Parton showering meets perturbative QCD

Gregory Soyez
mostly based on work within PanScales:

IPhT, CNRS, CEA Saclay

QCD Meets Gravity, CERN, December 11-15 2023
PanScales
A project to bring logarithmic understanding and accuracy to parton showers

Former members

Silvia Zanoli
Oxford

Frédéric Dreyer

Rok Medves

Scarlett Woolnough
What makes them so successful/useful?

From fundamental theory...

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi} D\psi + \cdots \]

\[= \left\langle \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle} \right\rangle \]

...to a spectrum of applications

Basic idea: getting practical numbers

Applications:
- pheno studies (“run Pythia to test a pheno idea”)
- measurements (compare data/theory)
- modelling (systematic uncertainties)
- searches (estimate backgrounds)
- AI training (e.g. supervised classification)
- ...
What makes them so successful/useful?

Benchmark feature: versatility

- ranges from “fixed-order” parton-level to realistic full-event simulations (incl. detector)
- wide range of applications
- can compute any observable, fiducial cuts, ...

Precision challenge

Precision is increasingly required for LHC physics (and future colliders)
- Get precise background estimates
- Search for tiny deviations/rare processes
- Get precise predictions and small uncertainties
- Avoid AI picking up spurious effects

This requires control over the full chain: from the amplitude to the detector
What makes them so successful/useful?

Benchmark feature: versatility
- ranges from “fixed-order” parton-level to realistic full-event simulations (incl. detector)
- wide range of applications
- can compute any observable, fiducial cuts, ...

Precision challenge

Precision is increasingly required for LHC physics (and future colliders)
- Get precise background estimates
- Search for tiny deviations/rare processes
- Get precise predictions and small uncertainties
- Avoid AI picking up spurious effects
What makes them so successful/useful?

Benchmark feature: versatility

- ranges from “fixed-order” parton-level to realistic full-event simulations (incl. detector)
- wide range of applications
- can compute any observable, fiducial cuts, ...

Precision challenge

Precision is increasingly required for LHC physics (and future colliders)

- Get precise background estimates
- Search for tiny deviations/rare processes
- Get precise predictions and small uncertainties
- Avoid AI picking up spurious effects

This requires control over the full chain: from the amplitude to the detector
Anatomy of a high-energy collision

Simulating a high-energy collision requires several ingredients

- A hard process

Parton showering meets perturbative QCD

QCD Meets Gravity 2023
Anatomy of a high-energy collision

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)
Anatomy of a high-energy collision

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)

Gregory Soyez
Anatomy of a high-energy collision

Simulating a high-energy collision requires several ingredients:

- A hard process
- Parton shower (initial and final-state)
- Hadronisation
Simulating a high-energy collision requires several ingredients:

- A hard process
- Parton shower (initial and final-state)
- Hadronisation
- Multi-parton interactions

Anatomy of a high-energy collision
Anatomy of a high-energy collision

Simulating a high-energy collision requires several ingredients

- A hard process
- Parton shower (initial and final-state)
- Hadronisation
- Multi-parton interactions

perturbatively “calculable”

non-pert. “modelled”
Basic message #2: physics at all scales

\[Q \equiv 100 \text{ GeV} \rightarrow 1 \text{ TeV} \]

\[Q \gg \mu_{NP} \]

\[\mu_{NP} \sim 1 \text{ GeV} \]

\[m_{\pi} \]

\[m_c \]

\[m_b \]

\[m_H \]

\[m_{W/Z} \]

Physics probed across many scales

Hard process, matching

Parton shower

Hadronisation

\[\alpha_s \frac{\log Q}{\mu_{NP}} \]

\[\alpha_s \log^2 \frac{Q}{\mu_{NP}} \]

\[\alpha_s \log^3 \frac{Q}{\mu_{NP}} \]

\[\alpha_s \log^4 \frac{Q}{\mu_{NP}} \]

Double, single,... logs to resum

Shower accuracy means logarithmic LL, NLL, N2LL, ...

Well-defined & systematically improvable

Gregory Soyez

Parton showering meets perturbative QCD

QCD Meets Gravity 2023
Basic message #2: physics at all scales

\[Q \equiv 100 \text{ GeV} \rightarrow 1 \text{ TeV} \]

BSM

Hard process, matching

\[\alpha_s(Q) f_1(v) + \alpha_s^2(Q) f_2(v) + \alpha_s^3(Q) f_3(v) + \ldots \]

"Standard" perturbative expansion

\[\text{LO NLO NNLO} \]

Parton shower

\[\alpha_s \log^2 Q/\mu_{NP}, \alpha_s \log Q/\mu_{NP} \]

(double, single,...) logs to resum

\[Q \gg \mu_{NP} \]

\[\mu_{NP} \sim 1 \text{ GeV} \]

\[m_{\pi} \]

