

ISOLDE Workshop and Users meeting 2023

Consiglio Nazionale delle Ricerche

Development of large-area topological insulators for spintronics

w w w . i m m . c n r . i t

in

Roberto Mantovan

CNR-IMM Unit of Agrate Brianza <u>https://unit.mdm.imm.cnr.it/users/mantovan-roberto</u> <u>roberto.mantovan@cnr.it</u>

Agrate Brianza Bologfia The Institute for Microelectronics and Microsystems is one of the largest research institutes of the CNR - National Research Council

Dr. Roberto Mantovan

Dr. Claudia Wiemer

Dr. Matteo Belli

Dr. Emanuele Longo Dr. Lorenzo Locatelli

Mr. Mario Alia

Skyrmion-Topological insulator and Weyl semimetal technology

> https://skytop-project.eu/ (2018-2023)

Former members: Dr. Massimo Longo (now at IMM Rome) Dr. Raimondo Cecchini (now at IMM Bologna) Dr. Martino Rimoldi (now at CERN) Main collaborations: Univ. Milano-Bicocca (Prof. Marco Fanciulli) Demokritos, Athens (Prof A. Dimoulas)

Summary

• Motivation

- Topological insulators: intro and applications
- MOCVD of topological insulators
 - Sb₂Te₃, Bi₂Te₃ and Sb₂Te₃/Bi₂Te₃ on large-area
 Si-based substrates
- Spin-charge conversion in MOCVD-TIs
 - The case of Sb₂Te₃ and Sb₂Te₃/Bi₂Te₃
- Conclusions & Outlook

Timeline in topological The Nobel Prize in Physics 2016

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2016 with one half to

A topological Dirac insulator in a quantum spin Hall phase

D. Hsieh¹, D. Qian¹, L. Wray¹, Y. Xia¹, Y. S. Hor², R. J. Cava² & M. Z. Hasan^{1,3}

Topological insulators in Bi_2Se_3 , Bi_2Te_3 and Sb_2Te_3 with a single Dirac cone on the surface

 $\label{eq:Haijun Zhang^1, Chao-Xing Liu^2, Xiao-Liang Qi^3, Xi Dai^1, Zhong Fang^1 and Shou-Cheng Zhang^{3} \star$

3D - TI

Bi₂Se₃, Bi₂Te₃, Sb₂Te₃ and Sb₂Se₃ share the same **rhombohedral crystal structure** with the space group $D_{3d}^5(R3^-m)$ with five atoms in one unit cell (\rightarrow quintuple layer, QL)

Topological insulators in Bi_2Se_3 , Bi_2Te_3 and Sb_2Te_3 with a single Dirac cone on the surface

nature

physics

Haijun Zhang¹, Chao-Xing Liu², Xiao-Liang Qi³, Xi Dai¹, Zhong Fang¹ and Shou-Cheng Zhang³*

ARTICLES

PUBLISHED ONLINE: 10 MAY 2009 | DOI: 10.1038/NPHYS1270

3D - Topological insulators

Ingredient #1

Kumar et al, "Topological Quantum Materials from the Viewpoint of Chemistry" Chemical Reviews (2021)

3D - Topological insulators

Ingredient #2

...**topologically-protected surface states show spin-momentum locking**, which prevents backstattering between states of opposite momenta with opposite spins....

3D - Topological insulators

Wu et al, "Topological Quantum Materials from the Viewpoint of Chemistry" Phys Rev. Lett. (2019)

Fermi level

position

Doping / alloying is a possible way to tune the Fermi level position

Spintronics: from concepts to devices (~10yrs)

nstitute for /V\icroelectronics and /V\icrosystems

Barla et al., J. of Comp. Electr. 20, 805 (2021)

