

Single-neutron transfer on ⁶⁸Ni

Andreas Ceulemans ISOLDE WORKSHOP AND USERS MEETING 29th Nov – 1st Dec 2023

Why research nickel isotopes?

- Proton magic number Z = 28
- Collectivity around N = 40
- Extension of region towards N=50

KU LEUVEN

C. Santamaria et al. PRL 115, 192501(2015) A. Gade and S. N. Liddick J. Phys. G: Nucl. Part. Phys. 43, 024001(2016)

Magicity and collectivity near ⁶⁸Ni

- Magic numbers: 2, 8, 20, 28, 50, 82 & 126
- N = 40 subshell closure + $1g_{9/2}$ and $2d_{5/2}$
 - \rightarrow Quadrupole collectivity
- ⁶⁸Ni displays:
 - High 2⁺ energy
 - Low B(E2; $0_1^+ \rightarrow 2_1^+$)
 - Weak discontinuity of 2n separation energy
- "Island of inversion" below ⁶⁸Ni
 - Ground states Fe and Cr deformed

KU LEU

Our investigation

- Shell model calculations use neutron $pfg_{9/2}d_{5/2}$ basis space
- $vd_{5/2}$ is needed to explain collectivity
- Location $\nu d_{5/2}$ not known in neutron-rich nickel

Transfer reaction ⁶⁸Ni(d,p) ⁶⁹Ni

• Performed at ISOLDE, CERN in november 2022

The ISS detector

Solenoid can produce magnetic field up to 2.5T

Si-array consists of DSSD's for detecting protons

Auxilary detectors

Gas filled recoil detector

- MWPC chamber
- Bragg chamber

Elastic scattering detector

- Micron S1 double-side silicon detector
- Shielded by aluminum plate

Schematic setup

Nuclear reactions using ISS

One-nucleon transfer reactions: 68Ni(d,p) 69Ni

- Selective population of states
- Angular distribution determined by L-transfer
- Solenoidal technique improves energy resolution

ISS array proton energy vs z spectrum

- Spectrum from protons on array
- Energy levels are diagonal lines

Excitation energy spectrum

- Reaction kinematics used to obtain excitation energy
- Laser off for Gallium background

• Ni + Ga

- Ga bg (scaled)
- Ni bg subtracted

Angular Distribution (2.5 MeV state)

Angular distributions generated using FRESCO: . J. Thompson. Coupled reaction channels calculations in nuclear physics. Computer physics reports, 7(4):167–212, 1988.

results

Conclusion

- Data analysis for ⁶⁸Ni(d,p) is nearly finished and article in preparation
- (At least one) state has been found corresponding to $\nu d_{5/2}$ orbital

• Want to know more about ISS?

Poster presentation and more talks in the Friday afternoon session ;)

Acknowledgements

 This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511

A. Ceulemans¹, L. P. Gaffney², F. Flavigny³, A. Alharbi², H. Ayatollahzadeh⁴, Y.Ayyad⁵, F. Browne⁶, A. Camaiani¹, D. Clarke⁷, A. Dolan², Z. Eleme⁸, S. Fracassetti¹, S. J. Freeman⁶, G. Georgiev^{6,9}, S. Goula⁸, A. Heinz¹⁰, B.R. Jones², A. Kawęcka¹⁰, J. Keatings⁴, T. Kröll¹¹, P. MacGregor⁶, M.V. Managlia¹⁰, A. Mitchell¹², J. Ojala², B. Olaizola⁶, N. Patronis⁸, O. Poleshchuk¹, R. Raabe¹, A.M. Sánchez-Benítez¹³, D. K. Sharp⁷, M.E. Stamati⁸, H. Törnqvist¹⁰, A. Youssef¹ and the ISS collaboration

¹KU Leuven, Belgium; ²University of Liverpool, U.K.; ³LPC Caen, France; ⁴University of the West of Scotland, U.K.; ⁵Universidade de Santiago de Compostela, ⁶CERN-ISOLDE, Switzerland; ⁷University of Manchester, U.K.; ⁸University Of Ioannina,[,] Greece.; ⁹IJCLab, France; ¹⁰Chalmers university of Technology, Sweden; ¹¹Technische Universität Darmstadt, Germany, ¹²Australian National University, ¹³University of Huelva, Spain

Thanks for listening

Backup slides

Reaction Info

- Transfer reaction: ⁶⁸Ni(d,p) ⁶⁹Ni
- Beam energy: 6 MeV/u
- Target: 137 µg/cm² CD₂
- Estimated beam intensity: 5×10^4 ions/µC

Ga background

- Isobaric Ga contamination
- Use of 3s beam gate and consecutive proton pulses
- Laser off for Ga background

PSB	Fixdisplay - W 4		15-Nov-2022 22:13:3				
Comm Supe Oper	nents (15-Nov-2022 ervisor : A.Findlay rator : CCC: 76671	20:07: 1639	44) 61	Enjoy	yourself		
BP	User	Pls	Inj.	Acc.	b.Ej.E10	Ej.E10	Dest.
52	ISOGPS_2022	18			3188	3242	ISOGPS
53	ISOGPS_2022	18			3201	3205	ISOGPS
54	ISOGPS 2022	18			3190	3145	ISOGPS
1	ISOGPS 2022	18			3205	3183	ISOGPS
2	ISOGPS_2022	18			3203	3195	ISOGPS
3	ISOGPS_2022	18			3207	3191	ISOGPS
4	ISOGPS_2022	18			3205	3213	ISOGPS
5	ISOGPS_2022	18			3214	3178	ISOGPS
6	ISOGPS_2022	18			3213	3196	ISOGPS
4	ISOGPS_2022	18			3197	3236	ISOGPS
8	ISOGPS_2022	18			3208	3293	ISOGPS
19	ISOGPS 2022	18			3211	3208	ISOGPS
	ISOGRE 2022		and had had	- Aller			looong

Configuration	Ratio Ni:Ga
No beam gate	1:7
With beam gate	4:1

68Ni scattering on d

- Single turns
- $\theta_{lab} \in [78.59^{\circ}, 78.74^{\circ}]$
- $E_{kin} \in [1.769, 1.724] \text{ MeV}$
- Double turns
- $\theta_{lab} \in [82.04^\circ, 82.11^\circ]$
- $E_{kin} \in [0.868, 0.852] \text{ MeV}$

Ejectile tracks for different lab angles

Detection Limits

Start and End of Array CoM angles for differen excitation energies

Overlay angular ranges

Start and End of Array CoM angles for differen excitation energies