Physics probed across many scales

Gregory Soyez

Parton showering meets perturbative QCD

QCD Meets Gravity 2023
Basic message #2: physics at all scales, a shower resumes logs

\[Q \equiv 100 \text{ GeV} \rightarrow 1 \text{ TeV} \]

\[Q \gg \mu_{NP} \]

\[\mu_{NP} \sim 1 \text{ GeV} \]

Parton shower

\[\text{Hard process, matching} \]

\[\text{“Standard” perturbative expansion} \]

\[\alpha_s(Q)f_1(\nu) + \alpha_s^2(Q)f_2(\nu) + \alpha_s^3(Q)f_3(\nu) + \ldots \]

LO \quad NLO \quad NNLO

expect logs between disparate scales

\[\alpha_s \log^2 Q/\mu_{NP}, \alpha_s \log Q/\mu_{NP} \]

(double, single,...) logs to resum

shower accuracy means logarithmic

LL, NLL, N^2LL, ...

well-defined & systematically improvable

Gregory Soyez

Parton showering meets perturbative QCD

QCD Meets Gravity 2023 7 / 25
Selected Collider-QCD Accuracy Milestones

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drell-Yan (γ/Z) & Higgs production at hadron colliders</td>
<td>LO</td>
<td>NLO</td>
<td>NNLO</td>
<td>N3LO</td>
<td></td>
</tr>
<tr>
<td>DGLAP splitting functions</td>
<td>LO</td>
<td>NLO</td>
<td>NNLO</td>
<td>[parts of N3LO]</td>
<td></td>
</tr>
<tr>
<td>Transverse-momentum resummation (DY&Higgs)</td>
<td>LL</td>
<td>NLL</td>
<td>NNLL</td>
<td>N3LL</td>
<td></td>
</tr>
<tr>
<td>Parton showers</td>
<td>LL</td>
<td>[parts of NLL]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-order matching of parton showers</td>
<td>LO</td>
<td>NLO</td>
<td>NNLO</td>
<td>[......]</td>
<td>[N3LO]</td>
</tr>
</tbody>
</table>

This talk: improve on this

Many of today's widely-used showers only LL@leading-colour.
An “easy” graphical representation

Lund plane(s)
Basic features of QCD radiation

Take a gluon emission from a $(q\bar{q})$ dipole

\[p_q \rightarrow \tilde{p}_q \]

Emission $(\tilde{p}_q \tilde{p}_{\bar{q}}) \rightarrow (p_q k)(k\bar{p}_{\bar{q}})$:

\[k^\mu \equiv z_q \tilde{p}_q^\mu + z_{\bar{q}} \tilde{p}_{\bar{q}}^\mu + k_\perp^\mu \]

3 degrees of freedom:

- Rapidity: \(\eta = \frac{1}{2} \log \frac{z_q}{z_{\bar{q}}} \)
- Transverse momentum: \(k_\perp \)
- Azimuth: \(\phi \)

In the soft-collinear approximation

\[
dP = \frac{\alpha_s(k_\perp) C_F}{\pi^2} d\eta \frac{dk_\perp}{k_\perp} d\phi
\]
Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and $\log k_{\perp}$

$$\eta = -\log \tan(\theta/2)$$

![Diagram showing the Lund plane with variables η, $\log k_t$, q side, \bar{q} side, $E_k \leq \frac{1}{2} m_{q\bar{q}}$]
Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and $\log k_\perp$

\[\eta = -\log \tan(\theta/2) \]

$E_k \leq \frac{1}{2} m_{q\bar{q}}$
Lund plane: natural representation uses the 2 “log” variables η and $\log k_\perp$

\[\eta = -\log \tan(\theta/2) \]

\[E_k \leq \frac{1}{2} m_{q\bar{q}} \]

- q side
- \bar{q} side
- k side
- k_\perp side
- k hard collinear
- soft & colinear
- soft (large angle)
Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and $\log k_\perp$

\[\eta = -\log \tan(\theta/2) \]

\[E_k \leq \frac{1}{2} m_{\bar{q}q} \]

\[q, \bar{q}, k, \bar{k} \]

Soft & Colinear
Hard collinear
Soft (large angle)
Basic features of QCD radiations: the Lund plane

