Symbol Alphabets from the Landau Singular Locus

Christoph Dlapa

work with Martin Helmer, Georgios Papathanasiou and Felix Tellander

```
2304.02629 [hep-th] - JHEP10(2023)161
```


Feynman Integrals

- Momentum space representation:

$$
\mathcal{I}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \int_{0}^{\infty} \prod_{e \in E} \frac{1}{\left(-q_{e}^{2}+m_{e}^{2}-i \epsilon\right)^{\nu_{e}}}, \quad D=D_{0}-2 \epsilon
$$

- Master integrals and canonical differential equations:

Integration-by-parts (IBP) relations

$$
\begin{array}{r}
d \vec{f}=d M(\epsilon) \vec{f}, \quad \longrightarrow \quad \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \longrightarrow \sum_{k=0}^{\infty} \epsilon^{k} \vec{g}^{(k)} \\
\vec{g}^{(k)}=\int d \widetilde{M} \vec{g}^{(k-1)}
\end{array}
$$

Feynman Integrals

- Momentum space representation:

$$
\mathcal{I}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{i \pi^{D / 2}} \int_{0}^{\infty} \prod_{e \in E} \frac{1}{\left(-q_{e}^{2}+m_{e}^{2}-i \epsilon\right)^{\nu_{e}}}, \quad D=D_{0}-2 \epsilon
$$

- Master integrals and canonical differential equations:

Integration-by-parts (IBP) relations

$$
d \vec{f}=d M(\epsilon) \vec{f}, \quad \longrightarrow \quad d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \longrightarrow \quad \vec{g}=\sum_{k=0}^{\infty} \epsilon^{k} \vec{g}^{(k)}
$$

- Letters and alphabet:

$$
\widetilde{M}=\sum_{i} \tilde{a}_{i} \log W_{i}
$$

$$
\vec{g}^{(k)}=\int d \widetilde{M}_{g^{(k-1)}}
$$

Goal: Find alphabet from
integral representation instead of differential equations

Alphabet and Bootstrap

- Symbol bootstrap
$\widetilde{M}=\sum_{i} \tilde{a}_{i} \log W_{i}$,

Alphabet and Bootstrap

- Symbol bootstrap

$$
\widetilde{M}=\sum_{i} \tilde{a}_{i} \log W_{i},
$$

- Numerical IBP for differential equations:
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, '20]

Integration-by-parts (IBP) relations

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \longrightarrow \quad \vec{g}=\sum_{k=0}^{\infty} \epsilon^{k} \vec{g}^{(k)} \quad \longrightarrow \quad \vec{g}^{(k)}=\int d \widetilde{M} \vec{g}^{(k-1)}
$$

Alphabet and Bootstrap

- Symbol bootstrap

$$
\widetilde{M}=\sum_{i} \tilde{a}_{i} \log W_{i},
$$

- Numerical IBP for differential equations:
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, '20]

Integration-by-parts (IBP) relations

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \longrightarrow \quad \vec{g}=\sum_{k=0}^{\infty} \epsilon^{k} \vec{g}^{(k)} \quad \longrightarrow \quad \vec{g}^{(k)}=\int d \widetilde{M}_{g}^{(k-1)}
$$

- Canonical basis e.g. from integrand analysis

Alphabet and Bootstrap

- Symbol bootstrap

$$
\widetilde{M}=\sum_{i} \tilde{a}_{i} \log W_{i},
$$

- Numerical IBP for differential equations:
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, '20]

Integration-by-parts (IBP) relations

$$
d \vec{g}=\epsilon d \widetilde{M} \vec{g}, \quad \longrightarrow \quad \vec{g}=\sum_{k=0}^{\infty} \epsilon^{k} \vec{g}^{(k)} \quad \longrightarrow \quad \vec{g}^{(k)}=\int d \widetilde{M} \vec{g}^{(k-1)}
$$

- Canonical basis e.g. from integrand analysis
- Used to derive DEs up to ten external legs at one loop

Lee-Pomeransky Representation

- Feynman representation:

$$
\mathcal{I}=\Gamma(\omega) \int_{0}^{\infty} \prod_{e \in E}\left(\frac{x_{e}^{\nu_{e}} d x_{e}}{x_{e} \Gamma\left(\nu_{e}\right)}\right) \frac{\delta(1-H(x))}{\mathcal{U}^{D / 2}}\left(\frac{1}{\mathcal{F} / \mathcal{U}-i \epsilon}\right)^{\omega}, \quad \omega \equiv \sum_{e \in E} \nu_{e}-L D / 2
$$

- Lee-Pomeransky:

$$
\mathcal{I}=\frac{\Gamma(D / 2)}{\Gamma(D / 2-\omega)} \int_{0}^{\infty} \prod_{e \in E}\left(\frac{x_{e}^{\nu_{e}} d x_{e}}{x_{e} \Gamma\left(\nu_{e}\right)}\right) \frac{1}{\mathcal{G}^{D / 2}}, \quad \mathcal{G}=\mathcal{U}+\mathcal{F}
$$

