Scattering Studies at the SEC (XT03) beamline at HIE-ISOLDE

María José G. Borge Instituto de Estructura de la Materia, CSIC, Madrid Spain

SEC @ XT03 HIE-ISOLDE

14-1171 5

J. Cederkall joakim.cederkall@nuclear.lu.se

SAND n-Array 30x 10x10x10cm³ Plastic TPS-1000 PM tubes Photonis XP4312 Power supply CAEN SY1527

> Unique experimental setup to study Reaction Cross Section for processes involving broad resonances, neutrons,...

> > SCATTERING EXPERIMENT CHAMBER

Miniball

Grupo de Física Nuclear Experimental

IEM.

SEC chamber

- Multipurpose chamber of 1m diameter built by U Lund ٠ (J Cederkall)
- Very good Vaccum! ٠

María José Gª Borge – IEM-CSIC; ISOLDE-WORKHOP Nov 29Th-Dec1st 2023

Experiments @ SEC (Run 2)

2016, IS561 @ XT02. K. Riisager Study of ⁹Li Transfer reactions at the neutron dripline on deuteron target. HIE-ISOLDE comissioning year

2017, IS619 I. Martel O. Tengblad Effects of the neutron halo in ¹⁵C scattering at energies

8 experiments during Run 2

Light nuclei.:

Structure

Halo structure and decay modes (OTPC).

Exploring the dynamics of halo nuclei in scattering near the Coulomb Barrier

Reaction addressing the ⁷Li abundance anomaly

Intermediate Nuclei

Reaction (p,α) with implication in core collapse supernovae Fission barrier determination of heavy beams by (d,p) reactions

radioactive beams induced by the (d,p)-transfer using the ACTAR TPC

IS607 C. Lederer The ⁵⁹Cu(p,α) cross section and its implications for nucleosynthesis in core collapse supernovae.

2022

 IS698 D. Galaviz IP-Lisbon α-scattering on unstable proton-rich tin isotopes in inverse kinematics for the astrophysical p-process. ¹¹²Sn+⁴He

2024

- **IS690** M J G. Borge MAGISOL Reaction studies with neutron-rich light nuclei at the upgraded SEC Device
- **IS716** Y. Ayyad Determination of the α decay width of a near-threshold proton-emitting resonance in ¹¹B
- **IS550** S. Heinz & E. Kozulin GSI/Dubna Study of the Dinuclear System ^ARb + ²⁰⁹Bi (Z1 + Z2 = 120).

Why to study Light Nuclei?

Light nuclei: a laboratory of quantum mechanics

Quantum mechanics plays a role in creating peculiar structures in ground states of light nuclei: nuclear skins and/or nuclear halos, nuclear clusters, nuclear molecules, gas condensate Theoretical understanding of the structure of light drip-line nuclei is challenging As well as the determination of these exotic structures and their reaction dynamics

IEI.

The Cosmological ⁷Li problem

Observed (predicted) values: bands (lines) for H/D; ^{3,4}He; ⁷Li

The standard **Big Bang** model of the Primordial Universe is very successful in accounting for the observed relative abundance of the light elements.

The only astrophysical input to the Big Bang Nucleosynthesis (BBN) calculation is the **baryon density** of the Universe, which is now known precisely.

However, BBN theory fails to predict correctly the **observed abundance of** ⁷Li.

BBN theory using η :

Observationally extracted:

$$\frac{{}^{7}\text{Li}}{\text{H}} = 5.12_{-0.62}^{+0.71} \times 10^{-10}$$
$$\frac{{}^{7}\text{Li}}{\text{H}} = 1.58_{-0.20}^{+0.35} \times 10^{-10}$$

Solutions: Astrophysical solutions: Hidrodynamics *Korn, Nature (2006);* Physics Beyond the standard BBN Model NP of primordial Problem: ⁷Li is mainly from EC of ⁷Be Production of ⁷Be @ T=0.3-0.6 GK : ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ Destruction: ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$, ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$ and ${}^{7}\text{Be}(d,p)2\alpha$.

