

Contribution ID: 15

Type: Submitted oral (In person)

Nuclear properties and exotic structure of ^{81,82}Zn isotopes beyond N = 50

Thursday 30 November 2023 15:30 (12 minutes)

Rich nuclear structure phenomena, such as shape coexistence and shell evolution, have been observed in the neutron rich region up to N = 50 around ⁷⁸Ni [1-4]. Moving to more neutron-rich nuclei, theoretical calculation shows that the shell evolution and deformation will also appear in the ground states of isotopes beyond N = 50 [4-6]. Nuclear spins, electromagnetic moments and charge radii of the ground states of these neutron-rich nuclei, which are accessed by laser spectroscopy techniques, would provide important information on theoretically-predicted exotic structure. However, due to the low production yield of neutron-rich isotopes in the northeast of ⁷⁸Ni, as well as the accompanying large isobaric contamination, measurement of ground-state properties in this region using laser spectroscopy has been limited till now.

Recently, thanks to the strong rubidium suppression by using a quartz transfer line in the ISOLDE target, and the high sensitivity and selectivity of the Collinear Laser Spectroscopy (CRIS) technique [7,8], measurements of 81,82 Zn (N = 51,52) close to the 78 Ni have been performed successfully. This leads to the first determination of the nuclear spin and electromagnetic moments of 81 Zn and the charge radii of 81,82 Zn. In this talk, the details of the CRIS experiment as well as the extracted nuclear properties of the 81,82 Zn isotopes will be presented. The experimental results will be further discussed based on the on-going shell model and ab-initio calculations.

References:

[1] X. F. Yang et al. Isomer shift and magnetic moment of the long-lived $1/2^+$ isomer in

49: signature of shape coexistence near ⁷⁸Ni. *Physical Review Letters*, 116:182502, 2016.

[2] F. Nowacki, A. Poves, E. Caurier, and B. Bounthong. Shape coexistence in ⁷⁸Ni as the portal to the fifth island of inversion. *Physical Review Letters*, 117:272501, 2016.

[3] S. Padgett et al. β decay of 81Zn and migrations of states observed near the N = 50 closed shell. *Physical Review C*, 82:064314, 2010.

[4] R. Taniuchi, C. Santamaria, P. Doornenbal, et al. ⁷⁸Ni revealed as a doubly magic stronghold against nuclear deformation, *Nature* 569: 53, 2019.

[5] G. Hagen, G. R. Jansen, and T. Papenbrock. Structure of ⁷⁸Ni from first-principles

computations. Physical Review Letters, 117:172501, 2016.

[6] K. Maurya, P. C. Srivastava, and I. Mehrotra. Shell model description of N = 51

isotones. *IOSR Journal of Applied Physics*, 3:52, 2013.

[7]R. P. De Groote, J. Billowes, C. L. Binnersley, et al. Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes. *Nature Physics*, 16:620-624, 2020.

[8]M. Athanasakis-Kaklamanakis, J. R. Reilly, Á. Koszorús, et al. Voltage scanning and technical upgrades at the Collinear Resonance Ionization Spectroscopy experiment. *Nucl. Instrum. Methods Phys. Res. A*, 541:86-89, 2023.

Author: Mr LIU, Yongchao (Peking University (CN))

Co-authors: Prof. YANG, Xiaofei (Peking University); Mr VAN DEN BORNE, Bram (KU Leuven); Prof. COCOLIOS, Thomas E (KU Leuven); Dr ATHANASAKIS-KAKLAMANAKIS, Michail (KU Leuven); Ms AU, Mia

(CERN); Dr BAI, Shiwei (Peking University); Ms BARA, Silvia (KU Leuven); Prof. DE GROOTE, Ruben P (KU Leuven); Prof. FLANAGAN, Kieran T (University of Manchester); Prof. GARCIA RUIZ, Ronald F (Massachusetts Institute of Technology); Mr GUO, Yangfan (Peking University); Prof. HANSTORP, Dag (University of Gothenburg); Mr HEINES, Michael (KU Leuven); Mr HU, Hanrui (Peking University); Prof. KOSZOŔUS, Ágota (KU Leuven); Prof. LALANNE, Louis A (CERN); Dr LASSEGUES, Pierre (KU Leuven); Prof. LICA, Razvan (Horia Hulubei National Institute of Physics and Nuclear Engineering); Mr LIU, Yinshen (Peking University); Prof. LYNCH, Kara M (University of Manchester); Ms MCGONE, Abi (University of Manchester); Prof. NEASCU, Catalin (Horia Hulubei National Institute of Physics and Nuclear Engineering); Prof. NEYENS, Gerda (KU Leuven); Mr REILLY, Jordan R (University of Manchester); Prof. STEENKAMP, Christine (Stellenbosch University); Dr STEGEMANN, Simon (CERN); Mr WESSOLEK, Julius (CERN)

Presenter: Mr LIU, Yongchao (Peking University (CN))

Session Classification: Ground state properties