Lee-Pomeransky Representation

- Feynman representation:

$$
\mathcal{I}=\Gamma(\omega) \int_{0}^{\infty} \prod_{e \in E}\left(\frac{x_{e}^{\nu_{e}} d x_{e}}{x_{e} \Gamma\left(\nu_{e}\right)}\right) \frac{\delta(1-H(x))}{\mathcal{U}^{D / 2}}\left(\frac{1}{\mathcal{F} / \mathcal{U}-i \epsilon}\right)^{\omega}, \quad \omega \equiv \sum_{e \in E} \nu_{e}-L D / 2
$$

- Lee-Pomeransky:

$$
\begin{aligned}
& 1=\int_{0}^{\infty} \delta(t-H(x)) d t \\
& x_{e} \rightarrow t x_{e}
\end{aligned}
$$

$$
\mathcal{I}=\frac{\Gamma(D / 2)}{\Gamma(D / 2-\omega)} \int_{0}^{\infty} \prod_{e \in E}\left(\frac{x_{e}^{\nu_{e}} d x_{e}}{x_{e} \Gamma\left(\nu_{e}\right)}\right) \frac{1}{\mathcal{G}^{D / 2}}, \quad \mathcal{G}=\mathcal{U}+\mathcal{F}
$$

Lee-Pomeransky Representation

- Feynman representation:

$$
\mathcal{I}=\Gamma(\omega) \int_{0}^{\infty} \prod_{e \in E}\left(\frac{x_{e}^{\nu_{e}} d x_{e}}{x_{e} \Gamma\left(\nu_{e}\right)}\right) \frac{\delta(1-H(x))}{\mathcal{U}^{D / 2}}\left(\frac{1}{\mathcal{F} / \mathcal{U}-i \epsilon}\right)^{\omega}, \quad \omega \equiv \sum_{e \in E} \nu_{e}-L D / 2
$$

- Lee-Pomeransky:

$$
\begin{aligned}
& 1=\int_{0}^{\infty} \delta(t-H(x)) d t \\
& x_{e} \rightarrow t x_{e}
\end{aligned}
$$

$$
\mathcal{I}=\frac{\Gamma(D / 2)}{\Gamma(D / 2-\omega)} \int_{0}^{\infty} \prod_{e \in E}\left(\frac{x_{e}^{\nu_{e}} d x_{e}}{x_{e} \Gamma\left(\nu_{e}\right)}\right) \frac{1}{\mathcal{G}^{D / 2}}, \quad \mathcal{G}=\mathcal{U}+\mathcal{F}
$$

- Landau equations:

$$
\mathcal{G}_{h}=\mathcal{U} x_{0}+\mathcal{F}=0, \quad \text { and } \quad \frac{\partial \mathcal{G}_{h}}{\partial x_{i}}=0 \quad \text { or } \quad x_{i}=0 \quad \forall i=0, \ldots,|E|
$$

homogenized LP-polynomial

Generic one-loop integrals

- Landau equations:
$\mathcal{G}_{h}=\mathcal{U} x_{0}+\mathcal{F}=0, \quad$ and $\quad \frac{\partial \mathcal{G}_{h}}{\partial x_{i}}=0 \quad$ or $\quad x_{i}=0 \quad \forall i=0, \ldots, n$

Generic one-loop integrals

- Landau equations:
$\mathcal{G}_{h}=\mathcal{U} x_{0}+\mathcal{F}=0, \quad$ and $\quad \frac{\partial \mathcal{G}_{h}}{\partial x_{i}}=0 \quad$ or $\quad x_{i}=0 \quad \forall i=0, \ldots, n$
- leading Landau singularities (full graph): $x_{e} \neq 0, \forall e \in E$
- type-I singularity

$$
x_{0}=\left.0 \quad \longrightarrow \quad \mathcal{G}_{h}\right|_{x_{0}=0}=\mathcal{F}
$$

$$
\text { - type-II singularity } x_{0} \neq\left. 0 \longrightarrow \mathcal{G}_{h}\right|_{x_{0}=1}=\mathcal{G}
$$

Generic one-loop integrals

- Landau equations:

$$
\mathcal{G}_{h}=\mathcal{U} x_{0}+\mathcal{F}=0, \quad \text { and } \quad \frac{\partial \mathcal{G}_{h}}{\partial x_{i}}=0 \quad \text { or } \quad x_{i}=0 \quad \forall i=0, \ldots, n
$$

- leading Landau singularities (full graph): $x_{e} \neq 0, \forall e \in E$
- type-I singularity

$$
\begin{aligned}
& x_{0}=\left.0 \longrightarrow \mathcal{G}_{h}\right|_{x_{0}=0}=\mathcal{F} \\
& x_{0} \neq\left. 0 \longrightarrow \mathcal{G}_{h}\right|_{x_{0}=1}=\mathcal{G}
\end{aligned}
$$