3D-TI for SOT-MRAM

FM

ARTICLE

https://doi.org/10.1038/s41467-021-26478-3 OPEN

Check for updates

Magnetic memory driven by topological insulators

Hao Wu (b^{1,7]}, Aitian Chen (b^{2,7}, Peng Zhang^{1,7}, Haoran He¹, John Nance³, Chenyang Guo⁴, Julian Sasaki⁵, Takanori Shirokura (b⁵, Pham Nam Hai (b^{5,6}, Bin Fang², Seyed Armin Razavi (b¹, Kin Wong (b¹, Yan Wen², Yinchang Ma², Guoqiang Yu (b⁴, Gregory P. Carman³, Xiufeng Han (b⁴, Xixiang Zhang (b²) & Kang L. Wang (b¹)

3D-TI for the MESO

ARTICLE

Promise for a 1aJ/switch technology

https://doi.org/10.1038/s41586-018-0770-2

Scalable energy-efficient magnetoelectric spin-orbit logic

Sasikanth Manipatruni¹*, Dmitri E. Nikonov¹, Chia-Ching Lin¹, Tanay A. Gosavi¹, Huichu Liu², Bhagwati Prasad³, Yen-Lin Huang^{3,4}, Everton Bonturim³, Ramamoorthy Ramesh^{3,4,5} & Ian A. Young¹

ferromagnet

non-magnetic layer (large SOC)

SPIN-CHARGE

CONVERSION

Growth methods

сIJ

-

1 mm

To grow TIs over large areas is a necessary prerequisite toward their technology transfer!!

Zavabeti et al., Nano-Micro Lett. 12, 66 (2020)

Summary

- **Motivation**
 - Topological insulators: intro and applications
- MOCVD of topological insulators
 - Sb₂Te₃, Bi₂Te₃ and Sb₂Te₃/Bi₂Te₃ on large-area
 Si-based substrates
- Spin-charge conversion in MOCVD-TIs
 - The case of Sb₂Te₃ and Sb₂Te₃/Bi₂Te₃
- Conclusions & Outlook

Metal Organic Chemical Vapour Deposition (MOCVD)

- Large area (4") rotating substrate holder
- N₂ is both carrier and process gas
 No hydride precursors (simple +risk reduction)
- N_2 purity: (<0.1 ppb for H_2O and 0.5 ppb for O_2)

nearly epitaxial Sb₂Te₃ and Bi₂Te₃

Metalorganic sources

Sb Precursor

(TRISDIMETHYLAMINOANTIMONY) [N(CH₃)₂]₃**Sb**

Bi Precursor

(TRIMETHYLBISMUTH) (CH₃)₃**Bi**

Te Precursor

(DIISOPROPYLTELLURIDE) (C₃H₇)₂**Te**

ייע

M. Rimoldi et al., RCS Advances (2020) M. Rimoldi et al., Cryst. Growth & Design (2021) A. Kumar et al., Cryst. Growth & Design (2021)

Sb₂Te₃ by MOCVD: toward epitaxy

10 nm

RSC Advances

PAPER

Check for updates

Received 19th March 2020

Accepted 18th May 2020

DOI: 10.1039/d0ra02567d

rsc.li/rsc-advances

Epitaxial and large area Sb_2Te_3 thin films on silicon by MOCVD†

Martino Rimoldi, 💿 a Raimondo Cecchini, 💿 a Claudia Wiemer, 💿 a Alessio Lamperti, 💿 a Emanuele Longo, 💿 ab Lucia Nasi, 💷 c Laura Lazzarini, 🤤 c Roberto Mantovan 😳 *a and Massimo Longo 💿 *a

Antimony telluride (Sb₂Te₃) thin films were prepared by a room temperature Metal–Organic Chemical Vapor Deposition (MOCVD) process using antimony chloride (SbCl₃) and bistrimethylsilytletluride (Tfc(SMb₂)₃) as precursors. Pre-growth and post-growth treatments were found to be pivotal in favoring out-of-plane and in-plane alignment of the crystallites composing the films. A comprehensive suite of characterization techniques were used to evaluate their composition, surface roughness, as well as to assess their morphology, crystallinity, and structural features, revealing that a quick post-growth annealing triggers the formation of epitaxia-quality Sb₂Te₃ films on Si(11).

