CERN future projects, Cryogenics for superconductivity

Serge CLAUDET, as deputy Cryogenic group leader & HiLumi Cryo WP leader

CERN, 29th Jan'20

CERN present infrastructure and future projects

From LHC to HiLuminosity LHC and behond ...

27 km

CMS

CERN Prévessin

LHC ring: 27 km circumference

ALICE

ATLAS

LHC / HL-LHC Plan

Towards higher collision rates

New discoveries or precision measurements need integrated luminosity !!!

To increase Luminosity The most straight forward action: reducing beam size with a «local» action

 $(5\sigma_x, 5\sigma_y, 5\sigma_t)$ envelope for $\epsilon_x = 5.02646 \times 10^{-10}$ m, $\epsilon_y = 5.02646 \times 10^{-10}$ m, $\sigma_y = 0.000111$

HL-LHC configuration

SC D1

Corrector

Package

NC D1

റാ

HL-LHC

HL-LHC relies on more powerful final focussing quadrupoles, associated recombination dipoles and crab cavities,

Local heat loads expected x5 w.r.t LHC

S. Claudet - Jan'20

HL-LHC cryogenic upgrade

P1-P5: 2 new cryoplants (~15 kW @ 4.5 K incl. ~3 kW @ 1.8 K) and 2 x 750m cryodistribution for high-luminosity insertions

P4: upgrade (+2 kW @ 4.5 K) of an existing LHC 18 kW @ 4.5K cryoplant

 SPS-BA6: SRF test facility with beam primarily for Crab-Cavities

Other test facilities related activities not reported here

S. Claudet - Jan'20

P1/P5 Cryogenic architecture

15 kW equivalent at 4.5 K, including 3 kW at 1.8 K

CERN

Cryo-distribution reference

Identification of needs,

Proposal of a possible architecture

Proposal of a reference configuration with size

3D models

Reference established, optimised considering project requirements and CRG expertise

QXL cryoline, 3D models and integration

1'500m, 5 tubes in a shell diam 650-800mm, similar to existing LHC QRL cryoline

From cooling requirements to Refrigeration capacity and process

2 x 15 kW eq. @ 4.5K He Refrigerators, incl 3kW @ 1.8K

Best Capex + Opex offer matching specified requirements

Compressors, dryers, cold box(es), vertical cryoline, cold compressors

Tender Q1 2021

Complementary infrastructure

- Valve boxes (2): 25 valves in a 2m Diam & 8-10m long box
- GHe storage tanks (4): 250 Nm3 PN25
- LN2 storage tanks (2): 50'000 I + vaporiser
- Interconnecting piping: 2'000m Diam 250 eq. stainless steel
- Instrumentation for tunnel equipment (accuracy, radiation)
- Controls (integration with existing LHC infrastructure)

Major civil engineering required at P1-P5

All underground infrastructure being prepared during LS2

Inventory of the surface works (P1, ATLAS)

All surface buildings during Run3

S. Claudet - Jan'20

Neutrino Platform (new extension of North Area) Larg., LBNF/DUNE project in USA: dual-phase proto-DUNE Sanford Undergroun single-phase proto-DUNE Recently done at CERN Neutrino platform as a test area with charged beams for neutrino detectors (e.g. R&D for large liquid argon detectors).

CERN

CLIC: multi-TeV e⁺e⁻ linear collider

Parameter	Unit	Stage 1	Stage 2	Stage 3
√s	GeV	380	1500	3000
Tunnel length	km	11	29	50
Gradient	MV/m	72	72/100	72/100
Pulse length	ns	244	244	244
Luminosity (above 99% of √s)	10 ³⁴ cm ⁻² s ⁻¹	1.5 0.9	3.7 1.4	5.9 2
Repetition frequency	Hz	50	50	50
Bunches per train		352	312	312
Bunch spacing	ns	0.5	0.5	0.5
Particles/bunch	10 ⁹	5.2	3.7	3.7
Beam size at IP (σ_y / σ_x)	nm	<mark>2.9</mark> /149	1.5/60	1/40
Annual energy consumption	TWh	0.8	1.7	2.8
Construction cost	BCH	5.9	+5.1	+7.3

 100 MV/m accelerating gradient needed for compact (~50 km) machine at 3 TeV
→ based on normal-conducting accelerating structures and a two-beam acceleration scheme

<u>Technically</u>, construction could start in ~2026 (TDR in 2025) → first collisions at \sqrt{s} =380 GeV in ~2035 → 25-30 years of physics exploitation

Future Circular Collider Study

2020 European Strategy (discussion)

800 t He

Les accélérateurs sont notre coeur de métier

Merci pour votre attention!

L'électricité est notre énergie, L'Hélium est notre sang !

S. Claudet - Jan'20