- type-II singularity

- sub-graph singularities: $\quad x_{e}=0, \quad e \in E$
- type-I singularity

$$
x_{0}=\left.0 \quad \longrightarrow \quad \mathcal{G}_{h}\right|_{\substack{x_{0}=0 \\ x_{e}=0}}=\left.\mathcal{F}\right|_{x_{e}=0}
$$

- type-II singularity

$$
x_{0} \neq\left. 0 \longrightarrow \mathcal{\mathcal { G } _ { h }}\right|_{\substack{x_{0}=1 \\ x_{e}=0}}=\left.\mathcal{G}\right|_{x_{e}=0}
$$

The Landau singular locus at one loop

- Leading type-II singularity: $x_{i} \neq 0 \quad \forall i=0, \ldots, n$

$$
\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}=\cdots=\frac{\partial \mathcal{G}_{h}}{\partial x_{n}}=0 \quad \longrightarrow \quad \mathcal{G}_{h}=0
$$

The Landau singular locus at one loop

- Leading type-II singularity: $x_{i} \neq 0 \quad \forall i=0, \ldots, n$

$$
\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}=\cdots=\frac{\partial \mathcal{G}_{h}}{\partial x_{n}}=0 \quad \longrightarrow \quad \mathcal{G}_{h} \longleftarrow=0 \text { degree two }
$$

The Landau singular locus at one loop

- Leading type-II singularity: $x_{i} \neq 0 \quad \forall i=0, \ldots, n$

$$
\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}=\cdots=\frac{\partial \mathcal{G}_{h}}{\partial x_{n}}=0 \quad \longrightarrow \quad \mathcal{G}_{h}=0 \text { degree two }
$$ depends only on kinematics

$$
\left(\begin{array}{c}
\frac{\partial \mathcal{G}_{h}}{\partial x_{0}} \\
\vdots \\
\frac{\partial \mathcal{G}_{h}}{\partial x_{n}}
\end{array}\right)=: \mathscr{J}\left(\mathcal{G}_{h}\right)\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{n}
\end{array}\right)=\mathbf{0}
$$

The Landau singular locus at one loop

- Leading type-II singularity: $x_{i} \neq 0 \quad \forall i=0, \ldots, n$

$$
\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}=\cdots=\frac{\partial \mathcal{G}_{h}}{\partial x_{n}}=0 \quad \longrightarrow \quad \mathcal{G}_{h}=0 \text { degree two }
$$

depends only on kinematics
$\longrightarrow\left(\begin{array}{c}\frac{\partial \mathcal{G}_{h}}{\partial x_{0}} \\ \vdots \\ \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}\end{array}\right)=: \mathscr{J}\left(\mathcal{G}_{h}\right)\left(\begin{array}{c}x_{0} \\ \vdots \\ x_{n}\end{array}\right)=\mathbf{0}$,

- Solution space: $\mathbf{V}\left(\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}, \ldots, \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}\right):=\left\{x \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}\left|\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}=\ldots=\right| \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}=0\right\}$
- Space of kinematic variables for which there is a solution:

$$
\overline{\left\{s_{i j}, m_{i}^{2} \left\lvert\, \mathbf{V}\left(\frac{\partial \mathcal{G}_{h}}{\partial x_{0}}, \ldots, \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}\right) \neq \emptyset\right.\right\}} \Longleftrightarrow \operatorname{det}\left(\mathscr{J}\left(\mathcal{G}_{h}\right)\right)=0
$$

The modified Cayley matrix

- For the LP-polynomial of generic one-loop integrals:

$$
\begin{aligned}
& \mathscr{J}\left(\mathcal{G}_{h}\right)=\mathcal{Y} \\
& \mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \longleftarrow m_{i}^{2} \quad Y_{i j}=m_{i}^{2}+m_{j}^{2}-s_{i j-1} \\
& \text { Cayley } \\
& \text { matrix } \\
& x_{e}
\end{aligned}
$$

The modified Cayley matrix

- For the LP-polynomial of generic one-loop integrals:

$$
\begin{aligned}
& \mathscr{J}\left(\mathcal{G}_{h}\right)=\mathcal{Y} \\
& \mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
0 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \longleftarrow x_{0} \quad \begin{array}{c}
\text { Cayley } \\
\text { matrix }
\end{array} \\
& x_{e}
\end{aligned}
$$

- Relation to Gram determinants

$$
G\left(k_{1}, \ldots, k_{m}\right) \equiv \operatorname{det}_{i, j}\left(k_{i} \cdot k_{j}\right)
$$

