

In-gas-jet laser spectroscopy with S³-LEB, status and perspectives

Wenling Dong

IJCLab, Orsay, France November 29, 2023

for the S³-LEB collaboration

1

Outline

- Off-line laser spectroscopy measurements with S³-LEB
- Design of the FRIENDS³ prototype
 - Preliminary simulation study
 - \circ Test-bench study
- Conclusion and outlook

cnrs

FACULTÉ DES SCIENCES

D'ORSAY

Ŵ

ISOLDE Workshop 2023

Status of the S³-LEB experiments

CNIS universite

FACULTÉ

DIORSAN

DES SCIENCES

Université de Paris

First off-line measurement, studied by J. Romans and A. Ajayakumar.

What has been achieved:

- The in-gas-jet resonance laser ionization were explored in detail for Er (S³ first physics case).
- The transmission across the whole setup was preliminarily optimized to 80-100%.

Recent work:

• check the other sensitive schemes that are efficient and sensitive to nuclear properties.

TOF spectrum of stable Er behind PILGRIM

Laboratoire de Physique des 2 Infinis

6

Isotope Shift and Hyperfine values

FACULTÉ DES SCIENCES D'ORSAY

cnrs

Université de Paris Ŵ

King plot analysis for IS factors

$$\delta v_{409}^{A',A} = F_{409} \Lambda^{AA'} + M_{409} \frac{A' - A}{A'A}$$

[1] A. Ajayakumar et al. Nuclear Inst. and Methods in Physics Research, B 539 (2023) [2] J. Romans et al. Nucl. Instrum. Meth. B 536 (2023) [3] W.J. Childs et al., Phys. Rev. A 28 (1983)

Hyperfine structure constants A and B for different FES of ¹⁶⁷Er

Atomic states	excitation step	Method	A(MHz)	B(MHz)
4f ¹¹ (⁴ I)5d6s ² , J=6	408.8 nm	gas jet	-123.9(0.4)	213.4(22.6)
4f ¹² (³ H ₅)6s6 p, J=5	415.2 nm	gas jet [1]	-147.1(7)	-1936(24)
		ABU [2]	-147.66(83)	-1888(58)
		ref [3]	-146.6(3)	-1874(16)
g.s.	-	ref [2]	-121.80(75)	-4563(53)

Outline

Off-line laser spectroscopy measurements with S³-LEB

- Design of the FRIENDS³ prototype
 - Preliminary simulation study
 - o Test-bench study
- Conclusion and outlook

cnrs

universite PARIS-SACLAY FACULTÉ DES SCIENCES

D'ORSAY

W

FRIENDS³ project objectives and guiding idea

CNrs

Université de Paris

Limitations of current gas cell:

- <u>Extraction time</u> too long for shortlived S³ products
- <u>Neutralization efficiency</u> depends on the beam intensity

Objectives of FRIENDS³ project:

- Reduce extraction time ~ 100 ms.
- Improve neutralization efficiency
- Ideally both at the same time

Contour: Electric potential (V

220

200

180

160

140

120

100

382.14 371.85

361.55

351.26

340.97

330.67 320.38

310.09

299.79

289.5 279.21

268.91

258.62 248.33

238.03 227.74 217.45

207.15

186.57

176.27 165.98 155.69

145.39 135.1 124.81 114.51

93.93

83.63 73 34

63.05

52.75

42.46 32.17 21.87 11.58

1 29

50 mm

220-

200

180

160

100

Preliminary simulation study: multiphysics

Study of simulation tools and methods: COMSOL + SIMION

Multiphysics problem: COMSOL

- Laminar gas flow through the cell
- Calculation of static and dynamic electrical fields
- Particle tracing under the action of gas flow (drag) and electrical field (drift)
- Plasma processes (ion recombination) _

Statistical Diffusion Simulation (SDS): SIMION

• Diffusion effect in high pressures

Flow simulated by COMSOL, ion transport simulated by SIMION.

FACULTÉ

universite

DES SCIENCES

Université de Paris

Simulated performance:

Cnrs

- extraction efficiency ~ 30%.
- extraction time ~ 120 ms.
- time available for neutralization ~ 55 ms.

50 mm

The mechanical study of the test bench is almost completed.

Bent RFQ et mini-RFQ: contribution of KU Leuven (Kudryavtsev et al., NIMB 297, 2013)

• Study ion extraction times and neutralization efficiencies.