From granular to nearly epitaxial Sb₂Te₃ thin films through appropriate thermal processing

Si(111) substrates

Sb₂Te₃ surface roughness strongly reduced

 \rightarrow Possible integration of layers on top

MOCVD of Bi₂Te₃

Bragg-Brentano analysis

 Rombohedral crystalline structure (R-3m)
 Bi₂Te₃ shows lower mosaicity (less broadening) than Sb₂Te₃ (d)

z (nm)

1,0

0,5

0,0

100

~ 1 QL

200

300

~ 1 QL

500

400

Large-Area MOVPE Growth of Topological Insulator Bi_2Te_3 Epitaxial Layers on i-Si(111)

Arun Kumar, Raimondo Cecchini, Lorenzo Locatelli, Claudia Wiemer, Christian Martella, Lucia Nasi, Laura Lazzarini, Roberto Mantovan,* and Massimo Longo*

 Within platelets rms is ~0.5 nm
 Steps of 1QL (~1 nm) every few hundreads of nm

Article

Characterization of topology: magnetotransport

Weak Antilocalization (WAL) emerges at low T in the MC curves

L. Locatelli et al., Sci. Rep. (2022)

WAL interpreted within the HLN model

$$\Delta \sigma_{s} = -\alpha \frac{e^{2}}{\pi h} \left(\Psi \left(\frac{1}{2} + \frac{h}{8\pi e l_{\Phi}^{2} B} \right) - \ln \left(\frac{h}{8\pi e l_{\Phi}^{2} B} \right) \right)$$

Hikami-Larkin-Nagaoka (HLN) model (Lorentzian part removed)

- α : Proportional to the number of 2D conductive channel (= -0.5 for one channel and = -1.0 for two channels)
- l_{Φ} : Spin coherence length

→2D-type of conduction demonstrated

ARPES of our MOCVD 3D-TIs

***** Dirac Point only 0.1 eV above E_F

***** Dirac Point 0.5 eV below E_F

L. Locatelli et al., Sci. Rep. (2022)

ARPES of our MOCVD 3D-TIs

Relevant (trigonal) bulk contribution at the Fermi level, coexisting with TSS

> $Bi_{2}Te_{3} \rightarrow need$ to be optimized

Mater. Interfaces (2023)

Mater. Interfaces (2023)

Summary

- Motivation
 - Topological insulators: intro and applications
- MOCVD of topological insulators
 - Sb₂Te₃, Bi₂Te₃ and Sb₂Te₃/Bi₂Te₃ on large-area
 Si-based substrates
- Spin-charge conversion in MOCVD-TIs
 - The case of Sb₂Te₃ and Sb₂Te₃/Bi₂Te₃
- Conclusions & Outlook

Spin pumping ferromagnetic resonance (SP-FMR)

Simple Spin-Charge converters

Following MOCVD of Sb₂Te₃ samples are quickly transferred to e-beam evaporator

e-beam evaporator: GROWTH of Co (or Fe) with Au interlayer

0.50

0.25

-0.25

-0.50-

-0.50

Fermi Surface

0.0

k,(Å-1)

-0.25

0.25 0.50

K_y(Å⁻¹) °°

MOCVD of large area Sb₂Te₃ topological insulators on Si(111)

Set of samples for SP-FMR

Large Spin-to-Charge Conversion at Room Temperature in Extended Epitaxial Sb_2Te_3 Topological Insulator Chemically Grown on Silicon

Emanuele Longo,* Matteo Belli, Mario Alia, Martino Rimoldi, Raimondo Cecchini, Massimo Longo, Claudia Wiemer, Lorenzo Locatelli, Polychronis Tsipas, Athanasios Dimoulas, Gianluca Gubbiotti, Marco Fanciulli, and Roberto Mantovan*

- 1) Broadband-FMR \rightarrow Kittel (f *vs* H), damping parameter α ,... 2) Electrically detected SD EMP \rightarrow S2C conversion
- 2) Electrically detectd SP-FMR→S2C conversion