- type-II singularity:

$$
x_{0} \neq 0 \longrightarrow \operatorname{det}(\mathcal{Y})=-2^{n-1} G\left(p_{1}, \ldots, p_{n}\right)
$$

The modified Cayley matrix

- For the LP-polynomial of generic one-loop integrals:

$$
\begin{aligned}
& \mathscr{J}\left(\mathcal{G}_{h}\right)=\mathcal{Y} \\
& \mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \longleftarrow x_{0} x_{e} \quad \begin{array}{c}
\text { Cayley } \\
\text { matrix } \\
y_{i j}
\end{array}
\end{aligned}
$$

- Relation to Gram determinants

$$
G\left(k_{1}, \ldots, k_{m}\right) \equiv \operatorname{det}_{i, j}\left(k_{i} \cdot k_{j}\right)
$$

- type-II singularity:

$$
\begin{aligned}
& x_{0} \neq 0 \longrightarrow \operatorname{det}(\mathcal{Y})=-2^{n-1} G\left(p_{1}, \ldots, p_{n}\right) \\
& x_{0}=0 \longrightarrow \operatorname{det}(Y)=\left.(-2)^{n} G\left(q_{1}, \ldots, q_{n}\right)\right|_{q_{i}^{2}=m_{i}^{2}}
\end{aligned}
$$

- type-I singularity:
determinant

The principal A-determinant at one loop

- Subgraphs correspond to diagonal minors:
$\mathcal{Y}\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{k} \\ j_{1} & j_{2} & \cdots & j_{k}\end{array}\right] \quad \begin{aligned} & \text { determinant with } \\ & \text { rows/columns removed }\end{aligned}$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \longleftarrow x_{0}
$$

The principal A-determinant at one loop

- Subgraphs correspond to diagonal minors: $\mathcal{Y}\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{k} \\ j_{1} & j_{2} & \cdots & j_{k}\end{array}\right] \quad \begin{aligned} & \text { determinant with } \\ & \text { rows/columns removed }\end{aligned}$
- type-I singularity: $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]=\operatorname{det}(Y)$

$$
\mathcal{S}:\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \longleftarrow x_{0}
$$

- type-II singularity:
$\mathcal{Y}\left[\begin{array}{l}\cdot \\ \cdot\end{array}\right]=\operatorname{det}(\mathcal{Y})$
- type-I sub-singularity: $\mathcal{Y}\left[\begin{array}{ll}1 & (e+1) \\ 1 & (e+1)\end{array}\right]=\operatorname{det}\left(\left.Y\right|_{E \backslash\{e+1\}}\right)$
- type-II sub-singularity: $\quad \mathcal{Y}\left[\begin{array}{l}(e+1) \\ (e+1)\end{array}\right]=\operatorname{det}\left(\mathcal{Y}_{E \backslash\{e+1\}}\right)$

The principal A-determinant at one loop

- Subgraphs correspond to diagonal minors: $\mathcal{Y}\left[\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{k} \\ j_{1} & j_{2} & \cdots & j_{k}\end{array}\right] \quad \begin{aligned} & \text { determinant with } \\ & \text { rows/columns removed }\end{aligned}$
- type-I singularity: $\mathcal{Y}\left[\begin{array}{l}1 \\ 1\end{array}\right]=\operatorname{det}(Y)$

$$
\mathcal{Y}=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & Y_{11} & Y_{12} & \cdots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \cdots & Y_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & Y_{1 n} & Y_{2 n} & \cdots & Y_{n n}
\end{array}\right) \longleftarrow x_{0}
$$

- type-II singularity:
$\mathcal{Y}[\cdot]=\operatorname{det}(\mathcal{Y})$
- type-I sub-singularity: $\quad \mathcal{Y}\left[\begin{array}{cc}1 & (e+1) \\ 1 & (e+1)\end{array}\right]=\operatorname{det}\left(\left.Y\right|_{E \backslash\{e+1\}}\right)$
- type-II sub-singularity: $\mathcal{Y}\left[\begin{array}{l}(e+1) \\ (e+1)\end{array}\right]=\operatorname{det}\left(\mathcal{Y}_{E \backslash\{e+1\}}\right)$
- (reduced) principal A-determinant:

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\mathcal{Y}[\cdot \cdot] \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array}\right] \prod_{i=2}^{n+1} \mathcal{Y}_{i i}
$$

product of Gram and Cayley determinant of the graph and all subgraphs

Example: Bubble

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=m_{1}^{2} m_{2}^{2} \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right) p^{2}, \quad \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=p^{4}+m_{1}^{4}+m_{2}^{4}-2 p^{2} m_{1}^{2}-2 p^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}
$$

- The factors of the principal A-determinant give all symbol letters!

