

Updates from the ISOLDE Solenoidal Spectrometer

Patrick T. MacGregor ISOLDE Workshop 2023

Transfer reactions in inverse kinematics

NK: Beam = d, Target = ^AX IK: Beam = ^AX, Target = d

Kinematic shift (KS) Broadens peaks in energy spectrum.

Kinematic compression (KC) Reduces spacing between peaks in energy spectrum.

Result: lower-quality information on residual state populated using particle detection *alone*.

Transfer reactions in inverse kinematics in a solenoid

Detectors at ISS: silicon array

Technical details

- Designed and built in Liverpool during LS2
- 3 modules of DSSDs = 2 sides of hexagonal array each
- Each module has 512 p-side channels and 88 nside channels: total = 1800!
- Approx. 500 mm active silicon length
- Has ASIC readouts using chips designed for R³B project
- NIM paper being written

11 n-side
strips

$$(\sim 25 \text{ mm})$$

128 p-side strips ($\sim 125 \text{ mm}$)

Detectors at ISS: recoil detection

Recoil-gas mode

Singles mode

- No direct recoil detection.
- Use EBIS pulse time, as well as other tricks, to clean the *E* v.s. *z* spectrum.
- Used where recoil detection difficult/impossible.

Used for reactions with lighter beams e.g. ${}^{49}Ca(d,p)$ (2023).

Used for heavier beams, but Necessary for reactions still being improved (more using heaviest beams e.g. later) e.g. 92,94 Kr(*d*,*p*) (2022) 212 Rn(*d*,*p*) (2021)

Detectors at ISS: ancillary detectors

Can use additional ancillary detectors to complement measuring recoil + ejectile from (d,p) reaction:

- Luminosity detector for measuring elastically scattered deuterons (pictured)
- Zero-degree detector for measuring beam composition Multiple motors allow different configurations under vacuum.

Additional detector designs have been proposed for future experiments...

Beams from ISOLDE

E. Simpson. 2023. URL: https://people.physics.anu.edu.au/~ecs103/chart/ (Date accessed: 05/04/2023).

ISOLDE Workshop 2023

ISOLDE Solenoidal Spectrometer

C ISSSort

How are data processed - the ${}^{30}Mg(d,p)$ reaction

O ISSSort

ISOLDE Workshop 2023

O ISSSort

How are data processed - the ${}^{30}Mg(d,p)$ reaction

d(³⁰Mg,p)³¹Mg Excitation-Energy Spectrum

How are data processed - the ${}^{30}Mg(d,p)$ reaction

Patrick T. MacGregor

ISOLDE Workshop 2023

2022 physics

Andreas Ceulemans

Wed 29/11 15:15-15:27

Single-neutron transfer on 68Ni 503/1-001 - Council Chamber, CERN

Excitation energy Nickel background substracted Ex Ni basub 16000 Energy [keV] 45 Entries 811 Mean 3262 ç 14000 40 Std Dev 1431 12000 35 30 10000 25 8000 20 6000 15 4000 10 2000 Ω -500 300 -200 , z (mm) 5000 600 Excitation energy [keV] 1000 2000 3000 4000 6000

Identified states corresponding to $\nu d_{5/2}$ orbital e.g. large state at \sim 2.6 MeV. In preparation for publication...

A. Ceulemans. Private communication.

Onset of deformation in the neutron-rich krypton isotopes via transfer reactions with the ISOLDE Solenoidal Spectrometer 503/1-001 - Council Chamber, CERN	Annie Dolan
Evolution of Single Particle Trends Outside the N = 16 Isotones: The ²⁷ Na(<i>d</i> , <i>p</i>) Reaction at ISS. 503/1-001 - Council Chamber, CERN	<i>Samuel Boyd Reeve</i> Fri 01/12 15:30-15:42
The (<i>d,p</i>) reaction on ¹¹ Be using ISS: Bringing clarity to the structure of ¹² Be 503/1-001 - Council Chamber, CERN	<i>Jie Chen</i> Fri 01/12 15:45-15:57

2022 also had ${}^{30}Mg(d,p)$ and ${}^{110}Sn(d,p)$ reactions, as well as...

