Probing the doubly-magic shell closure at ¹³²Sn by Coulomb excitation of neutron-rich ¹³⁰Sn

Maximilian Droste¹, Peter Reiter¹ and Thorsten Kröll² for the IS702 – collaboration

- ¹ Institute for Nuclear Physics, University of Cologne
- ² Institute for Nuclear Physics, Technical University Darmstadt

Supported by BMBF Projects 05P18PKCI1, 05P21PKCI1, 05P21RDCI2

This project has received funding from the European Union's Horizon Research and Innovation programme under Grant Agreement No. 101057511

Bundesministerium für Bildung und Forschung

[1] T. Togashi; Y. Tsunoda; T. Otsuka; N. Shimizu; M. Honma; Phys. Rev. Lett. 121, 062501 (2018) ¹³²Sn value by D. Rosiak, *et. al.*; Phys. Rev. Lett. 121, 252501 (2018)

ISOLDE Workshop || Maximilian Droste

Miniball array

- 8 six-fold segmented triple HPGedetectors
- All triples with new cryostat technology, updated preamplifier electronics
- FEBEX readout

Miniball array

- 8 six-fold segmented triple HPGedetectors
- All triples with new cryostat technology, updated preamplifier electronics Talk by Frank Browne

FEBEX readout

Kinematics

- ¹³⁰Sn beam, 4.4 MeV/u (¹³⁰Sn³⁴S⁺)
- November 2022:
 - ²⁰⁶Pb target, 2.0 mg/cm²
 - 75 hours beamtime
 - ~5x10⁵ ions/s @ target
- October 2023:
 - ²⁰⁶Pb target, 4.2 mg/cm²
 - 110 hours beamtime
 - ~5x10⁵ ions/s @ target

Particle energy in coincidence with a gamma ray $\times 10^3$ pE theta coinc Energy [keV] Entries 3192875 Mean x 27.5 Mean y 3.712e+05 600 Std Dev x 9.892 Std Dev y 1.244e+05 500 400 10² 300 200 10 100 30 35 25 40 45 50 20 Angle [deg]

29/11/2023

Kinematics

- October 2023:
 - ²⁰⁶Pb target, 4.2 mg/cm²
 - 110 hours beamtime
 - ~5x10⁵ ions/s @ target

29/11/2023

Folie 8

l(130Sn; 2+->0+) =1500 (300)

Beam purity

Dominating ¹³⁰Sn

- No γ's from A=164 isobars in spectra
- Only ¹³⁰Sn and ¹³⁰Sb (and long-lived ¹³²Sn daughter nuclei from IS595)
- 70% ¹³⁰Sn_{g.s.}
- 30% ¹³⁰Sn₇₋

 1×10^7

 $\bigvee_{\rm VeV}^{\rm keV} 1 \times 10^6$

 1×10^7

 1×10^{6}

100000

Counts /

29/11/2023

Institute for Nuclear Physics || University of Cologne

Energy [keV]

7⁻ Isomer

Time of flight Target → CD ~ 3ns. Why do we see a stopped component?

29/11/2023

ISOLDE Workshop || Maximilian Droste

29/11/2023

Summary & Outlook

Two Coulomb excitation experiments performed with Miniball @ ISOLDE

Previous result of GOSIA analysis of B(E2)-value in excellent agreement with theory, but with large stat. uncertainties

- \rightarrow Remeasured B(E2) value in 2023
- \rightarrow 110 hours stable beamtime; 5x10⁵ ions/s
- \rightarrow Improved DAQ and beam focus
- \rightarrow High statistics run
- → Reducing B(E2; $2^+ \rightarrow 0^+_{g.s.}$) uncertainty
- → Nuclear structure information of 7⁻ isomer and 5⁻ excited state will be obtained

Beam composition

Two-step excitation? 4+ state?

GOSIA analysis for B(E2; $2^+ \rightarrow 0^+_{g.s.}$) and B(E2; $5^- \rightarrow 7^-$) values

Thank you for your attention and thanks to the IS702 Collaboration

Supported by BMBF Projects 05P18PKCI1, 05P21PKCI1, 05P21RDCI2

This project has received funding from the European Unions Horizon Research and Innovation programme under Grant Agreement No. 101057511

26/05/2023

ISOLDE Workshop || Maximilian Droste

New Miniball cryostats*

General structure:

- Eight triple cryostats
- Six-fold segmented HPGe crystals
- 168 high-resolution channels

After 20 years operation time

- Electronics out dated
- Mechanical problems

Solution:

- Renewal of complete cryostat and capsule
- New analog electronics based on AGATA preamplifier

*in cooperation with CTT, Montabaur

New encapsulation

Old:

- Welded design
- → Elaborate and expensive repairs

New:

- Lid fixed by screws
- Metal-elastic seal
- Highly temperature resistant
- UH vacuum
- Fast and cost effective repairs

29/11/2023

ISOLDE Workshop || Maximilian Droste

New cryostat design

Old:

- Long neck for BGO backscattering
- Movable lid

New:

- No neck for BGO
- No moving parts
- Adjustment ring integrated into cryostat design

New analog preamplifier electronics

Old:

- Electronics soldered in place
- Glued feedthroughs
- Preamplifier board for every channel

New:

- Plug-in electronic parts
- Welded feedthroughs
- AGATA preamplifier
- Three preamplifier boards: One core, two segments

ISOLDE Workshop || Maximilian Droste

Preliminary GOSIA2 analysis

[1] D.C. Radford, et al Nucl. Phys. A 752 (2005) 264c272c.

[2] T. Togashi; Y. Tsunoda; T. Otsuka; N. Shimizu; M. Honma; Phys. Rev. Lett. 121, 062501 (2018)

26/05/2023

ISOLDE Workshop || Maximilian Droste

Institute for Nuclear Physics || University of Cologne

Results ¹³⁰Sn

Beam current: ¹³⁰Sn beam current ~ **5*10⁵** ions/second (reduced proton current)

Beam purity: dominating ¹³⁰Sn (¹³⁰Sb ?)

- Doppler correction: no γ 's from stable or instable A=130, 164 isobars
 - No γ's from A=164 isobars in spectra
 - ¹³⁰Sb ~10%

Isomeric to ground state ratio: ~15% isomeric component

Statistics with uncertainties due to random background

Total beam time: 75 hours vs. 120 hours requested

High instantaneous Miniball count rate

reduced proton current, replace collimator by 5mm aperture

Preliminary FEBEX DAQ

No particle gamma trigger, single event read-out, no dedicated FPGA software, high 39% dead time,...

→ Follow up experiment!

Preliminary results

26/05/2023

ISOLDE Workshop || Maximilian Droste

Institute for Nuclear Physics || University of Cologne

26/05/2023

ISOLDE Workshop || Maximilian Droste

¹³⁰Sn Coulex – previous experiment

82