Example: Bubble

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=m_{1}^{2} m_{2}^{2} \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right) p^{2}, \quad \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=p^{4}+m_{1}^{4}+m_{2}^{4}-2 p^{2} m_{1}^{2}-2 p^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}
$$

- The factors of the principal A-determinant give all symbol letters!
- square-root letters?

$$
\frac{-m_{1}^{2}+m_{2}^{2}+p^{2}-\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{-m_{1}^{2}+m_{2}^{2}+p^{2}+\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}} \in\left\{W_{i}\right\}
$$

Example: Bubble

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=m_{1}^{2} m_{2}^{2} \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right) p^{2}, \quad \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=p^{4}+m_{1}^{4}+m_{2}^{4}-2 p^{2} m_{1}^{2}-2 p^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}
$$

- The factors of the principal A-determinant give all symbol letters!
- square-root letters?

$$
\frac{-m_{1}^{2}+m_{2}^{2}+p^{2}-\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{-m_{1}^{2}+m_{2}^{2}+p^{2}+\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}} \in\left\{W_{i}\right\}
$$

$>$ need to re-factorize products:

$$
4 m_{2}^{2} p^{2}
$$

Example: Bubble

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=m_{1}^{2} m_{2}^{2} \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right) p^{2}, \quad \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=p^{4}+m_{1}^{4}+m_{2}^{4}-2 p^{2} m_{1}^{2}-2 p^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}
$$

- The factors of the principal A-determinant give all symbol letters!
- square-root letters?

$$
\frac{-m_{1}^{2}+m_{2}^{2}+p^{2}-\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{-m_{1}^{2}+m_{2}^{2}+p^{2}+\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}} \in\left\{W_{i}\right\}
$$

$>$ need to re-factorize products:

$$
4 m_{2}^{2} p^{2}=\left(-m_{1}^{2}+m_{2}^{2}+p^{2}-\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}\right)\left(-m_{1}^{2}+m_{2}^{2}+p^{2}+\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}\right)
$$

Example: Bubble

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=m_{1}^{2} m_{2}^{2} \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right) p^{2}, \quad \lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)=p^{4}+m_{1}^{4}+m_{2}^{4}-2 p^{2} m_{1}^{2}-2 p^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}
$$

- The factors of the principal A-determinant give all symbol letters!
- square-root letters?

$$
\frac{-m_{1}^{2}+m_{2}^{2}+p^{2}-\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{-m_{1}^{2}+m_{2}^{2}+p^{2}+\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}} \in\left\{W_{i}\right\}
$$

$>$ need to re-factorize products:

$$
4 m_{2}^{2} p^{2}=\left(-m_{1}^{2}+m_{2}^{2}+p^{2}-\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}\right)\left(-m_{1}^{2}+m_{2}^{2}+p^{2}+\sqrt{\lambda\left(p^{2}, m_{1}^{2}, m_{2}^{2}\right)}\right)
$$

- come from Jacobi identities:

$$
-\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
2 \\
1
\end{array}\right]^{2}-\mathcal{Y}\left[\begin{array}{l}
2 \\
2
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \quad f^{2}-g=(f-\sqrt{g})(f+\sqrt{g})
$$

Jacobi identities

- For odd n

$$
\begin{aligned}
& \mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2}, \\
& \mathcal{Y}\left[\cdot \cdot \boldsymbol{\cup} \mathcal{Y}\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
j \\
j
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
j
\end{array}\right]^{2}, \quad i \geq 2\right.
\end{aligned}
$$

- For even n

$$
\begin{aligned}
& \mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2} \\
& \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & j
\end{array}\right]-\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & j
\end{array}\right]^{2}
\end{aligned}
$$

Jacobi identities

- For odd n

$$
\begin{aligned}
& \mathcal{Y}\left[\cdot \cdot \cdot \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2},\right. \\
& \mathcal{Y}\left[\cdot \cdot \mathcal{Y}\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
j \\
j
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
j
\end{array}\right]^{2}, \quad i \geq 2\right.
\end{aligned}
$$

- For even n

$$
\left.\begin{array}{l}
\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2} \\
\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & i
\end{array}\right] \\
1
\end{array} \quad i \quad j\right]=\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & j
\end{array}\right]-\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & j
\end{array}\right]^{2}, ~ l
$$

Jacobi identities

- For odd $n+D_{0}$

$$
\begin{aligned}
& \mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2} \\
& \mathcal{Y}\left[\cdot \cdot \boldsymbol{Y} \mathcal{Y}\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
j \\
j
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
j
\end{array}\right]^{2}, \quad i \geq 2\right.
\end{aligned}
$$

- For even $n+D_{0}$
case of Gram and
Cayley exchanged

$$
\begin{aligned}
& \mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]^{2} \\
& \mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]=\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & j
\end{array}\right]-\mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & j
\end{array}\right]^{2}
\end{aligned}
$$