SpecMAT overview

O. Poleshchuk et al. Nucl. Instrum. Methods Phys. Res., Sect. A 1015, 165765. (2021).

Commissioning of the detector at HIE-ISOLDE 2022, offline

α-particle track measured in B=2.5T (offline)

Commissioning of the detector at HIE-ISOLDE 2023, online

²²Ne @ 7.58 MeV/u on D₂ @ 800 mbar

8 μ m Mylar window \rightarrow Beamline 8×10⁻⁸ mbar | Detector 800 mbar

Main reaction branches expected to observe:

- ²²Ne(d,d)
- ²²Ne(d,p)
- ²²Ne(d,³He)
- ²²Ne(d,t)

Poleshchuk

Excitation energy gated by EBIS and off beam subtracted

Reactions: ^{49,50}Ca(*d*,*p*) Motivation: Measure singleparticle structure of neutron-rich calcium nuclei to better understand magicity of N = 32.34 shell closure. **Progress:** Experiments in early stages on analysis. Image here is of theory predictions matched to experiment in the ${}^{49}Ca(d,p)$ reaction.

F. Browne. Private communication.

2023 physics: winter ⁷Be run

Reaction: $^{7}\text{Be}(d,p)$

Motivation: Measure single-particle structure at high-excitation energy \rightarrow low-energy protons in weaker (1.42 T) magnetic field. **Progress:** Finished less than a month ago...

⁵ K. Haverson. Private communication.

M. Gai. Private communication.

Recent activity: preparing for upgrades

Detector bed upgrade

- Additional motor for target ladder in vertical axis: 2D movement
- More targets available for use: good for heavy beams

Gas recoil detector upgrade

- Beam blocker gaining similar 2D mechanism
- Faster preamps

Successful proof-of-principle ²³⁸U(*d*,*pf*) experiment at HELIOS!

(d, pf) surrogate reaction has advantages over traditional fission measurements:

- Fission fragments focussed into small solid angle ⇒ efficient detection
- Full Bragg peak spectroscopy possible at these energies
- ISOLDE gives access to short-lived actinides

Can combine with scintillator array for $(n,\gamma)/(n,f)$...

S. A. Bennett et al. Phys. Rev. Lett. 130, 202501. (May 2023).

Looking to the future: scintillator array

3 rings of 11 CeBr detectors from SpecMAT. Commissioned in Oct. 2022. Can be used for $(d,p\gamma)$ experiments for astrophysics⁸.

D. K. Sharp. Private communication.

Transfer-induced fission with scintillator array!

INTC P-668 230 Ac(d,pf) proposal combines scintillator array with (d,pf) measurement. Detect fission fragments with CD detector. Geometrical efficiency of 82% for detecting both fission fragments.

ISOLDE Workshop 2023

A. Kawęcka, M. V. Managlia, and A. Heinz. Tech. rep. Geneva: CERN, 2023. URL: https://cds.cern.ch/record/2872247.

Looking to the future: new reactions

	INTC	Beam	Reaction	Spokesperson(s)	
\bigcirc	P-582	⁹ Li	(<i>t</i> , <i>p</i>)	Y. Ayyad and E. Vigezzi	N.B. tritium tar-
\bigcirc	P-599	^{134,136,138,140} Xe	(<i>t</i> , <i>p</i>)	A. O. Macchiavelli and K. Wimmer	get purchased for
8	P-679	⁷⁸ Zn	(<i>t</i> , <i>p</i>)	S. Bottoni, F. Galtarossa	SEC and Miniball
\bigcirc	P-609	¹⁴⁶ Ce	(d,d')	L. P. Gaffney	experiments
8	P-660	^{28,30} Mg	(t, α)	D. K. Sharp and P. T. MacGregor	

(*t*,*p*): protons travel backwards¹⁰

t(²⁸Mg,α)²⁷Na, 10 MeV/u, 2.1 T $E_{me} = 1 \text{ MeV}$ 1/2+15 5/2+ = 2 Molμ (t,α) A REAL PROPERTY AND 30 E (MeV)= 3 MeV(EIII) `20+ $\Sigma_{mn} = 4 \text{ MeV}$ (cm) 20 → 15 Radius (10 Recoil -30 -20 Array -60 -50 -70_<u>i6</u>0 -5030 -10 detector z (cm) z (cm) Ω 0.2 0.4 0.6 0.8 ñ 10 20 30 40 50 Distance from target, z (m) Centre-of-mass angle (degrees)

10 K. Wimmer and A. O. Macchiavelli, Tech. rep. Geneva: CERN, 2021, URL: https://cds.cern.ch/record/2766315.

D. K. Sharp and P. T. MacGregor, Tech, rep. Geneva; CERN, 2023, URL; https://cds.cern.ch/record/2845991.

Patrick T. MacGregor

11

ISOLDE Workshop 2023

 (t,α) + (d,d'): protons travel forwards¹¹