The production reaction ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ has an uncertainty of < 5%

⁷Be(n,p)⁷Li, ⁷Be(n, α)⁴He have failed to solve the Li anomaly (n_ToF *Damone PRL 121(2018)042701; Barbagallo PRL117(2016) 152701)*

Increased mass-7 destruction by novel reaction pathways or by resonant enhancement of minor channels.

The ⁷Li discrepancy resolved, if the ⁷Be(d,p)⁸Be*(2 α) Q = 16.674 MeV reaction rate larger by a factor ~ 100, Resonant enhancement in ⁷Be + d?

Study of ⁷Be(d,p)⁸Be* at (IS554) at 0-22 MeV (Winter Physics)

The total solid angle coverage of the detectors is $\sim 32\%$ of 4π .

Charge particle detector setup

1 x S3 annular DSSD (24 x 32 strips, 1000 μ m) covering front angles 8° – 25° 5 x W1 DSSD (16 x 16 strips, 60 μ m) in pentagon geometry covering angles 40° – 80° 2 x BB7 DSSD (32 x 32 strips, 60 μ m and 140 μ m) at backward angles 127° – 165° The W1 and BB7 DSSDs are backed by 1500 μ m thick unsegmented pads MSX25/MSX40

Two bands for higher excitations of ⁸Be, one corresponds to states 16.63 + 16.922 MeV (E resolution~ 660 keV), other to states in 17-22 MeV. Protons identified in W1 and BB7 in coincidences a in S3

Excitation function of the different levels is calculated with the nuclear reaction code TALYS. The bands are TALYS calculations normalized to the measured cross section, giving an estimate of contributions of individual states of ⁸Be up to the 16.6 MeV state for the **first time**.

The existing data within Gamow window (T = 0.5–1 GK, $E_{c.m.}$ = 0.11–0.56 MeV) has **large error bars**. Good agreement with data outside Gamow window. The *S* factor due to contribution of gs+3.03+11.35 MeV state agrees with Parker's estimate of 100 MeV b.

Addition of the **16.63** (+ 16.922) **MeV** state leads to a **maximum value of S factor within the Gamow window increase to 167 MeV b** but it cannot help solving the Lithium anomaly. The Li abundance is reduced by < 1%.

Contribution of higher excited states in ⁷Be(d,p)⁸Be* do not solve the Cosmological lithium problem

Courtesy of Dhruba Gupta For Inelastic scattering of ⁷Be+¹²C see poster María José Gª Borge – IEM-CSIC; ISOLDE-WORKHOP Nov 29Th-Dec1st 2023

Elastic Scattering of the 1n-halo nucleus ¹¹Be+ ⁶⁴Zn /¹⁹⁷Au

SIC

The p in the halo feels Coulomb interaction, expected dynamics different from n-halo The proton in the halo feels the e.m. field and interacts with core and target These additional interactions create an "effective barrier" making the halo dynamically more **bound** [e.g. Kucuc & Moro PRC86 (2012) 034601; A.Bonaccorso et al.: PRC69 (2004) 024615] Possible semiclassical picture n

Due to a dynamic polarization effect, the valence proton is expected to be displaced behind the nuclear core and shielded from the target; **this effect causes a reduction of break-up probability** compared to first-order perturbation theory predictions

Scattering of ⁸B on a ⁶⁴Zn Target (IS616)

First⁸B beam @ HIE-ISOLDE

Carbon Nanotube primary target Beam ${}^{8}BF_{2}$ Yield ~ 400 pps E = 4.9 MeV/u (1.5 V_B ~ 30 MeV) 1,05 mg/cm² 64 Zn-target

Large angular rangehigh granularity GLORIA detector chamber *NIM A 755 (2014) 69* Aim

- Measure Diff Elastic Cross Section
- Measure Break-up & Transfer Distributions
- Total Cross Section
- Deduce the Nuclear & Coulomb Contributions