S1

E. Longo et al., Adv. Funct. Mater. (2021) E. Longo et al., Adv. Mater. Interfaces (2021)

2D Spin-Charge conversion at interfaces with TI

Inverse Edelstein Effect (IEE): Injecting a 3D-spin current density J_s into the surface states of a TI (along <u>v</u>) generates an extra population Δk on one side of the Fermi countours (along x) and a consequent 2D-charge current J_c

Efficiency Inverse Edelstein Effect (IEE) Energy dispersion surfaces in TI K,

The spin accumulation is perpendicular to current direction (spin-momentum locking)

Rojas-Sanchez et al, Phys. Rev. Lett. (2016); A. Soumyanarayanan et al., Nature (2016); W. Han, npj Quantum Materials (2018)

(0.61 nm if within single frequency approach) Growth of $g_{eff}^{\uparrow\downarrow} \,(\mathrm{m}^{-2})$ λ_{IEE} (nm) Material Ref. HM or TI Sb₂Te₃(30nm)/Au/Co **MOCVD Our work** 0.834×10^{19} 0.28 Sb₂Te₃(30nm)/Au/Fe **MOCVD** 0.53×10^{19} **Our work** 0.27 α -Sn/(Ag/)/Fe Sanchez 2016 PRL **MBE** 2.1 Sanchez 2016 Ag/Bi **MBE** 1.29-3.21 *1019 0.2-0.33 Nat Comm Mahendra 2019 Bi₄₃Se₅₇(12-2nm)/CoFeB Sputtering ~0.7 *10¹⁹ 0.1-0.32 Nano Lett Sun 2019 Bi₂Se₂/Bi/Fe **MBE** ~2.5 - 16.57 × 10²⁰ 0.125-0.28 Nano Lett

Competitive to S2C in system produced by sputtering and MBE

E. Longo et al., Adv. Funct. Mater. (2021) E. Longo et al., Adv. Mater. Interfaces (2021)

S2C Conversion efficiency

 $\lambda_{IEE} = \frac{J_C^{2D}}{J_S^{3D}} = 0.28 \text{ nm}$

Spin-Charge converter based on Sb₂Te₃/Bi₂Te₃

The **reference** Au/Co/Au sample is simultaneously deposited with the Sb_2Te_3/Bi_2Te_3 one

 $\lambda_{IEE} = \frac{J_{C}^{2D}}{I_{C}^{3D}} = 0.44 \text{ nm}$

\rightarrow S2C conversion > the 0.28nm value in single Sb₂Te₃ \rightarrow Demonstrate the beneficial effect of moving E_F close to DP

E. Longo. L. Locatelli et al., ACS Appl. Mater. Interfaces (2023)

Summary

- Motivation
 - Topological insulators: intro and applications
- MOCVD of topological insulators
 - Sb₂Te₃, Bi₂Te₃ and Sb₂Te₃/Bi₂Te₃ on large-area
 Si-based substrates
- Spin-charge conversion in MOCVD-TIs
 - The case of Sb₂Te₃ and Sb₂Te₃/Bi₂Te₃
- Conclusions & Outlook

Conclusions

- Large area (4") Sb₂Te₃, Bi₂Te₃, and Sb₂Te₃/Bi₂Te₃
 TIs on Si(111) by MOCVD developed
 - Epitaxial quality
 - Topology verified (ARPES, MR)

- Very efficient spin-charge conversion observed in Sb₂Te₃ and Sb₂Te₃/Bi₂Te₃
 - Importance of protecting the TSS with interlayers (here Au)
 - SCC efficiency comparable to state of the art methods (MBE, sputtering,...)

