Regge Trajectories from Pion Scattering

Alessandro Vichi

w/ B.McPeak, M.Venuti (2310.06888) J.Albert, J.Henriksson, L.Rastelli (in progress)

> QCD meets Gravity December 11, 2023

Effective Field theories

Consider a theory with a scale separation

In weakly coupled EFTs the $2 \rightarrow 2$ scattering amplitudes is

Scattering Amplitudes - generalities

$$IR: \quad \mathcal{A}(s,t) = g_{0,1}(s+t) + g_{1,1}(s+t)(st) + g_{1,0}ts + g_{0,2}(s+t)^2 + \dots$$

$$UV: \quad \mathcal{A}(s,t) = \sum_{J} n_J^{(d)} f_J(s) \mathcal{P}_J \left(1 + \frac{2t}{s}\right), \qquad n_J^{(d)}: \text{normalizations}$$

Standard assumptions:

- ► Analyticity;
- ► Regge boundedness: $\lim_{|s| \to \infty} \left| \frac{\mathcal{A}(s,t)}{s^2} \right| = 0$ (fixed t < 0);
- ► Weakly coupled theory (i.e. no cuts) below cut-off *M*;

Dispersion relations - review

$$\oint_{\infty} \frac{ds}{2\pi i s} \frac{\mathcal{A}(s,t)}{s^k (s+t)^{\ell}} = 0$$

 \Rightarrow low energy data = $\mathcal{F}[\mathsf{high} \; \mathsf{energy} \; \mathsf{data}]$

Pion scattering at large-N ($N_f = 2$)

$$\pi^a\pi^b\longrightarrow\pi^c\pi^d$$

Large-N limit:

- ▶ Three isospin channels I = 0, 1, 2 described by a single function A(s, t)
- ▶ Only $\bar{q}q$ -mesons contribute: poles only for I = 0, 1.
- $ightharpoonup \mathcal{A}(s,t)$ has only poles on the real positive s-axis. (fixed t)
- lacktriangle Pomeron suppressed at large-N: Regge intercept ~ 0.5

Sum rules and null constraints

$$\left. \begin{array}{l} g_{0,1} = \langle \frac{1}{m^2} \rangle \\ g_{1,1} = \dots \end{array} \right\} \leftarrow \text{sum rules} \qquad \left. \begin{array}{l} g_{0,1} > 0 \text{ (\sim "central charge")} \\ \\ 0 = \langle \frac{(J-2)J(J+1)(J+3)}{m^6} \rangle \\ \\ 0 = \dots \end{array} \right\} \leftarrow \text{null constraints $\mathcal{X}_{k,\ell}$}$$

Notation:

$$\langle F(m^2,J) \rangle \equiv \sum_{J \, \text{even}} \, n_J^{(d)} \int_{M^2}^{\infty} \frac{dm^2}{\pi} \frac{m^{4-d}}{m^2} \rho_J(m^2) \left[F(m^2,J) \right].$$

Unitarity
$$\Rightarrow \rho_J(s) \geq 0$$

Bootstrap equations

Schematic form of equations:

$$\underbrace{\begin{pmatrix} g_{0,1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{\overrightarrow{V_g}} = \sum_{X} g_{\pi\pi X}^2 \underbrace{\begin{pmatrix} \dots \\ \mathcal{X}_{3,1} \\ \dots \\ \mathcal{X}_{4,1} \\ \dots \end{pmatrix}}_{\overrightarrow{V_X}}$$

 $(X \equiv \text{quantum numbers of states exchanged in } \pi\pi \to \pi\pi)$

Feasibility can be recast in a semi-definite positive problem and tested numerically

Simple lessons from null constraints

Consider two particular combinations of null constraints

$$x: \vec{n}_1 \cdot \vec{V}_J(m^2), \qquad y: \vec{n}_2 \cdot \vec{V}_J(m^2)$$

- ► Spin-1 alone are inconsistent
- lacktriangle A Spin-1 can be "fixed" by adding resonances at ∞

Geometry of null constraints - 2

Consider a different combination

lacktriangle A Spin-2 cannot be "fixed" by adding resonances at ∞ or vectors

Geometry of null constraints - 2

- ightharpoonup A Spin-2 cannot be "fixed" by adding resonances at ∞ or vectors
- ► A Spin-2 requires higher (odd) spins

General lessons

- ightharpoonup J=1 must be present at finite mass
- ▶ $J \ge 2$ do not need to be present at finite mass
- ▶ If we introduce a J > 1 spin, it must come with a whole tower of states of increasing spin (\sim CEMZ)

Intermezzo: importance of Regge

behavior

Complex scalar+gravity+gauge

In absence of gravity one can obtain "forward sum rules"

$$g_{0,2} \sim <\frac{1}{m^4}>$$
 positive!

Graviton exchange

 \Rightarrow 1/t pole in the 2-Subtracted Dispersion Relation (2SDR), regular in 1SDR

Photon exchange

 $\Rightarrow 1/t$ pole in 1SDR, doesn't contribute to 2SDR

Loss of positivity in 2SDR: [Caron-Huot, Mazac, Rastelli, Simmons-Duffin '21]

$$g_{0,2} \geq -\# G \,,$$

Adding subtractions

- lacktriangle Gravity implies softer Regge behaviour \Rightarrow can impose 1SDRs [Haring, Zhiboedov '22]
- Problem: 1SDR are not sign definite at large mass, spin (charge 0,1 and charge 2 contribute in opposite ways)
- ► Generically this would make 1SDR useless.
- ► Let us restrict to (large-N)-like theories and assume (t-channel dominance)

$$ho_J^{Q=2}(s)=0$$
 no states in charge 2-sector

with this assumption 1SDR can be used:

$$g_{0,2} \ge -\#e^2$$
 (independent of $G!$)

In the limit $e^2 \rightarrow 0$ we recover positivity! [McPeak, Venuti, AV '23]

Back to pions

Regge behaviour & subtractions

S-matrix VS EFT bootstrap

[Li '23] [Elias Miro, Guerrieri, Gumus '22]

Forcing the f_2

Hot to force the presence of a spin $J \ge 2$ in the system?

Maximize the residue of a spin-2 resonance (aka f_2)

Forcing the f_2

Forcing the f_2

Can it be large-N QCD?

Fix the cut-off $M''=M_{\rm kink}$: $ho{-}{\rm coupling}$ vs $f_2{-}{\rm coupling}$

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

Kink seems to be related to the formation of a Regge trajectory

spectrum @ kink VS real world

Can it be large-N QCD?

	spectrum VS real-word	Asymptotically Linear Regge trajectories	daughter trajectories	degenerate $ ho, f$ trajectories
Large-N QCD	?	e×pected	suppressed(?)	✓
Kink solution	✓	×	not seen	✓

Where do we go next?

Imposing the presence of higher spin resonances creates Regge-like trajectories

Similar kinks and spectra for J = 3,4

Maximising the ratio $g_{f_2}^2/g_{0,1}$ pushes towards the right direction of parameter space. Perhaps the right answer is behind the corner?

To do better we need to impose more constraints ⇒ mixed amplitudes

- ightharpoonup mix π^a with the first scalar meson
- glueball scattering (also compare with simulations at large-N) [Guerrieri, Hebbar, van Rees '23] [Haring, Zhiboedov '23]
- ightharpoonup mix π and ρ -vector [Albert, Henriksson, Rastelli, AV in progress]

Stay tuned!