⁸B vs ⁸Li density distribution

G.A. Korolev et al. Phys.Lett. B 780 (2018) 200

R. Spartà et al. Phys. Lett. B 20(2021)136

Contrary to the case of the 1n-halo ¹¹Be, almost no suppression of the Coulomb-Nuclear Interference peak No suppression of rainbow For ⁸B total s_R a factor ~ 2 lower than in n-halo ¹¹Be Total reaction cross-section for ${}^{8}B+{}^{64}Zn \sigma_{R} \equiv 1.5 b$ similar to ${}^{9}Be+{}^{64}Zn$ at similar $E_{c.m.} / V_{c}$ Proton halo behaves as a more bound nucleus ${}^{9}Be$ as predicted by A. Bonaccorso et al. PRC 69, 024615 (2004)

Elastic Scattering of ¹⁵C on a ²⁰⁸Pb target: Elucidating the 1n-halo character

The halo structure of ¹⁵C has been debated

- •For ¹⁵C, a high reaction cross section & a narrow longitudinal momentum distribution is found at relativistic energies ($\Gamma = 67(3)$ MeV/c) although no as narrow as for the ¹¹Be or ¹¹Li cases ($\Gamma = 40$ MeV/c).
- A halo structure with a pure s wave as ground state and a ¹⁴C core explains these features, despite the fact of having a relatively large separation energy S_n.

 $S_n = 1218 \text{ keV}$; $S_{2n} = 9394 \text{ keV}$

 The loose bound structure near the strong electromagnetic field of target induces a dipole polarization in the projectile. These structure effects manifest on the angular distribution of the elastic cross section.

¹⁵C+²⁰⁸Pb analysis and results

From 2D pixel to angular sectors

GLORIA Setup

Unexpected Difficulties

- Production of ${}^{15}C$ very low 1% of ${}^{15}N$
- The ¹⁵N + ²⁰⁸Pb originally thought as calibration and reference could not be used. At intermediate angles the ¹⁵N stopped in front detector.
- We then have to used for normalization the ¹²C + ²⁰⁸Pb
- The scattered ¹⁵N beam produced channelling effects that force to disregard central pixels

IEM

Comparison of ¹⁵C+²⁰⁸Pb Scattering @ 65 MeV with ¹²C and Theory

Halo effects in ¹⁵C are clearly demonstrated:

- Complete lack of a Coulomb rainbow peak
- Long-range absorption -> ~50° Lab
- Single-neutron stripping and breakup can play an important role in this system Keeley, Eur. Phys. J. A 50, 145 (2014).

María José G^a Borge – IEM-CSIC; ISOLDE-WORKHOP Nov 29Th-Dec1^s

Calculations by Nick Keeley for the proposal

<u>Breakup Couplings</u> CDCC (FRESCO): ${}^{15}C \rightarrow n + {}^{14}C$

- ✓ ¹⁴C inert core 1st level (1⁻) lies at 6.09 MeV
- ✓ 0.74-MeV $5/2^+$ level in ¹⁵C omitted
- ✓ Optical Model potentials
 - ★ $n + {}^{208}\text{Pb} \text{Koning & Delaroche, NPA713 (2003) 231}$
 - $^{14}C + ^{208}Pb ^{12}C$ data S. Santra, PRC64, 024602 (2001)

Stripping Coupling: CRC (FRESCO) ²⁰⁸Pb(¹⁵C,¹⁴C)²⁰⁹Pb

 $n+{}^{14}C$ potential + s.f ($C^2S = 0.98$); [Kovar NPA231 (1974) 266]

- Near-barrier elastic scattering of ¹⁵C from a high-Z target (²⁰⁸Pb) was measured for the first time
- The halo nature of ¹⁵C is demonstrated by
 - the observation of the long-range absorption effect,
 - the disappearance of the Coulomb rainbow,
 - the large reaction cross section,
- The effects due to the halo are clearly seen as compared to $^{12}\mathrm{C}$

System	$\sigma_{ m R}~({ m mb})$	$\sigma_{ m R}({ m no~coupling})$	$\sigma_{ m bu}~({ m mb})$	$\sigma_{1n} \ (mb)$
$^{15}C + ^{208}Pb$	1695	714	528	192
$^{12}C + ^{208}Pb$	429	—		—
1				

• The reaction cross sections is a factor of 4 larger than the ¹²C scattering

V.G. Távora, J.D. Ovejas ; paper in preparation

α -scattering of light tin-isotopes (IS698) /p-process

- The 38 most proton rich stable isotopes between Se and Hg are produced in the p-process
- Contrary to nuclei produced by s- and r-process they mainly occur via photon induced reactions.

