ISOL-like beams of ²²Al and ²⁶P at FRIB

ISOLDE Workshop 2023 Erik A. M. Jensen — Aarhus Universitet, DK

• Briefly: FRIB, beam production and beam cooling

- Detection setup: DSSDs and HPGes
- Physics results on ${}^{22}Al \otimes {}^{26}P: \beta 2p, \beta \alpha, ...$

From in-flight beams to ISOL-like beams

- Front End: ³⁶Ar
- Production Target: ¹²C
- Fragment Separator: ~16k pps of ²²Al @ 105 MeV/u
- Gas Stopping:
 - 2 helium-filled gas cells Room Temp. & Cryo
 - Momentum compression and stopping
 - Some filtering of isotopes of interest, but also introduction of new contaminants (molecules)
- BECOLA: 5–10 pps of ²²<u>Al @ 30 keV</u>
 - <u>Beam of ISOL quality!</u>

Large losses between Fragment Separator and Gas Stoppers

5-10 pps still an order of magnitude more than previously seen in studies utilising implantation of in-flight beams

Layout of FRIB. Adapted from AIP Conf. Proc. **1434**, 94 (2012).

From in-flight beams to ISOL-like beams

- Front End: ³⁶Ar
- Production Target: ¹²C
- Fragment Separator: ~16k pps of ²²Al @ 105 MeV/u
- Gas Stopping:
 - 2 helium-filled gas cells Room Temp. & Cryo
 - Momentum compression and stopping
 - Some filtering of isotopes of interest, but also introduction of new contaminants (molecules)
- BECOLA: 5-10 pps of ²²Al @ 30 keV
 - Beam of ISOL quality!

Large losses between Fragment Separator and Gas Stoppers

5-10 pps still an order of magnitude more than previously seen in studies utilising implantation of in-flight beams

Fast Ream Area

Gas Stopping Stopped Beam Area

Reaccelerated Beam Area

Adapted from AIP Conf. Proc. 1434, 94 (2012).

What comes out of the gas cell

- Even with >99 % pure helium gas, various molecules emerge from the gas cell
- Have to pick <u>one</u> mass to send to our detection setup
- For ²⁶P, ²⁵SiH-ligands are also present

	Constrained by cross sections at	Constrained by chemistry at
ISOL	Target	Target + Ion Source
In-flight	Target	Gas gell

Mass scan just after gas cell. Courtesy of Chandana Sumithrarachchi, Gas Cell Group at FRIB.

Detection setup

Silicon cube:

- 6 △E–E silicon detector telescopes
- ΔE detectors are 16x16 DSSSDs
- ~35 % of 4π for βp/βα

Beam: 30 keV ²²Al and ²⁶P stopped in thin carbon foil Chamber: 2 mm aluminium for low gamma attenuation

Germaniums:

- 2 mechanically cooled coaxial HPGes
- Overall efficiency at 1 MeV ~ 2 %

Silicon cube

- $6 \Delta E-E$ silicon detector telescopes
- ΔE detectors are 16x16 DSSSDs
- $\sim 35 \%$ of 4π for $\beta p/\beta \alpha$

Silicon cube

- $6 \Delta E-E$ silicon detector telescopes
- ΔE detectors are 16x16 DSSSDs
- ~35 % of 4π for $\beta p/\beta a$

Angular resolution ~4°, worst-case

Good energy resolution from energy loss corrections

For $\beta 2p,$ detection efficiency depends on opening angle \varTheta_{2p} between 1^{st} and 2^{nd} proton

Simulations of various $\varpi_{\rm 2p}$ in setup geometry must correct for observed distributions of $\varpi_{\rm 2p}$

Variation of Ω vs. $\boldsymbol{\varTheta}_{2p}$ reasonable; symmetric setup

The data – ²²Al

Two-proton events: Plot individual proton energies E_i against Q-value of two-proton decay Q_{2p}

Per Q_{2p} value there are two values of E_i

Previously, only two Q_{2p} peaks known:

- ${}^{22}Mg IAS \rightarrow {}^{21}Na^* \rightarrow {}^{20}Ne O^+$
- ${}^{22}Mg IAS \rightarrow {}^{21}Na^* \rightarrow {}^{20}Ne 2^+$

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

 $Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20}_{Ne}$

Erik A. M. Jensen — Aarhus Universitet, Denmark

Understanding the "Fynbo plot":

• For sequential decay, we have

 $Q_{2p} = Q_1 + Q_2$ = $\frac{M_{^{21}Na} + m_p}{M_{^{21}Na}} E_1 + Q_2$

 i.e. 1st emitted proton generally follows straight line of slope ~1 with offset determined by energy release of 2nd proton, Q₂

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

 $Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20 \text{ Ne}}$

Understanding the "Fynbo plot":

• For sequential decay, we have

 $Q_{2p} = Q_1 + Q_2$ = $\frac{M_{^{21}Na} + m_p}{M_{^{21}Na}} E_1 + Q_2$

 i.e. 1st emitted proton generally follows straight line of slope ~1 with offset determined by energy release of 2nd proton, Q₂

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

 $Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20 \text{ Ne}}$

Understanding the "Fynbo plot":

• For sequential decay, we have

 $Q_{2p} = Q_1 + Q_2$ $= \frac{M_{^{21}Na} + m_p}{M_{^{21}Na}} E_1 + Q_2$

 i.e. 1st emitted proton generally follows straight line of slope ~1 with offset determined by energy release of 2nd proton, Q₂