Symbol letters

- Case of one edge missing: (next-to-maximal cut)

$$
W_{1, \ldots,(i-1), \ldots, n}=\left\{\begin{array}{ll}
\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]-\sqrt{-\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & i
\end{array}\right]} \\
\left.\mathcal{Y}\left[\begin{array}{l}
i \\
1
\end{array}\right]+\sqrt{-\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right.} \boldsymbol{i}\right]
\end{array}, \quad D_{0}+n \text { odd, },\right.
$$

Symbol letters

- Case of two edges missing: (next-to-next-to-maximal cut)

$$
W_{1, \ldots,(i-1), \ldots,(j-1), \ldots, n}= \begin{cases}\mathcal{Y}\left[\begin{array}{l}
i \\
j
\end{array}\right]-\sqrt{-\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]} \\
\mathcal{Y}\left[\begin{array}{l}
i \\
j
\end{array}\right]+\sqrt{-\mathcal{Y}[\cdot] \mathcal{Y}\left[\begin{array}{ll}
i & j \\
i & j
\end{array}\right]}, & D_{0}+n \text { odd, } \\
\frac{\mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & i
\end{array}\right]-\sqrt{-\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{Y}\left[\begin{array}{lll}
1 & i & j \\
1 & i & j
\end{array}\right]}}{\left.\mathcal{Y}\left[\begin{array}{ll}
1 & j \\
1 & i
\end{array}\right]+\sqrt{-\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{Y}\left[\begin{array}{ll}
1 & i \\
1 & j \\
1 & i
\end{array} j\right.}\right]}, & D_{0}+n \text { even, }\end{cases}
$$

Symbol letters

- Case of no leg missing: (maximal cut)
- no Jacobi identities
- only one letter

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\mathcal{Y}[\cdot] \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array} \prod_{i=2}^{n+1} \mathcal{Y}_{i i}\right.
$$

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}\left[\begin{array}{l}
\cdot \\
\cdot
\end{array}\right]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

Symbol letters

- Case of no leg missing: (maximal cut)
- no Jacobi identities
- only one letter

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\mathcal{Y}[\cdot \cdot] \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array}\right] \prod_{i=2}^{n+1} \mathcal{Y}_{i i}
$$

$$
W_{1,2, \ldots, n}=\frac{\mathcal{Y}[\cdot]}{\mathcal{Y}\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
$$

- Letters not all independent
- triangle in even dimensions: $\quad \log W_{(i), j,(k)}=\log W_{(i),(j), k}+\log W_{i,(j),(k)}$

$$
\frac{a-b-c-\sqrt{\lambda}}{a-b-c+\sqrt{\lambda}}=\frac{a-b+c-\sqrt{\lambda}}{a-b+c+\sqrt{\lambda}} \frac{a+b-c-\sqrt{\lambda}}{a+b-c+\sqrt{\lambda}}
$$

Differential equations:

- For even $n+D_{0}$

$$
\begin{aligned}
d \mathcal{J}_{1 \ldots n}= & \epsilon d \log W_{1 \ldots n} \mathcal{J}_{1 \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq n}(-1)^{i+\left\lfloor\frac{n}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots n} \mathcal{J}_{1 \ldots \hat{i} \ldots n} \\
& +\epsilon \sum_{1 \leq i<j \leq n}(-1)^{i+j+\left\lfloor\frac{n}{2}\right\rfloor_{d} \log W_{1 \ldots(i) \ldots(j) \ldots n} \mathcal{J}_{1 . \ldots \hat{i} \ldots \hat{j} \ldots n},}
\end{aligned}
$$

- For odd $n+D_{0}$

$$
\begin{aligned}
d \mathcal{J}_{1} \ldots n= & \epsilon d \log W_{1 \ldots n} \mathcal{J}_{1 \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq n}(-1)^{i+\left\lfloor\frac{n+1}{2}\right\rfloor} d \log W_{1 \ldots(i) \ldots n} \mathcal{J}_{1 \ldots \hat{i} \ldots n} \\
& +\epsilon \sum_{1 \leq i \leq j \leq n}(-1)^{i+j+\left\lfloor\frac{n+1}{2}\right\rfloor} d_{d \log W_{1 \ldots(i) \ldots(j) \ldots n} \mathcal{J}_{1 \ldots \hat{i} \ldots \hat{j} \ldots n},},
\end{aligned}
$$

Canonical master integrals

- From literature

Canonical master integrals

- From literature

$$
\begin{array}{lc}
\text { Ire } & \Rightarrow \text { DRR to } D_{0} \\
\mathcal{J}_{i_{1} \ldots i_{k}}=\left\{\begin{array}{ll}
\frac{\epsilon^{\left\lfloor\frac{k}{2}\right\rfloor} \mathcal{I}_{i_{1} \ldots i_{k}}^{(k)}}{j_{i_{1} \ldots i_{k}}} & \text { for } k+D_{0} \text { even, } \\
& \text { [Abreu, Britto, Duhr, Gardi, '17 / } \\
\frac{\epsilon^{\left\lfloor\frac{k+1}{2}\right\rfloor} \mathcal{I}_{i_{1} \ldots i_{k}}^{(k+1)}}{j_{i_{1} \ldots i_{k}}} & \text { for } k+D_{0} \text { odd, }
\end{array} \quad\right. \text { Chen, Ma, Yang, '22] }
\end{array}
$$