H_{ext} - H_{res} (Oe)

Opportunities at ISOLDE? Magnetic TIs

Figure 2. Timeline of the temperature performance of QAHE quantum materials (at zero external field). 2013: Cr-doped BST film at 30 mK;^[22] 2015: V-doped BST film at 120 mK,^[29] and modulation-doped [Cr:BST/BST] heterostructure at 2 K;^[30] 2018: Co-doped (Cr,V):BST film at 1.5 K;^[31] 2019: MI/TI/ MI sandwich structure (Zn,Cr)Te/BST/(Zn,Cr)Te at 100 mK;^[32] 2020: twisted bilayer graphene at 3 K,^[34] intrinsic magnetic TI MnBi₂Te₄ flakes at 1.4 K,^[35] [MnBi₂Te₄/Bi₂Te₃] superlattice at 7 K,^[36] Cr:BST/BST/Cr:BST sandwich structure at 0.4 K (which also demonstrates the topological Hall effect^[232]), and Cr:BST/Cr₂O₃ heterostructure at 20 mK (which also demonstrates exchange bias^[33]).

Liu at al, "Magnetic Topological Insulator Heterostructures: A Review". Adv. Mat. (2023)

Oppor	tunities at	SOLDE? Magneti	Magnetic 2D materials							
	Ferromag	net Zigzag antiferro	Zigzag antiferromagnet Néel antiferromagnet							
	My (())	X of the	/							
Chalcogenides	Cr ₂ Ge ₂ Te ₆ , Cr ₂ Si ₂ Te ₆ , Fe ₃ GeTe ₂ , VSe ₂ [*] , MnSe _x [*]	$Fe_2P_2S_6$, $Fe_2P_2Se_6$, $Mn_2P_2S_6$, $Mn_2P_2Se_6$, $Ni_2P_2S_6$, $Ia_2P_2S_6$, $Ia_2P_2S_6$, $AgVP_2S_6$, $AgCrP_2S_6$, $CrSe_2$, $CrTe_3$, $Ni_3Cr_2P_2S_9$, $Na_2P_2S_9$, $Na_2P_2S_6$, $Ia_2P_2S_6$, $Ia_$	Ni ₂ P ₂ Se ₆ , CuCrP ₂ Se ₆ [*] , $MnBi_2Te_4^*$, $MnBi_2Se_4^*$ CuCrP ₂ S ₆							
Halides	CrL* CrBr. GdI.	CrCl ₃ , FeCl ₂ , FeBr ₂ , FeI ₂ , MnBr ₂ , CoCl ₂ , CoBr ₂ , NiCl ₂ VCl ₂ VBr ₂ VL FeCl ₂ FeBr ₂ CrOCl	CuCl ₂ , CuBr ₂ , NiBr ₂ , NiI ₂ , CoI ₂ , MnI ₂							
Trances	CH_3 , CH_3 , CH_2	CrOBr, CrSBr, $MnCl_2^*$, VCl_3^* , VBr_3^*	α-RuCl ₃							
Others	VS ₂ , InP ₃ , GaSe, GaS	$MnX_3 (X = F, Cl, Br, I), FeX_2 (X = Cl, Br, I),$ MnSSe, TiCl ₃ , VCl ₃	SnO, GeS, GeSe, SnS, SnSe, GaTeCl, CrN, CrB ₂							

These inter/intra-layers coupling leads to a plethora of new magnetooptical/electrical effects

Gong et al, Science (2019) \rightarrow today >1000 citations

Topological Materials Database launched

FEBRUARY 26, 2019

Research

A catalogue of topological materials: insulators and semimetals characterized through topological quantum