CORS

- Mass filtering and identification.
- Perform in-jet laser spectroscopy.

FACULTÉ

DIORSAN

universite

DES SCIENCES

Ŵ

Test-bench study: tests of the beta source

FACULTÉ DES SCIENCES D'ORSAY universite PARIS-SACLAY

cnrs

4 Université de Paris

Laboratoire de Physique des 2 Infinis

⁹⁰Sr source installation, Cu window 100 um

⁹⁰Sr, 37 MBq

RFQ for ion extraction

Conclusion and outlook

COL

Université de Paris

The first off-line results for Er(415.2 nm to FES) are in good agreement with the literature values:

- the laser system and technique is capable of the intended first physics cases at the SPIRAL2-GANIL S³ facility.
- the systematic uncertainties are under control.

A more sensitive scheme (408.8 nm to FES) for Er was mearsured in the scope of S^3 first physics cases:

• IS and HFS constants have been found for this transition.

The results from the in-gas-jet RIS show the potential of the S³-LEB to perform high-resolution laser spectroscopy for on-line studies.

In the future,

- the connecting part to PILGRIM will be replaced by a 90° bender to couple to SEASON.
- S³-LEB will be put at S³ after the commissioning, first experiments with S³-LEB are forseen for 2025.
- FRIENDS³ test bench will be moved to GANIL at 2024.

The S³-LEB collaboration

GANIL:

Anjali Ajayakumar; Dieter Ackermann; Lucia Caceres; Samuel Damoy; Pierre Delahaye; Patrice Gangnant; Nathalie Lecesne; Thierry Lefrou; Renan Leroy; Franck Lutton; Alejandro Ortiz; Benoit Osmond; Julien Piot; Blaise-Maël Retailleau; Hervé Savajols; Gilles Sénécal

LPC:

Frédéric Boumard; Jean-François Cam; Philippe Desrues; Xavier Fléchard; Julien Lory ; Yvan Merrer ; Christophe Vandamme

IJCLab:

Wenling Dong; Patricia Duchesne; Serge Franchoo; Vladimir Manea; Olivier Pochon

KU Leuven:

Arno Claessens; Rafael Ferrer; Mark Huyse; Fedor Ivandikov; Sandro Kraemer ; Yuri Kudriavtsev; **f** WO

IDIECENTRUM VOOR KERNENEI

Jekabs Romans; Simon Sels; Paul Van den Bergh; Piet Van Duppen; Matthias Verlinde; Elise Verstraelen

JGU:

Sebastian Raeder; Dominik Studer; Klaus Wendt

JYU:

Ruben de Groote: Jain David Moore: Michael Reponen: Juha Uusitalo

IPHC:

Emil Traykov

IRFU:

Martial Authier; Olivier Cloue; Antoine Drouard; Thomas Goigoux; Emmanuel Rey-Herme; Damien Thisse; Marine Vandebrouck

and the RESIST network in ENSAR2

ISOLDE Workshop 2023

Ti:sa cavities

Pierre Chauveau, PhD thesis, Université de Caen Normandie (2016) Pierre Chauveau et al., Nucl. Instrum. Meth. B **376**, 211-215 (2016)

CORS

FACULTÉ

DIORSAN

université

DES SCIENCES

Ъ

Université de Paris

¹⁷⁰Er at 1000 turns (other isotopes on different numbers of turns)

- Mass separation and measurements tested with bunches from the S³-LEB cooler-buncher
- Resolving power ≈ 100 000
- Mass accuracy tested on a few cases to a few ≈ 10⁻⁷

Y. Balasmeh, master thesis, LPC Caen 2022

S³-LEB off-line results: SEASON

- Developed at CEA Saclay
- « Windmill » of implantation foils
- Silicon box detector (DSSSD) for alphas and electrons
- Germanium detectors
- Mechanical design finished, construction foreseen for end of 2023
- First DSSSD tested, target resolution achieved with radioactive sources:
 - 17.2 keV FWHM for alpha at 5.8 MeV
 - 10.2 keV FWHM for electrons at 320 keV

Marine Vandebrouck, Thomas Goigoux, Emmanuel Rey-Herme, Damien Thisse et al.

université

3-α calibration source (²³⁹Pu, ²⁴¹Am, ²⁴⁴Cm)

29/11/2023

Université de Paris

DES SCIENCES