2}$ below Z=82 Bi (Z=83) Au (Z=79)

Shape coexistence in Pb region

3

Culprits in the Pb region:

Laser spectroscopy @ ISOLDE

- Two groups representative of two methods:
 - Collinear methods
 - High resolution
 - Low efficiency
 - In-source methods
 - Low resolution
 - High efficiency

Experimental linewidth

In source typically limited to radii and dipole moments, but can reach most exotic cases

Results from bismuth and gold campaigns

- Results published: A.E. Barzakh *et al.,* PRL 127, 192501 (2021)
- ¹⁸⁹⁻²⁰⁹Bi follow the spherical Pb trend
- Large isomer shifts in odd-A nuclei.
- N=126 "Kink" observed
- ¹⁸⁸Bi (N=105) Large stagger!

Gold radii (Z=79)

Deformation versus Sphericity in the Ground States of the Lightest Gold Isotopes

J. G. Cubiss et al.

Phys. Rev. Lett. 131, 202501 (2023) - Published 14 November 2023

Charge radii of neutron-deficient gold isotopes measured with resonance-ionization laser spectroscopy display a unique pattern that has not been observed elsewhere in the nuclear chart.

ISOLDE sees shape shifting in gold nuclei

The finding comes a little more than 50 years after the phenomenon was first discovered at the facility in mercury nuclei

15 NOVEMBER, 2023

Gold radii (Z=79)

- ¹⁸⁰⁻¹⁸²Au- stay strongly deformed
- ^{176g,m,177m,g,179}Au trend towards sphericity
- ^{178g,m}Au both isomers are deformed
- J.G. Cubiss *et al.*, Phys. Rev. Lett. **131**, 202501 (2023)

Gold radii (Z=79)

M. Venhart *et al.*, J. Phys. G **44**, 074003 (2017)

HFB calcs.: odd-A and odd-odd nuclei

- Odd-A, and particularly odd-odd nuclei are a challenge for theory
- HFB using D1M-Gogny (S. Goriely *et al.*, PRL **102**, 242501 (2009).).
- Begin by selecting states with correct spin, and calculating ground state.

HFB for Bismuth

- Candidate states were selected by:
 Correct spin, agreement with μ, <1 MeV
- Configuration mixing across deformation surface introduced:

$$\langle \mathcal{O} \rangle = \frac{\int_{q} \mathcal{O} \exp(-E/T) dq}{\int_{q} \exp(-E/T) dq}$$

A.E. Barzakh *et al.,* PRL **127**, 192501 (2021) S. Péru *et al.*, PRC **104**, 024328 (2021)

Charge-radii across the lead region, from Au to At (Z=79 to 85)

- Try applying same approach to proton-rich ground states of all chains we have measured (Z=79-85, ≈160 isotopes)
- All results here include mixing, using same statistical approach

Charge-radii across the lead region, from Au to At (Z=79 to 85)

- Try applying same approach to proton-rich ground states of all chains we have measured (Z=79-85, ≈160 isotopes)
- All results here include mixing, using same statistical approach
- Exceptions in Tl and Hg chain:
 - Tl, more deformed state with better match with moment (by fractions to couple of %)
 - Hg, only reproducible by selecting correct sign of deformation

Recent results and future possibilities

Shell effects

See also, for example:

P.L. Sassarini *et al.*, J. Phys. G **49**, 11LT01 (2022) A.R. Vernon *et al.*, Nature **607**, 260-265 (2022) R.P. de Groote *et al.*, PLB **848**, 138352 (2024) J. Dobaczewski's talk (Thurs. 14:00)

Laser Spectroscopy – Institute for Nuclear

Decay properties and masses – unexplored territory

Energy 1st excited state

Ground state $T_{1/2}$

Last p-n interaction strength

The LIST and quartz lines

R. Heinke et al., Hyperfine Interactions 238, 6 (2017)

Lol244 – n-rich Hg isotopes (2023)

Sensitivity boost

Past - Windmill

- 1 planar germanium
- 2(+2) Silicons
- 1(+1) Germanium

Present - IDS

- 6 germanium clovers (24 crystals)
- Plastics for beta tagging $(\varepsilon = 30 40\%)$

Future – "more" IDS

- 12(+3) clovers(up 60 crystals)
- Even more plastic...
 (ε up to 70%)

Summary

- Wide ranging studies of charge radii in the lead region has been performed using in-source be laser spectroscopy
- Calculations highlight the important role moments and radii can play in constraining models
- Ion source developments + increase in sensitivity open new possibilities for insource spec.
- More physics and more fun to come ©!