chemistry. Topological Materials Database

🛀 Topological Materials		Com	mpound Contains			Only these elements 🗆 Exclude							ICSD N	CSD Number							
Database	=	St	Sb2 Te3				ea. 01 N						- or -		eg. 123456			Search			
otal Materials opological Insulators	38184 6109	▼ S	how A	dvanced	Search						5				3						
emi-Metals AVIGATION	13985	1	н																	² He	
 Search Prodict 		3	Li	⁴ Be											5 B	6 C	7 N	* 0	9 F	¹⁰ Ne	
About		1	Na	¹² Mg											¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar	
ETTINGS		1	° K	²⁰ Ca	21 Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	Fe	27 Co	²⁸ Ni	29 Cu	30 Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr	
UI Mode	* 🔵 C	3	Rb	³⁸ Sr	³⁹ Y	40 Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	47 Ag	⁴⁸ Cd	49 In	⁵⁰ Sn	⁵¹ Sb	52 Te	53	⁵⁴ Xe	
		5	S Cs	Ba	57 La	⁷² Hf	⁷³ Ta	⁷⁴ W	75 Re	⁷⁶ 0s	⁷⁷ lr	78 Pt	⁷⁹ Au	во Нg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn	
		8	⁷ Fr	Ra	⁸⁹ Ac	¹⁰⁴ Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Ds	nn Rg	112 Cn	113 Nh	¹¹⁴ Fl	¹¹⁵ Mc	116 LV	117 Ts	118 Og	
						58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	⁶² Sm	63 Eu	⁶⁴ Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	69 Tm	⁷⁰ Yb	⁷¹ Lu		
						90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr		

INSTITUTE | RESEARCH | IMPRS-STNS | CAREER | NEWS | EVENTS

https://www.topologicalquantumchemistry.com/#/

roberto.mantovan@cnr.it

Accelerating Science

EXTRA SLIDES

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

Technology Roadmap for spintronic devices

Guo et al., PROCEEDINGS OF THE IEEE 109(8), 2021

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

Kumar et al, "Topological Quantum Materials from the Viewpoint of Chemistry" Chemical Reviews (2021)

Broadband Ferromagnetic Resonance (BFMR)

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

BFMR first....

$\Delta H = \Delta H_0 + \frac{4\pi}{|\gamma|} \alpha f_{res}$

Broadening of the damping may suggest spin pumping in Sb₃Te₃.....

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems E. Longo et al., Adv. Funct. Mater. (2021) E. Longo et al., Adv. Mater. Interfaces (2021)

Spin-Charge interconversion at the core of devices...

3D Spin-Charge conversion

3D

Conversion occurs in the bulk of the material with high SOC

Wej et al, "Spin Hall voltages from a.c. and d.c. spin currents" Nat. Comm. (2014)

2D Spin-Charge conversion

Conversion occurs at the interface with TI or Rashba systems

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

Rojas-Sanchez et al, "Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α -Sn Films" Phys. Rev. Lett. (2016)

MESO device proposed by intel

Scalable energy-efficient ²⁰¹⁹ magnetoelectric spin-orbit logic

Sasikanth Manipatruni¹*, Dmitri E. Nikonov¹, Chia-Ching Lin¹, Tanay A. Gosavi¹, Huichu Liu², Bhagwati Prasad³, Yen-Lin Huang^{3,4}, Everton Bonturim³, Ramamoorthy Ramesh^{3,4,5} & Ian A. Young¹

Manipatruni et al., Nature (2019)

GROWTH & DESIGN

The aim is to control homogenous layers with the lowest surface roughness as possible! pubs.acs.org/crystal

Art

Effect of Substrates and Thermal Treatments on Metalorganic Chemical Vapor Deposition-Grown Sb₂Te₃ Thin Films

Martino Rimoldi, Raimondo Cecchini, Claudia Wiemer, Emanuele Longo, Stefano Cecchi, Roberto Mantovan,* and Massimo Longo*

Table 1. Sb₂Te₃ Root Mean Square Roughness (R_{qr} nm), Measured by AFM and XRR, and Thickness (nm), Determined by XRR

		Sb ₂ Te ₃ - as-de	posited	Sb_2Te_3 - sub	strate annealii	ng (prior to growth)	Sb_2Te_3 - post-growth annealing				
	$R_{q (AFM)}$	$R_{q (XRR)}$	thickness $_{(XRR)}$	$R_{q (AFM)}$	$R_{q (XRR)}$	thickness (XRR)	$R_{q (AFM)}$	$R_{q (XRR)}$	thickness $_{(XRR)}$		
$Si(111)^a$	3.88	3.1	33.7	1.81	2.0	32.5	1.32	1.5	32.0		
Si(100)	4.80	4.6	33.7	2.78	3.4	31.0	2.26	2.6	31.7		
SiO ₂	2.41	3.1 ^b	35.0 ^c	4.90	6.6	30.9	5.51	4.5	32.4		
a-Al ₂ O ₃	3.40	3.3^{d}	32.2	3.61	4.1 ^e	29.0	3.07	3.4 ^f	27.5		
$Al_2O_3(0001)$	1.94	2.6	28.8	3.25	3.9 ^g	28.2^{h}	2.18	3.3 ^{<i>i</i>}	25.2^{j}		