For 140<A<240 The (γ ,n) and (γ , α) reactions dominate

However, scarce (γ, α) cross section are experimentally known at astrophysically interesting energies. Further **these reactions are very sensitive to the** α **-nucleus potential.**

These potentials are poorly known and the calculations often differ up to a factor of 2.

Aim (IS698):

Determination for first time of complete angular distributions of the elastic α scattering process on exotic Sn nuclei at energies around the Coulomb barrier, close to the energy region of astrophysical interest.

Preliminary results of IS698

Targets:

- ⁴He in Si Matrix $\approx 2x1018 \text{ at}/cm^2$
- 197 Au \approx 300 mg/cm²

Nucleus	Yield @ SEC
¹⁰⁸ Sn	50 pA
¹⁰⁹ Sn	90 pA
¹¹⁰ Sn	80 pA
¹¹² Sn	30 PA

Beam

The ratio He/Si decreases with time → Analyse data run by run

The good agreement between the direct and inverse kinematic reactions for the stable ¹¹²Sn \rightarrow confidence for the study of the more exotic cases

-CSIC

-CSIC; ISOLDE-WORKHOP Nov 29Th-Dec1st 2023

Next Experiments / SEC Upgrade

María José G^a Borge – IEM-CSIC; ISOLDE-WORKHOP Nov 29Th-Dec1st 2023

Excited Structure of ¹¹Li

- The archetype of 2n-halo nucleus ¹¹Li provides a good ground to study di-neutron correlations.
- In spite of the efforts the excited structure of ¹¹Li is not well known.

- Diversity in energy of excited structure of ¹¹Li. No firm spin assignments.
- Identification of resonances without incorporating reaction dynamics.
- Very narrow states suggested at high energies of 3-6 MeV.
- Many studies done from ¹¹Li which gs has a very complex structure.
 - 2n-halo at the surface with 35(4)%(1s)² + 59(1)%(0p)² + 6(4)%(0d)² Kubota et al PRL 125, 252501 (2020).

Excited states of ¹¹Li populated by t(⁹Li, ¹¹Li)p reaction

The nature of the 1.2 MeV resonance in ¹¹Li can be due to dipole excitation \rightarrow Not be populated from ⁹Li

We propose a reaction starting from the simpler g.s. of ${}_{3}^{9}Li$ using the t(${}_{3}^{9}Li$, ${}_{3}^{11}Li^{*}$)p reaction

(t,p) reaction with direct and sequential decay \rightarrow Dominating the direct channel.

Complement the results of $p(^{11}Li, {}^{9}Li)t$ reaction @ TRIUMF at 3MeV/u using MAYA.

The 2nd-order DWBA calculation using (FRESCO) gives three reactions channels

I. Thompson, 50 Years of Nuclear BCS Ed by R. A. Broglia and V. Zelevinsky (World Scientific, 2013), chap. 34

t + ⁹Li: Xi. Li et al, Phys. A789 (2007)1 d + ¹⁰Li : H. An and Ch. Cai, PRC 73, 054605(2006) p + ¹¹Li: A.J. Koning & J.P. Delaroche NPA 713, 231 (2003) ¹¹Li w.f assumed 31% $(s_{1/2})^2$ + 64% $(p_{1/2})^2$ (P2) of Thompson & Zhukov, PRC 49 (1994), 1904

