Advances in the theoretical description of transfer reactions

Pierre Capel

1st December 2023

Transfer reactions

Transfer reactions (d, p), (p, d), (t, p) ... used to study nuclear structure far from stability e.g. halo nuclei, shell inversion...

Recent review : [Wimmer JPG 45, 033002 (2018)]

The ISS @ ISOLDE is the ideal setup to measure these reactions on exotic nuclei in inverse kinematics

Warning : What is the reaction probing?

- Spectroscopic factors or Asymptotic normalisation?
- What are the uncertainties in reaction model?
- Should we develop new, more accurate models of transfer?

Few-Body Model of Transfer Reactions

Transfer reactions are usually described with DWBA or ADWA [Johnson & Tandy NPA 235, 56 (1974), review : Johnson JPG 41, 094005 (2014)]

Few-body model for A(d, p)B, where $B \equiv A + n$

$$H_{3b} = T_R + T_r + U_{An} + U_{Ap} + V_{pn}$$

$$T_{3b} = \langle \phi_B \chi_{Bp}^{(-)} | V_{pn} | \phi_d \chi_{Ad}^{(+)} \rangle,$$

where

- $\chi_{Ad}^{(+)}$ is incoming A-d distorted wave @ ADWA generated by $U_{Ad} = \frac{\langle \phi_d | V_{np} (U_{Ap} + U_{An}) | \phi_d \rangle}{\langle \phi_d | V_{pn} | \phi_d \rangle}$
- $\phi_{\rm d}$ is the deuteron bound state generated by $V_{\rm pn}$
- $\chi^{(-)}_{\rm Bp}$ is B-p outgoing distorted wave
- $\phi_{\rm B}$ is the final single-particle bound state of B by $V_{\rm An}$

Single-particle approximation

A-n overlap wave function of the bound state of B is approximated by a single-particle wave function ϕ_{nljm}

$$[T_r + V_{An}(r)] \phi_{nljm}(\mathbf{r}) = E_{nl} \phi_{nljm}(\mathbf{r})$$

with $\|\phi_{nljm}\| = 1$

In reality, there is admixture of configurations :

$$\Psi_{\rm B}(J^{\pi}) = \Phi_{\rm A}(J^{\pi}_{\rm A}) \otimes \psi_{ljm}(\boldsymbol{r}) + \dots$$

where ψ_{ljm} is the overlap wave function Spectroscopic Factor : $S_{lj} = ||\psi_{ljm}||^2$

Single-particle approximation $\equiv \psi_{ljm} = \sqrt{S_{lj}} \phi_{nljm}$ \Rightarrow usual idea : $S_{lj} = \sigma_{bu}^{exp} / \sigma_{bu}^{th}$

Example on ¹¹Be

¹⁰Be(d, p)¹¹Be in inverse kinematics @ Oak Ridge

 $E_{\rm d}$ = (a) 12 MeV (b) 15 MeV (c) 18 MeV (d) 21.4 MeV

SF varies with beam energy and optical potential

ANC vs SF

Is
$$S_{lj} = \sigma_{\rm bu}^{\rm exp} / \sigma_{\rm bu}^{\rm th}$$
 ?

Are transfer reactions really sensitive to SF? i.e. do we probe the whole overlap wave function?

Isn't transfer rather peripheral? i.e. sensitive only to asymptotics?

$$\psi_{lj}(r) \mathop{\longrightarrow}\limits_{r \to \infty} C_{lj} \ e^{-\kappa r}$$

Asymptotic Normalisation Coefficient : C_{lj}

Study this on ${}^{14}C(d, p){}^{15}C$ forming the one-neutron halo nucleus ${}^{15}C$ (see Maria Borge's talk) [Yang, PhD; Moschini, Yang, PC PRC 100, 044615 (2019)]

Test on ${}^{14}C(d,p){}^{15}C$

Consider many $V_{^{14}Cn}$ to describe one-neutron halo nucleus ^{15}C

Re-analysis of ${}^{14}C(d, p){}^{15}C$ @ $E_d = 17$ MeV

Scaling theory to experiment, we infer $C_{1/2^+}^2 = 1.59 \pm 0.06 \text{ fm}^{-1}$ Moschini, Yang, PC PRC 100, 044615 (2019) agrees with *ab initio* $C_{1/2^+}^2 = 1.644 \text{ fm}^{-1}$ Navrátil *et al.* (2019)

Ex : Mukhamedzhanov et al. PRC 84, 024616 (11) Ex : Goss et al. PRC 12, 1730 (1975)

Larger angles sensitive to short-range physics Good agreement also with previous data @ $E_{d} = 14 \text{ MeV}$

Quantification of parametric uncertainties in reactions

Bayesian approaches are very useful to quantify theoretical uncertainties

[Furnstahl et al. JPG 42, 034028 (2015) & PRC 92, 024005 (2015)]

Used often with EFT to quantify uncertainty in

- NN χ EFT interactions
- EoS

Thanks to ADWA low computational cost, extended to study propagation of optical model uncertainties to (d, p)

[Lowell, Nunes PRC 97, 064612 (2018)]

More recently to KO[Hebborn et al. PRC 108, 014601 (2023)]and breakup reactions[Sürer et al. PRC 106, 024607 (2023)]

The original study of Lowell and Nunes on (d, p) expanded to single-particle structure model [Catacora-Rios *et al.* PRC 108, 024601 (2023)]

Complete study including A-n and optical potentials

[Catacora-Rios, Lowell, Nunes PRC 108, 024601 (2023)]

Authors vary parameters of A-n and optical potentials constrained by ANC and $d\sigma_{\rm el}/d\Omega$ to get posterior distributions

- constraining optical potential is not enough
- ANC plays a significant role
- should constrain both

Important for nuclear-structure studies using (d, p)

⇒ make sure to know what calculations are sensitive to

Summary an take-home message

- Transfer reaction used to study nuclei far from stability (ISS)
- Usually described within DWBA or ADWA with a single-particle description of nucleus Spectroscopic factors inferred from data : $S_{lj} = \sigma_{bu}^{exp} / \sigma_{bu}^{th}$
- In the case of halo nucleus ¹⁵C [Moschini *et al.* PRC 100, 044615 (2019)] ¹⁴C(d, p) purely peripheral at low energy and forward angles \Rightarrow can be used to infer ANC NOT SF !!! \Rightarrow agreement with other reactions : breakup, (n, γ), KO...
- Sensitivity to inputs studied with Bayesian approach
 - [Catacora-Rios *et al.* PRC 108, 024601 (2023)]

 \Rightarrow ANC is important even for deeply-bound nuclei uncertainty in optical potentials are significant \Rightarrow affects structure information inferred from experiment

• Need transfer model that goes beyond single-particle model [Gomez-Ramos & Moro PRC 95, 044612 (2017); Punta *et al.* PRC 108, 024613 (2023)] Be sure to know to what the reaction is sensitive...

Thanks to my collaborators

Jiecheng Yang

Laura Moschini

Chloë Hebborn

Hans-Werner Hammer

Daniel Phillips

