

199192



# Nuclear properties and exotic structure of $^{81,82}$ Zn isotopes beyond N=50 (IS682)

## Speaker: Yongchao Liu on behalf of CRIS Collaboration Peking University ISOLDE Workshop and Users Meeting 2023













## Acknowledgment

**Co-authors:** Xiaofei Yang <sup>2</sup>; Bram van den Borne <sup>3</sup>; Thomas E Cocolios <sup>3</sup>; Michail Athanasakis-Kaklamanakis <sup>3</sup>; Mia Au <sup>4</sup>; Shiwei Bai <sup>2</sup>; Silvia Bara <sup>3</sup>; Ruben P de Groote <sup>3</sup>; Kieran T Flanagan <sup>5</sup>; Ronald F Garcia Ruiz <sup>6</sup>; Yangfan Guo <sup>2</sup>; Dag Hanstorp <sup>7</sup>; Michael Heines <sup>3</sup>; Hanrui Hu <sup>2</sup>; Ágota Koszoŕus <sup>3</sup>; Louis A Lalanne <sup>4</sup>; Pierre Lassegues <sup>3</sup>; Razvan Lica <sup>8</sup>; Yinshen Liu <sup>2</sup>; Kara M Lynch <sup>5</sup>; Abi McGone <sup>5</sup>; Catalin Neascu <sup>8</sup>; Gerda Neyens <sup>3</sup>; Jordan R Reilly <sup>5</sup>; Christine Steenkamp <sup>9</sup>; Simon Stegemann <sup>4</sup>; Julius Wessolek <sup>4</sup>

- <sup>1</sup> Peking University (CN)
- <sup>2</sup> Peking University
- <sup>3</sup> KU Leuven
- <sup>4</sup> CERN
- <sup>5</sup> University of Manchester
- <sup>6</sup> Massachusetts Institute of Technology
- <sup>7</sup> University of Gothenburg
- <sup>8</sup> Horia Hulubei National Institute of Physics and Nuclear Engineering
- <sup>9</sup> Stellenbosch University











IGIL

Outline



## > Physics motivation

## >Experimental method

- Production of Zn isotopes
- CRIS method
- New decay station system

➢ Results

- HFS spectrum for <sup>81,82</sup>Zn
- Ground state properties of <sup>81,82</sup>Zn
- Half-life measurement of <sup>75g,m</sup>Zn







Double Magic properties and shape coexistance at <sup>78</sup>Ni[1] Shell evolution(Cu)[2]and shape coexistence(Zn)[3] Subshell effect at N = 40 on <sup>68</sup>Ni[4] Theoretical developments (SM, DFT, ab-initio) [1]R. Taniuchi, et al. Nature, 569, (2019) 53;
[2]Y. Ichikawa, et al. Nat Phys, 15, (2019) 321;
[3]X. F. Yang, et al., PRL 116, (2016) 182502;
[4]R. Broda, et al. PRL 74, (1995) 868

## > Physics Background



**Double Magic properties and shape coexistance at** <sup>78</sup>**Ni**[1] Shell evolution(Cu)[2] and shape coexistence(Zn)[3] Subshell effect at N = 40 on <sup>68</sup>Ni[4] **Theoretical developments (SM, DFT, ab-initio)** 

[1]R. Taniuchi, et al. Nature, 569, (2019) 53; [2]Y. Ichikawa, et al. Nat Phys, 15, (2019) 321; [3]X. F. Yang, et al., PRL 116, (2016) 182502; [4]R. Broda, et al. PRL 74, (1995) 868

## > Physics Background



**Double Magic properties and shape coexistance at** <sup>78</sup>**Ni**[1] Shell evolution(Cu)[2] and shape coexistence(Zn)[3] Subshell effect at N = 40 on <sup>68</sup>Ni[4] **Theoretical developments (SM, DFT, ab-initio)** 

[1]R. Taniuchi, et al. Nature, 569, (2019) 53; [2]Y. Ichikawa, et al. Nat Phys, 15, (2019) 321; [3]X. F. Yang, et al., PRL 116, (2016) 182502; [4]R. Broda, et al. PRL 74, (1995) 868



- > Investigating the ground state configuration and structure, and searching for a possible isomer state of <sup>81</sup>Zn.
- Studying the shell evolution and the predicted inversion of neutron single-particle orbits in the N = 51 isotones when approaching <sup>78</sup>Ni [1,2].
- > Probing the magicity of N = 50 when approaching Z = 28, by measuring the charge radii up to <sup>82</sup>Zn [3].

[1] R. Taniuchi, C. Santamaria, P. Doornenbal, et al. *Nature* **569** (2019), 53. [2] G. Hagen, G. R. Jansen, and T. Papenbrock, *Physical Review Letters* **117**, (2016), 172501. [3] X. Yang, T. Cocolios, S. Geldhof, et al. CERN-INTC CERN-INTC-2020-064 (2020) INTC–P–579.

## > Physics motivation: shell evolution on N = 51





- N = 51 isotones: energy drop of the  $\frac{1}{2}$ + state
- SM calculation (jj45pna) : <sup>1</sup>/<sub>2</sub>+ become g.s. in <sup>81</sup>Zn
- *Ab-initio* calculation: <sup>1</sup>/<sub>2</sub>+ become g.s. in <sup>79</sup>Ni

#### Tensor force effect

Otsuka, et al. Rev Mod Phys, 92 (2020)

#### Continuous effect

G. Hagen, et al. PRL 117 (2016)172501

## >Physics motivation: spin and nuclear moments of <sup>81</sup>Zn (の) PEKING UNIVERSITY



**Nuclear Moments:** 

- Single-particle state or configuration mixing?
- Spherical or deformed?

$$[s_{1/2}^1] 1/2^+$$
 or  $[2^+ \otimes d_{5/2}^1] 1/2^+$ ??