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

 $Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20 \text{ Ne}}$

For sequential decay, we have:

$$Q_{2p} = Q_1 + Q_2$$

= $\frac{M_{^{21}Na} + m_p}{M_{^{21}Na}} E_1 + Q_2$

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

$$Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{2^0 Ne}$$

Erik A. M. Jensen — Aarhus Universitet, Denmark

For sequential decay: E_1 is constant w.r.t. $\cos \Theta_{2p}$, while E_2 depends linearly on $\cos \Theta_{2p}$:

 $E_2 = E'_2 + m_{\rm p}^2 E_1 / M_{^{21}\rm Na}^2 - 2m_{\rm p} \sqrt{E_1 E'_2} \cos \Theta_{2\rm p} / M_{^{21}\rm Na}$

For sequential decay, we have:

$$Q_{2p} = Q_1 + Q_2$$

= $\frac{M_{2^1Na} + m_p}{M_{2^1Na}} E_1 + Q_2$

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

 $Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20}_{Ne}$

For sequential decay: E_1 is constant w.r.t. $\cos \Theta_{2p}$, while E_2 depends linearly on $\cos \Theta_{2p}$:

 $E_2 = E'_2 + m_{\rm p}^2 E_1 / M_{^{21}\rm Na}^2 - 2m_{\rm p} \sqrt{E_1 E'_2} \cos \Theta_{2\rm p} / M_{^{21}\rm Na}$

Gating on specific Q_{2p} peaks allows us to examine population of intermediate states

For sequential decay, we have:

$$Q_{2p} = Q_1 + Q_2 = \frac{M_{21}N_a + m_p}{M_{21}N_a} E_1 + Q_2$$

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

$$Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20} N_{20}$$

For sequential decay: E_1 is constant w.r.t. $\cos \Theta_{2p}$, while E_2 depends linearly on $\cos \Theta_{2p}$:

 $E_2 = E'_2 + m_{\rm p}^2 E_1 / M_{^{21}\rm Na}^2 - 2m_{\rm p} \sqrt{E_1 E'_2} \cos \Theta_{2\rm p} / M_{^{21}\rm Na}$

Gating on specific Q_{2p} peaks allows us to examine population of intermediate states

For sequential decay, we have:

$$Q_{2p} = Q_1 + Q_2 = \frac{M_{^{21}Na} + m_p}{M_{^{21}Na}} E_1 + Q_2$$

 Q_{2p} determined from E_1, E_2, Θ_{2p} :

$$Q_{2p} = E_1 + E_2 + m_p (E_1 + E_2 + 2\sqrt{E_1 E_2} \cos \Theta_{2p}) / M_{20N}$$

For sequential decay: E_1 is constant w.r.t. $\cos \Theta_{2p}$, while E_2 depends linearly on $\cos \Theta_{2p}$:

 $E_2 = E'_2 + m_p^2 E_1 / M_{^{21}\text{Na}}^2 - 2m_p \sqrt{E_1 E'_2} \cos \Theta_{2p} / M_{^{21}\text{Na}}$

Gating on specific Q_{2p} peaks allows us to examine population of intermediate states

ISOLDE Workshop 2023

Erik A. M. Jensen — Aarhus Universitet, Denmark

$\beta \alpha$ from ²²Al

$\beta \alpha$ from ²²Al

First observation of $\beta \alpha$ from ²²Mg IAS to ¹⁸Ne g.s.

This confirms J=4 assignment of IAS and, hence, J=4 assignment of g.s. of ²²Al

$\beta\alpha$ from ²²Al (and ²⁶P)

First observation of $\beta \alpha$ from ²²Mg IAS to ¹⁸Ne g.s.

This confirms J=4 assignment of IAS and, hence, J=4 assignment of g.s. of ²²Al

Equivalent non-observation for ²⁶P suggests J=3

Erik A. M. Jensen — Aarhus Universitet, Denmark

10-с

Summary and outlook

Takeaway:

- In-flight produdction rates and ISOL detection methods yield unprecedented results
- Many hitherto unobserved β2p channels
- $\beta \alpha$ discovery \rightarrow nuclear structure

There is more:

- βp (conditioned on β2p)
- βργ
- Sequential vs. direct β2p

Thank you for your attention

Extra slides

Gas Stopper

K.R. Lund, et al., Nuclear Inst. and Methods in Physics Research B 463 (2020) 378-381

Courtesy of Chandana Sumithrarachchi

Beta-delayed particle emission

ISOLDE Workshop 2023

Erik A. M. Jensen — Aarhus Universitet, Denmark

History

22Al first observed b2p emitter; 26P second

2.5.2. First observation of $\beta 2p$ decay and later experimental results It was indeed beneath the odd-odd $T_z = -2$ nuclei that the first $\beta 2p$ emitters were observed.

After its identification by βp emission, ²²Al was discovered to decay via this new nuclear decay mode [220]. The nuclei of interest were produced by a ³He induced reaction on a ²⁴Mg target.

(...)

The second β 2p emitter was identified by the same group <u>a few months later</u> [223]. It was again a light odd-odd $T_z = -2$ nucleus, ²⁶P, as predicted by Goldanskii [218]. Contrary to ²²Al, where different 2p emission paths could be identified, ²⁶P seems to decay by only one 2p path. This difference is most likely due to the different nuclear structure of the one-proton daughter nuclei, ²¹Na and ²⁵Al.

B. Blank, M.J.G. Borge, Progress in Particle and Nuclear Physics 60 (2008) 403–483

110 ³He + ^{nat}Mg (2.30 C)

22

Two-proton sum small angles

22

ISOLDE Workshop 2023

Erik A. M. Jensen — Aarhus Universitet, Denmark