- Leading singularities

$$
\left.j_{i_{1} \cdots i_{k}}=\left\{\begin{array}{ll}
2^{-\frac{k}{2}+1}\left[(-1)^{\left\lfloor\frac{k}{2}\right\rfloor} \mathcal{Y}\left(\begin{array}{lll}
i_{1}+1 & i_{2}+1 & \cdots \\
i_{1}+1 & i_{2}+1 & \cdots \\
i_{k}+1 \\
i_{k}+1
\end{array}\right)\right]^{-1 / 2}, & \text { for } k+D_{0} \text { even } \\
2^{-\frac{k+1}{2}+1}\left[(- 1) ^ { \lfloor \frac { k + 1 } { 2 } \rfloor } \mathcal { Y } \left(\begin{array}{llll}
1 & i_{1}+1 & i_{2}+1 & \cdots \\
1 & i_{k}+1 & i_{2}+1 & \cdots
\end{array} i_{k}+1\right.\right.
\end{array}\right)\right]^{-1 / 2}, \quad \text { for } k+D_{0} \text { odd } .
$$

Comparison with the literature

- Symbol alphabet
- Differential equations

Caron-Huot, Pokraka, '21

1) Diagrammatic coaction:
[Abreu, Britto, Duhr, Gardi, '17]
only next-to-next-to maximal cut needed
also: [Caron-Huot,
Pokraka, '21]
2) Baikov representation:
[Chen, Ma, Yang, '22]

explicit match
[Jiang, Yang, '23]

modified Cayley matrix

Limits to non-generic cases

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\mathcal{Y}[\cdot] \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array} \prod_{i=2}^{n+1} \mathcal{Y}_{i i}\right.
$$

- Consider limits, e.g. $m_{i}^{2}, s_{i j}^{2} \rightarrow 0$
[Klausen, '21]
- remove vanishing factors
> leading term in Tailor expansion

Limits to non-generic cases

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\mathcal{Y}[\cdot] \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array} \prod_{i=2}^{n+1} \mathcal{Y}_{i i}\right.
$$

- Consider limits, e.g. $m_{i}^{2}, s_{i j}^{2} \rightarrow 0$
[Klausen, '21]
- remove vanishing factors
> leading term in Tailor expansion
- multivariate limit for individual factors is not unique, however, limit of principle A-determinant is!

Limits to non-generic cases

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\mathcal{Y}[\cdot] \prod_{i=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i \\
i
\end{array}\right] \ldots \prod_{i_{n-1}>\ldots>i_{1}=1}^{n+1} \mathcal{Y}\left[\begin{array}{l}
i_{1} \ldots i_{n-1} \\
i_{1} \ldots i_{n-1}
\end{array} \prod_{i=2}^{n+1} \mathcal{Y}_{i i}\right.
$$

- Consider limits, e.g. $m_{i}^{2}, s_{i j}^{2} \rightarrow 0$
[Klausen, '21]
- remove vanishing factors
> leading term in Tailor expansion
- multivariate limit for individual factors is not unique, however, limit of principle A-determinant is!
- Limits match direct computation
- expect also to work for symbol alphabet
(omit vanishing factors also here)
[Abreu, Britto, Duhr, Gardi, '17] [Chen, Ma, Yang, '22]

Higher loops

- Principal A-determinant:

$$
\overline{\left\{s_{i j}, m_{i}^{2} \left\lvert\, \mathbf{V}\left(x_{0} \frac{\partial \mathcal{G}_{h}}{\partial x_{0}}, \ldots, x_{n} \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}\right) \neq \emptyset\right.\right\}} \quad \Longleftrightarrow \quad \widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=0
$$

Higher loops

- Principal A-determinant:

$$
\overline{\left\{s_{i j}, m_{i}^{2} \left\lvert\, \mathbf{V}\left(x_{0} \frac{\partial \mathcal{G}_{h}}{\partial x_{0}}, \ldots, x_{n} \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}\right) \neq \emptyset\right.\right\}} \quad \Longleftrightarrow \quad \widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=0
$$

- Prime factorization:

Higher loops

- Principal A-determinant:

$$
\overline{\left\{s_{i j}, m_{i}^{2} \left\lvert\, \mathbf{V}\left(x_{0} \frac{\partial \mathcal{G}_{h}}{\partial x_{0}}, \ldots, x_{n} \frac{\partial \mathcal{G}_{h}}{\partial x_{n}}\right) \neq \emptyset\right.\right\}} \quad \Longleftrightarrow \quad \widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=0
$$