 Require the magnetic and quadrupole moments measurement of <sup>81</sup>Zn =>providing stringent test for the nuclear theoretical models

Spin: PRC76(2007) 054312  $(1/2^+)$  g.s. PRC82(2010)064314  $(5/2^+)$  g.s. PRC102(2020)014329  $(5/2^+ \text{ or } 1/2^+)$  g.s.

## ➢ Physics motivation: nuclear charge radii of <sup>81,82</sup>Zn



- Approaching Z = 28, charge radii data above N = 50 are limited!
- N = 50 magic effect in the charge radii of isotopes closed to <sup>78</sup>Ni?
- Magic effect can be better observed as a local inversion of the OES!



• Require the charge radii measurement of <sup>81,82</sup>Zn.

=>providing test for the state-of-the-art nuclear theories

[Zn-Radii]L. Xie et al., PLB797(2019)134805; [Cu-Radii]R. P. de Groote et al., Nat.Phys16(2020)620

#### **ISOLDE Workshop and Users Meeting 2023**





#### Low background, high resolution, high efficiency!!!



## **Experimental method: main difficulties**





11/29/2023

#### **ISOLDE Workshop and Users Meeting 2023**

#### **Results:** HFS spectrum of ground state <sup>81,82</sup>Zn



#### Laser Spectroscopy of <sup>81,82</sup>Zn isotopes for $4s4p \ ^{3}P_{2} \longrightarrow 4s5s \ ^{3}S_{1}$





#### $I^{\pi} = 5/2^+$ ground state is confirmed!!



#### For spin = 3/2 or 7/2, the HFS peaks cannot fit with the data

#### **ISOLDE Workshop and Users Meeting 2023**

#### **Results:** HFS spectrum of ground state <sup>81,82</sup>Zn





For spin = 3/2 or 7/2, the HFS peaks cannot fit with the data

## **Results:** Spin electromagnetic moments of <sup>81,82</sup>Zn





G.S. Spin of <sup>81</sup>Zn is now firmly assigned to be 5/2<sup>+</sup>
 SM calculation shows core excitations of <sup>78</sup>Ni is needed to reproduce the moments of <sup>81</sup>Zn



#### ► Results: charge radii of <sup>81,82</sup>Zn





#### A large kink is also observed on N = 50 along Zn isotope chain

11/29/2023

#### **ISOLDE Workshop and Users Meeting 2023**

#### **Experimental method: new decay station**





Silicon Detector (PIPS) Tape Station

**1. Designed for high contamination Laser spectroscopy measurement** 

2. Half-life measurement for isomer state combined with laser method



11/29/2023

#### **>Results: half life measurement of 75g,mZn with new DSS**の ままえき PEKING UNIVERSITY







- With the UCx target and the assist of neutron convertor& quartz line, the <sup>81,82</sup>Zn HFS are successfully measured.
- The ground state spin of <sup>81</sup>Zn is assigned to be 5/2+, no shell inversion at <sup>81</sup>Zn.
- ➤ The cross shell excitation of <sup>78</sup>Ni core is required to reproduce the moments of <sup>81</sup>Zn in shell model.
- ➤ A large charge radii kink is observed at N = 50 in Zn isotope chain.
   ➤ The new DSS setup is successfully commissioned on <sup>75</sup>Zn half-life measurement.

## **Thanks for your attention!**

**Co-authors:** Xiaofei Yang <sup>2</sup>; Bram van den Borne <sup>3</sup>; Thomas E Cocolios <sup>3</sup>; Michail Athanasakis-Kaklamanakis <sup>3</sup>; Mia Au <sup>4</sup>; Shiwei Bai <sup>2</sup>; Silvia Bara <sup>3</sup>; Ruben P de Groote <sup>3</sup>; Kieran T Flanagan <sup>5</sup>; Ronald F Garcia Ruiz <sup>6</sup>; Yangfan Guo <sup>2</sup>; Dag Hanstorp <sup>7</sup>; Michael Heines <sup>3</sup>; Hanrui Hu <sup>2</sup>; Ágota Koszoŕus <sup>3</sup>; Louis A Lalanne <sup>4</sup>; Pierre Lassegues <sup>3</sup>; Razvan Lica <sup>8</sup>; Yinshen Liu <sup>2</sup>; Kara M Lynch <sup>5</sup>; Abi McGone <sup>5</sup>; Catalin Neascu <sup>8</sup>; Gerda Neyens <sup>3</sup>; Jordan R Reilly <sup>5</sup>; Christine Steenkamp <sup>9</sup>; Simon Stegemann <sup>4</sup>; Julius Wessolek <sup>4</sup>

- <sup>1</sup> Peking University (CN)
- <sup>2</sup> Peking University
- <sup>3</sup> KU Leuven
- <sup>4</sup> CERN
- <sup>5</sup> University of Manchester
- <sup>6</sup> Massachusetts Institute of Technology
- <sup>7</sup> University of Gothenburg
- <sup>8</sup> Horia Hulubei National Institute of Physics and Nuclear Engineering
- <sup>9</sup> Stellenbosch University













IGIL

#### **Results:** electromagnetic moments of <sup>81</sup>Zn





#### **Model Space:**

<sup>78</sup>Ni core proton: 1p3/2 0f5/2 1p1/2 0g9/2 neutron: 1d5/2 2s1/2 1d3/2 0g7/2 0h11/2

<sup>52</sup>Ca core proton: pf-shell neutron: 0f5/2 1p1/2 0g9/2 1d5/2 1d3/2 2s1/2