Red data = our data from ISOLDE campaign Green points = Gatchina Black points = literature

Thank you for listening

Additional slides

Ionisation schemes

g factors of odd-A golds (guilty as charged)

HFB for Au isotopes,

 Try applying same approach as used in Bi isotopes both for unmixed and mixed cases
 States selected by spin, and dipole moment

- A good agreement with experiment is seen
- Inclusion of mixing gives similar results

The Laser Ion Source and Trap

R. Heinke et al., NIM, **B541**, (2023) 8-12

"Kinky" shell effect

- Slope in δ<r²> increases when crossing a shell closure
 seen all over nuclear chart
- Seen in elements above and below proton shell closures
- Effect is seen in both odd- and even-Z nuclei

Theoretical description of kink

- Number of theoretical descriptions:
 P.M. Goddard *et al.*, PRL **110**, 032503 (2013)
 H. Nakada & T. Inakura, PRC **91**, 021302(R) (2015)
 H. Nakada, PRC **92**, 044307 (2015)
- Scattering of neutron pairs into large *l* neutron orbitals - attractive proton-neutron interaction increases charge radius
- Near Z=82, N=126 neutron pairs scatter into vi_{11/2}

H. Nakada, PRC 92, 044307 (2015)

Comparison of theory & experiment

- However, effects of pairing should be significantly reduced when only one neutron outside of shell
- In case of ²¹⁴Fr^a and ²¹⁰Bi^b, mag. moms. suggested admixture between $[\pi h_{9/2}, vg_{9/2}]$ and $[\pi h_{9/2}, vi_{11/2}]$ configurations.

^a G. J. Farooq-Smith *et al.*, Phys. Rev. C **94**, 054305 (2016)
^b L. Szybisz, Nucl. Phys. A **244**, 107 (1975) & H. Behrens and L. Szybisz, Nucl. Phys. A **223**, 268 (1974)

- However, ²⁰⁹Pb and ²¹¹Po which have mag. moms. consistent with pure vg_{9/2} states
- Nakada show no occupation of vi_{11/2} at N=127, and kink appears to only starts after N=127

Kink at N=127

- We can compare gradients in radii just above and below shell closure – removes deformation effects of
- This also minimizes the effects of odd-even staggering in radii (though may not be fully removed)

Kink at N=127

- We can compare gradients in radii just above and below shell closure – removes deformation effects of
- This also minimizes the effects of odd-even staggering in radii (though may not be fully removed)
- We do observe a kink in odd-N at N=127
- Magnitude of kink is comparable in different chains and in both the odd- and even-N isotopes

Fayans functional

- Kink is a result of reduced neutron pairing for magic-N nuclei
- In comparison, neutron pairing is large for N±2 neighbours
- Fayans [Fy(Δr,HFB)] reproduces kinks at: N=48, Ca isotopes
 N=82, Sn isotopes
 N=126, Pb isotopes
- Some questions:
 - Odd-N calculations for Sn and Pb?
 - Are other observables reproduced?
 (i.e. mag. moms.)
 - Does the same gradient term in pairing explain kink for 1 neutron outside of a closed shell?

$g(\pi h_{11/2})$ systematics

О

- g(πh_{11/2}) measured for isotopes from Z=64 to Z=81, observe effect of N=82 and N=126 shell effects on mag mom
- Possibly caused by first-order core polarization (CP1) effects, related to f_{7/2}→f_{5/2} neutron excitations
- CP1 correction for neutrons have opposite sign to πh_{11/2}, results in reduction of g(πh_{11/2})
- Need more data at N≈126, gaps need filling to confirm systematic trend

Reduced widths and mag. moments

• First sign of evolving structures came from observation of small δ^2_{α} for decay of ¹⁸¹Tl

Reduced widths and mag. moments

- ^{177,179}Au g factors lie between πs_{1/2} states of Tl, Bi and At nuclei and the πd_{3/2} states in other Au
- Suggests that these are mixed $\pi s_{1/2} / \pi d_{3/2}$ configurations with the degree of mixing changing as neutron number reduces
- Important to see whether apparent trend continues for I=1/2 state in ¹⁷⁵Au (T_{1/2}=207 ms)
- Alpha decay of ^{183}Tl is unhindered suggests pure $\pi s_{1/2}$ state in ^{175}Au
- Would mean a rearrangement of $\pi s_{1/2}$ and $\pi d_{3/2}$ states in lightest Au

J.G. Cubiss et al., PLB 786, 355-363 (2018)

Reduced widths and mag. moments

- First sign of evolving structures came from observation of small δ^2_{α} for decay of ¹⁸¹Tl
- Dipole moment of ¹⁸¹Tl indicates pure πs_{1/2} configuration, as expected in this region
- Interesting to note that g factor not affected by deformation:
 - $\pi s_{1/2}$ in TI are spherical
 - $\pi s_{1/2}$ in At & Bi are deformed
- Is the hindrance related to structure of daughter, ¹⁷⁷Au?

J.G. Cubiss et al., PLB 786, 355-363 (2018)

Dipole moment evidence for triaxiality?

 PTRM calculations showed strong dependence of I=1/2 state mag moms on degree of triaxiality

Further theoretical investigation required

C. Ekstrom *et al.,* Nuc. Phys. A**348**, (1980) 25-44

P. Moller *et al.*, At. Data Nucl. Data Tables **98** (2), (2012) 149-300 In 2017-run we succeeded in measurement of $Q_s(^{188}\text{Bi}^{\text{ls}})$. Deformation parameter \mathcal{B}_Q extracted from Q_s coincides with \mathcal{B} from $\delta < r^2 >$ and unambiguously testifies to the strong prolate deformation of $^{188}\text{Bi}^{\text{ls}}$

