

The ²²⁹Th Nuclear Clock Isomer: Half-life and Energy Determination in Several Different Crystals

Skyy V. Pineda ISOLDE Workshop November 30th, 2023

The ²²⁹Th Isomer

- Low-lying isomer around 8 eV which is accessible to laser excitation (VUV lasers)
- The only known candidate for the development of a nuclear clock in the far-ultraviolet regime
- Energy is low enough to probe with a laser and has a long radiative lifetime
- Applications
 - Geodesy
 - Ultralight dark matter detection
 - Time-dependence of fundamental constants

L. von der Wense *et. al., Nature* **533**, 47-51 (**2016**). P G Thirolf *et. al., J. Phys. B: At. Mol. Opt. Phys.* **52** 203001 (2019).

S. Pineda, Institute for Nuclear and Radiation Physics **KU LEUVEN**

Populating the Isomer

- ²³³U *α*-decay
 - Doping in CaF₂ crystal
 - Branching of 2%
- Disadvantages
 - 84 eV recoil energy
 - Strong radioluminescence background from α -decay
- ²²⁹Ac β -decay approach
 - Branching >14%
 - Small recoil energy of 6 eV
- Disadvantages
 - Cherenkov background from β -decay
- Implant precursors into large bandgap crystals to measure the radiative decay of the isomer

Previous Experiment-Radiative Decay Observation

- Radiative decay observed in three different crystals:
 - CaF₂ thick (5mm)
 - MgF₂ thick (5mm)
 - CaF₂ thin (50nm)
- Peaks can be observed due to:
 - Signal from ^{229m}Th
 - Crystal defect excitations
- The peak around 149 nm is present in A=229 but absent in A=230. This is a signature for ^{229m}Th
- The deduced isomer energy value was 8.338 +/- 0.024 eV (148.7 +/- 0.4 nm), whose uncertainty corresponds to 5.8 THz

Previous Experiment-Radiative Decay Observation

- Performing measurements in succession provides time behavior of the signal
- Determined the half-life of radiative decay in MgF_2 to be 670 +/- 102 s
- Half-life may be dependent on the chemical environment

• The most recent beamtime focused on improving the energy and half-life measurements, as well as testing some new crystals

VUV Spectroscopy at ISOLDE

Radioactive beam

Crystal

- Radioactive beam implanted onto crystals
- Crystals moved to the entrance of the spectrometer to observe the decay
- VUV photons travel from the crystal to a collimating mirror
- A diffraction grating separates the components of the light, which are then focused onto a PMT
- Rotating the grating effectively scans the wavelength range of the isomer

VUV Spectroscopy at ISOLDE

- Implanted on several different crystals:
 - MgF₂ (5mm bulk)
 - CaF₂ (50nm thin film and 5mm bulk)
 - SiO₂ (1mm)
 - AIN (1mm)
 - LiSrAIF₆ (1mm)

VUV Spectroscopy at ISOLDE

- Microchannel Plate detector used to measure the beam size and position
- 2mm x 3mm beam size
- ThCx target
- Higher rates compared to previous beamtime
 - Previous beamtime: ²²⁹Ra ~10⁶ s⁻¹
 - Recent beamtime: ²²⁹Ra ~10⁸ s⁻¹

Experimental Results

- Measured energy in:
 - CaF_2
 - LiSrAIF₆
- 250 μ m slit width
- Calibration measurements before and after each measurement
- Reduce uncertainty to <0.2 nm

Calibration Measurements

- Plasma source used to calibration our data
- Allows us to convert from motor position to wavelength

Calibration Measurements

- Scatter of calibration measurements ~0.12 nm with diffuser
- Offline measurement campaign in progress

Experimental Results

- Measured lifetime in CaF₂ (thin film and bulk), LiSrAIF₆,MgF₂
- Shorter implantation time

Summary

- The previous experiment (IS-658) resulting in the observation of the ^{229m}Th radiative decay
 - Improved energy determination by a factor of 7
 - First determination of radiative half-life in MgF₂ crystal
- Most recent beamtime at ISOLDE (IS-715)
 - Isomer energy measured with a higher precision
 - Half-life of the isomer measured in more crystals
- Data analysis is ongoing
- A step forward in the development of the nuclear clock
- Upgrading the system for faster detection time (poster from Yens Elskens)
 - Allows for more precise measurement of the isomer's half-life
 - Annealing

Acknowledgements

The IS-715 Collaboration

M. Athanasakis, M. Au, S. Bara, M. Bartokos, K. Beeks, P. Chhetri, K. Chrysalidis, A. Claessens, J.G. Correia, Y. Elskens, R. Ferrer, R. Heinke, F. Ivandikov, U. Köster, S. Kraemer, M. Laatiaoui, R. Lica, G. Magchiels, J. Moens, D. Moritz, I. Morawetz, L.M.C. Pereira, S.V. Pineda, S. Raeder, S. Rothe, A. de Roubin, F. Schaden, K. Scharl, T. Schumm, S. Stegeman, P.G. Thirolf, P. Van Duppen, A. Vantomme, R. Villarreal, U. Wahl