Improvements in the SEC MAGISOL setup

The particle + gamma detection system developed for IS690 @ SEC

Summary & Outlook

- □ The SEC scattering chamber play the role of the general purpose device for reaction studies
- Unique device to study reaction dynamic and resonant states.
- Eight experiments were done during Run2 including different devices: GLORIA, MAGISOL,...
- Characterization of Halo nuclei their dynamic at low energy, and decay: ⁸B, ¹¹Be, ¹⁵C
- Reaction studies addressing important astrophysical problem such us the ⁷Li anomaly and the p-process.
- ✓ The MAGISOL setup has been upgraded allowing for the detection of charged particle with larger angular coverage with mass determination, neutron and gamma (GAGG).
- $\checkmark\,$ More compact electronics has been implemented allowing for faster DAQ and less noise.
- ✓ The 3 H/Ti target for (t,p) studies is already available at reduced 3 H rate (0.5 3 H/T)

Thanks to Alessia Di Pietro, Daniel Galaviz, Dhruba Gupta, Ismael Martel, Marek Pfützner and Olof Tengblad for the materials, and you for your attention

¹¹Li(p, p') J. Tanaka *et al.*, PLB **774, 268** (2017)

 $\theta_{\rm cm} = 115^{\circ} \sim 124^{\circ}$

0.5

0.0

1 1.5

Ex(MeV)

 E_x (MeV)

2 2.5 OLDE-WORKHOP Nov 29Th-Dec1st 2023

efficiency

500

400

300

200

100

-0.5 0 0.5

Counts/150 keV

E*=0.8 MeV,

Γ=1.15 MeV

- With the discovery of halo in ¹¹Li→ Soft Dipole
 Resonance due to halo-core oscillations could
 lead to the appearance of a low-energy branch
 of a giant dipole resonance with an excitation
 energy of less than 1 MeV
- Spectrum taken with the same device by the same group. The different energies could be due to overwhelming contribution of Coulomb excitation

Rare decays measured at HIE-ISOLDE with the

Warsaw Optical Time Projection Chamber

Study of neutron halo via charged particle emission following β -decay Unique technique: CCD images of nuclear decay

 $T_{1/2} = 808 \text{ ms}$

⁶₂He₄

≈100 %

⁶He @ REX (2012) IS505

- 2n halo nucleus; S_{2n} = 975,45 (5) keV
- > The β ⁻d decay possible ⁶He $\rightarrow \alpha$ + d

 $Q_{\beta d}$ (keV)= 3007- S_{2n} = 2033 keV,

Predicted branching: 10⁻⁴

Grupo de Física Nuclear Experimental

IEM

¹¹Be @ HIE-ISOLDE (2018) (IS629)

- In halo nucleus, Sn = 501,64 (25) keV
- The β - α emission observed
- > The β p decay possible

$\beta\alpha$ decay of ¹¹Be(IS629)

- Bunches of about 10⁴ ions of ¹¹Be (T1/2 = 13.7(6)s)
- accelerated 7.5 MeV/u & implanted into the OTPC every 1 min.
- \Box $\beta \alpha$ branch, 3.3(1)%, provides normalization but it is a source of low-energy background
- Previous results: 2 level contribution;

lack of info below 500 keV

Search for βp Branch

$^{11}B^* \rightarrow ^7Li + \alpha$

$\beta \alpha = 3.27(46)\%$

Better fit with 3 levels contribution;

βp < 2x10⁻⁶ Contrary to recent results (PRL123 (2019) 082501) N. Sokołowska et al., PhD Thesis, U. of Warsaw, 2023 and submitted to Phys. Rev. C

IEM

Effects of the 1n-halo in ¹⁵C scattering on ²⁰⁸Pb at energies around the Coulomb barrier

• Post-accelerated ¹⁵C with A/q=3 up to 4.37 MeV/u,

- $T_{1/2}$ (¹⁵C) = 2,449(5) s;
- $J^{p}(gs) = \frac{1}{2}(s_{1/2})$; 1st @ 740keV $J^{p} = \frac{5}{2}(d_{5/2})$,
 - 2nd @3103(4) keV J^p = ½-
- Cocktail beam ¹²C + ¹⁵N + ¹⁸O at the same energy provides useful information for geometric / energetic calibration.
- ¹⁵N present after a 75 μg/cm² stripping foil ¹⁵C/¹⁵N ≈ 1-3%
- Estimated ¹⁵C yield ~ 10³ pps (1.1 · 10⁴ pps requested)
- ²⁰⁸Pb targets 2.1 and 1.2 mg/cm². Purity ≈ 98%
- 30^o tilted target to beam direction \rightarrow no shadowing at 90^o