- Prime factorization:

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\prod_{\Gamma \subseteq \operatorname{Newt}\left(\mathcal{G}_{h}\right)} \prod_{\text {A-discriminants }}^{\Delta_{A \cap \Gamma}\left(\left.\mathcal{G}_{h}\right|_{\Gamma}\right),} \begin{aligned}
& A=\operatorname{Supp}\left(\mathcal{G}_{h}\right) \\
& \text { restriction of } \mathcal{G}_{h} \text { on } \Gamma
\end{aligned}
$$

- singularities: type-I

$$
\Delta_{A \cap \operatorname{Newt}(\mathcal{F})}(\mathcal{F}),
$$

type-II
$\Delta_{A}(\mathcal{G})$,
mixed
$\Delta_{\text {A }}\left(\left.\mathcal{G}\right|_{\Gamma}\right)$,

Slashed box example

- One-mass configuration

$$
p_{1}^{2} \neq 0, \quad m_{i}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
$$

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\left(p_{1}^{2}-t\right)\left(p_{1}^{2}-s\right)\left(p_{1}^{2}-s-t\right)(s+t) s t p_{1}^{2}
$$

Slashed box example

- One-mass configuration

$$
p_{1}^{2} \neq 0, \quad m_{i}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0
$$

$$
\widetilde{E_{A}}\left(\mathcal{G}_{h}\right)=\left(p_{1}^{2}-t\right)\left(p_{1}^{2}-s\right)\left(p_{1}^{2}-s-t\right)(s+t) s t p_{1}^{2}
$$

- two-dimensional harmonic polylogarithms:

$$
\begin{aligned}
& z_{1}=\frac{s}{p_{1}^{2}}, z_{2}=\frac{t}{p_{1}^{2}}, z_{3}=1-z_{1}-z_{2} \\
& \widetilde{E_{A}}\left(\mathcal{G}_{h}\right) \propto\left(1-z_{2}\right)\left(1-z_{1}\right) z_{3}\left(1-z_{3}\right) z_{1} z_{2}
\end{aligned}
$$

Gravitational potential integrals

- One-loop is trivial

$$
\begin{aligned}
& \gamma=u_{1} \cdot u_{2}, \\
& 1=\left(\gamma-\sqrt{\gamma^{2}-1}\right)\left(\gamma+\sqrt{\gamma^{2}-1}\right)
\end{aligned}
$$

$$
\log \left(\frac{\gamma-\sqrt{\gamma^{2}-1}}{\gamma+\sqrt{\gamma^{2}-1}}\right)
$$

Gravitational potential integrals

- One-loop is trivial

$$
\begin{aligned}
& \gamma=u_{1} \cdot u_{2} \\
&=\frac{1}{2}(x+1 / x) \\
& 1=\left(\gamma-\sqrt{\gamma^{2}-1}\right)\left(\gamma+\sqrt{\gamma^{2}-1}\right) \\
&=x \times \frac{1}{x} \\
& \log \left(\frac{\gamma-\sqrt{\gamma^{2}-1}}{\gamma+\sqrt{\gamma^{2}-1}}\right)=2 \log x
\end{aligned}
$$

Waveform integrals

- Sub-topologies easy

$$
\begin{aligned}
& \log \left(\frac{w_{1}-\sqrt{w_{1}^{2}-q_{2}^{2}}}{w_{1}+\sqrt{w_{1}^{2}-q_{2}^{2}}}\right) \\
& \log \left(\frac{q_{1}^{2}-q_{2}^{2}-2 \sqrt{-q_{1}^{2}} w_{1}}{q_{1}^{2}-q_{2}^{2}+2 \sqrt{-q_{1}^{2}} w_{1}}\right), \\
& \log \left(\frac{q_{1}^{2} q_{2}^{2}-q_{2}^{4}-2 q_{1}^{2} w_{1}^{2}-2 q_{1}^{2} w_{1} \sqrt{w_{1}^{2}-q_{2}^{2}}}{q_{1}^{2} q_{2}^{2}-q_{2}^{4}-2 q_{1}^{2} w_{1}^{2}+2 q_{1}^{2} w_{1} \sqrt{w_{1}^{2}-q_{2}^{2}}}\right),
\end{aligned}
$$

- Top-topology requires further study
- non-generic mass configuration
- beyond next-to-next-to maximal cut
[Brandhuber, Brown, Chen, De Angelis, Gowdy, Travaglini, '23 /
Herderschee, Roiban, Teng, '23 /
Georgoudis, Heissenberg, Vazquez-Holm, '23,

Summary

- Construction of symbol alphabet from the principal A-determinant
- rational letters
- square-root letters through re-factorization
- One loop
- re-factorization through Jacobi identities
- verification through canonical DEs (up to ten legs)
- Unique limits
- Higher loops
- One-loop gravity