^{*a*}Si(111) is reported for comparison purpose.³⁸ ^{*b*}Sb₂O₃ interlayer roughness: 0.4 nm. ^{*c*}Sb₂O₃ interlayer thickness: 2.0 nm. ^{*d*}a-Al₂O₃ roughness: 0.5 nm. ^{*e*}a-Al₂O₃ roughness: 0.4 nm. ^{*f*}a-Al₂O₃ roughness: 0.5 nm. ^{*g*}Sb₂O₃ interlayer roughness: 0.1 nm. ^{*h*}Sb₂O₃ interlayer thickness: 0.5 nm. ^{*i*}Sb₂O₃ interlayer thickness: 0.1 nm. ^{*i*}Sb₂O₃ interlayer thickness: 0.5 nm. ^{*i*}Sb₂O₃ interlayer thickness: 0.1 nm. ^{*i*}Sb₂O₃ interlayer thickness: 0.5 nm. ^{*i*}Sb₂O₃ interlayer thickness: 0.1 nm. ^{*i*}Sb₂O₃ interlayer thickness: 0.3 nm.

Remarkable role played by pre-deposition substrate annealing and post annealing

Figure 1. (top) Tilted cross-section SEM images and (bottom) AFM views of Sb_2Te_3 - *as-deposited* on (from left to right) Si(111), Si(100), SiO₂, Al₂O₃(0001), and a-Al₂O₃. Si(111) is reported for comparison purpose.³⁸ As-deposited films appeared to have a pronounced granularity. However, those grown on SiO₂ and Al₂O₃(0001) were significantly smoother and gave AFM R_q values of 2.41 and 1.94 nm, respectively.

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

AS DEPOSITED

M. Rimoldi et al., Cryst. Growth & Design (2021)

Remarkable role played by pre-deposition substrate annealing and post annealing

Figure 3. (top) Tilted cross-section SEM images and (bottom) AFM views of Sb_2Te_3 - *substrate annealing* on (from left to right) Si(111), Si(100), SiO₂, Al₂O₃(0001), and a-Al₂O₃. Si(111) is reported for comparison purpose.³⁸ The SEM images revealed the effect of substrate annealing on the morphology of the Sb₂Te₃ thin films. The granularity, and consequently the roughness, significantly improved on Si(100) and Si(111), whereas it worsened on SiO₂.

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

PRE-ANNEALING

Remarkable role played by pre-deposition substrate annealing and post annealing

Figure 6. (top) Tilted cross-section SEM images and (bottom) AFM views of Sb_2Te_3 - *post-growth annealing* on (from left to right) Si(111), Si(100), SiO₂, a-Al₂O₃, and Al₂O₃(0001). Si(111) is shown for comparison purpose.³⁸ Thermal processing (post-growth annealing) induced the crystallization of the Sb₂Te₃ thin films. SEM and AFM images show the highly crystalline nature and the orientation of the films.

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

POST-ANNEALING

Large-area epitaxial TIs on Si(111) are demonstrated

TEM cross sectional view shows highly ordered crystallographic planes
 Fast Fourier Transform (FFT): identification of crystalline structure

FFT confirms hexagonal structure
High ordered quintuple layer structure

Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

In both cases there is a relevant conduction from the bulk

Consiglio Nazionale delle Ricerche nstitute for Microelectronics and Microsystems

L. Locatelli et al., Sci. Rep. (2022)

TIMM Consiglio Nazionale delle Ricerche Institute for Microelectronics and Microsystems

L. Locatelli et al., Sci. Rep. (2022)