Target Ladder

Global Reaction Array **GLORIA** *NIM A 755 (2014) 69 6 telescopes (40+1000 \mum)* Θ_{LAB} from 15° to 165° $\Omega = 25 \% of 4\pi$

Nuclear Experimental

IEM

Previous result on the Scattering of ⁸B

- Data from cocktail beam
- Low angular resolution
- The CDCC shows that continuumcontinuum coupling is essential to describe the elastic angular distribution near the V_B = 28,6 MeV

J. Lubian et al PRC 79 (2009) 064605 data from E.F. Aguilera et al. PRC 79, (2009) 021601(R) María José G^a Borge – IEM-CSIC; ISOLDE-WORKHOP Nov 29Th-Dec1st 2023

Proton-halo structure of ⁸B debated

- ✓ Very low binding for last proton $S_p = 136.4(10)$ keV
- ✓ Interaction cross section @ E > 100 AMeV no enhancement
- Large enhancement at low energies \rightarrow long tail deduced
- ✓ Large 1p-removal cross section → Important to deduced whether this premoval is due to elastic breakup

The CDCC does not need coupling to the continuum

Theoretical Interpretation

Which is the mechanism responsible of the ¹¹Be scattering?

¹¹Be structure?

Comparison of the experimental data with theoretical calculations.

> ́Ве (core)

(val)

 $\mathbf{r}_{\mathbf{c}}$

197

Άu

(tar)

Semiclassical Calculations: Include Coulomb coupling at first order

$$P_{bu}(\Omega) = \left(\frac{Ze}{a_0\hbar v}\right)^2 4\sin^4(\theta/2) \int_{\varepsilon_b}^{\infty} dE \, \frac{dB(E1)}{dE} \frac{df_{E1}}{d\Omega}$$

Continuum Discretised Coupled Channel (CDCC):

$$V[n^{-10}Be] + V[n^{-197}Au] + V[^{10}Be + ^{197}Au]$$

Structure of ¹¹Be Koning & Delaroche P. Capel et al, PRC70 (2004) NPA713 (2003) 231 064605

From ¹⁰Be + ²⁰⁸Pb data Kolata et al., PRC69(2007)047601

[Alder & Winther, 1975]

Continuum Discretised Coupled Channel (CDCC) + Structure Model of ¹¹Be:

Study of ¹⁰Li structure

d (⁹Li,¹⁰Li)p @ 8 MeV/u (2018)

- Evidence for reaction mechanism based on kinematics
- Evidence of s-wave and p-wave contribution in ¹⁰Li at low energy
- Indication of dominating d-breakup at higher energies [Taken from Ph.D. Jesper H Jensen, 19 October 2019]

Old (t,p) reactions

The ⁷Li(t,p)⁹Li was studied at triton energies of 15MeV (PRC4(1970)1592) y by Ajzenberg-Selove PRC17(1978) at t=22 MeV The ¹¹B(t,p)¹³B was studied together by Ajzenberg-Selove PRC17(1978) For ⁹Be(t,p)¹¹Be a more recent work PRC42(1990)167.

IEM

Additional Channels of Interest

- The elastic scattering channel is essential to fix the optical potential in the theoretical models.
- The ⁹Li(t,α)⁸He has not been been observed so far . The corresponding reaction ⁷Li(t,α)⁶He is known to populate both the ground state and several excited states.

<u>5.6</u> (2 ⁺ , 1 ⁻ , 0 ⁺)	4.36 (1-)
	3.1 2+
<u> 1.797</u> 2+	
0 ⁺	0 ⁺
⁶ He	⁸ He

The ¹¹Be(t, α)¹⁰Li and ¹¹Be(t,d)¹²Be channels will be available simultaneously. In particular it will be interesting to fix the first unbound state in ¹²Be.

> María José Gª Borge – IEM-CSIC; INTC 3-4 February 2021