Lund plane: natural representation uses the 2 “log” variables η and $\log k_\perp$

$$\eta = -\log \tan(\theta/2)$$

![Diagram of the Lund plane showing the regions of soft & collinear, hard collinear, and soft (large angle) radiation.](image)
Multiple emissions in the Lund plane

\[\eta = -\log \tan(\theta/2) \]

\[E_k \lesssim \frac{1}{2} m_{\bar{q}q} \]

\[\bar{q} \text{ side} \]

\[q \text{ side} \]

primary plane

secondary plane(s)

ternary plane(s)
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

$\eta = -\log \tan(\theta/2)$

Start with $k_t = Q$

one $q\bar{q}$ dipole
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

$\eta = -\log \tan(\theta/2)$

q side

\bar{q} side

Generate $k_{t1} < Q$

(using Sudakov proba)

\[E_k < \frac{1}{2} m_{q\bar{q}} \]
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

$$\eta = -\log \tan(\theta/2)$$

\bar{q} side

q side

Generate η_1

& split dipoles

$$(q\bar{q}) \rightarrow (qg_1) + (g_1\bar{q})$$

$E_k \leq \frac{1}{2} m_{q\bar{q}}$

Gregory Soyez

Parton showering meets perturbative QCD

QCD Meets Gravity 2023 13 / 25
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

$$\log k_t \quad \eta = -\log \tan(\theta/2)$$

q side \hspace{1cm} \bar{q} side

$E_k < \frac{1}{2} m_{q\bar{q}}$

Generate $k_{t2} < k_{t1}$ (now from 2 dipoles)

q side \hspace{1cm} \bar{q} side
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

\[\eta = - \log \tan(\theta/2) \]

\[\log k_t \]

q side

\bar{q} side

$E_k \leq \frac{1}{2} m_{q\bar{q}}$

Generate η_2

&split dipoles

$ (g_1 \bar{q}) \rightarrow (g_1 g_2) + (g_2 \bar{q}) $
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

$\log k_t \quad \eta = -\log \tan(\theta/2)$

\bar{q} side

q side

$E_k \leq \frac{1}{2} m_{\bar{q}q}$

Iterate
(Dipole) parton shower in the Lund plane

Ordering variable: transverse momentum k_t

\[\eta = -\log \tan(\theta/2) \]

$E_k < \frac{1}{2} m_{q\bar{q}}$

q side

\bar{q} side

$\log k_t$

until $k_t = k_{t,\text{cut}}$

$E_k \leq \frac{1}{2} m_{q\bar{q}}$

q side

\bar{q} side
Physics result #1: an organising principle:

at a given (all-order) accuracy, what physics do we need to get right?
Accuray \leftrightarrow\text{reproducing sets of MEs}

- handles disparate scales
- all-order perturbative QCD

\[\downarrow \]

minimum: get the ME for an arbitrary number of well-separated emissions

- If "log distance" \(\Delta \) emissions factorise up to \(\mathcal{O}(e^{-\Delta}) \) corrections
- this achieves NLL accuracy
 i.e. all-order NLL is like fixed-order LO
- In particular, in a parton showers, an emission should not be affected by subsequent distant emissions

\(\eta = \ln \tan \frac{\theta}{2} \)

Separation in any direction

Robust construction in pQCD
Systematically improvable
"only" a handful of ME at each order thanks to QCD factorisation

difficulty: the shower algorithm generates spurious terms one needs to avoid/correct for

Gregory Soyez Parton showering meets perturbative QCD QCD Meets Gravity 2023 15 / 25
Accuracy ↔ reproducing sets of MEs

- handles disparate scales
- all-order perturbative QCD

\[\downarrow \]

minimum: get the ME for an arbitrary number of well-separated emissions

- If “log distance” \(\Delta \) emissions factorise up to \(\mathcal{O}(e^{-\Delta}) \) corrections
- this achieves NLL accuracy
 i.e. all-order NLL is like fixed-order LO
- In particular, in a parton showers, an emission should not be affected by subsequent distant emissions

\[\ln k_t \]

(only half the primary Lund plane for simplicity)

\[\eta = \ln \tan \frac{\theta}{2} \]

mistake allowed at NLL
Accuracy ↔ reproducing sets of MEs

handles disparate scales
all-order perturbative QCD

minimum: get the ME for an arbitrary number of well-separated emissions (NLL!)

Beyond NLL

- At NNLL we also want an arbitrary number of pairs of emissions
- N^3LL also requires triplets, etc...

\[\eta = \ln \tan \frac{\theta}{2} \]

(only half the primary Lund plane for simplicity)

any # pairs required at NNLL
Accuracy ↔ reproducing sets of MEs

Handles disparate scales
All-order perturbative QCD

Minimum: get the ME for an arbitrary number of well-separated emissions (NLL!)

Beyond NLL
- At NNLL we also want an arbitrary number of pairs of emissions
- N^3LL also requires triplets, etc...

For resummation experts:
- N^kLL counts exponentiating observables: \(\Sigma(v) = e^{g_1(\alpha_s L) + g_2(\alpha_s L) + g_3(\alpha_s L)\alpha_s + \ldots} \)
- NNLL requires any number of well-separated pairs, triplets for N^3LL, ...
- N^kDL counts observable logs: \(\Sigma(v) = h_1(\alpha_s L^2) + h_2(\alpha_s L^2)\sqrt{\alpha_s} + h_3(\alpha_s L^2)\alpha_s + \ldots \)
- DL has only soft&collinear, NDL has a unique single-log,
 NNDL has a unique pair or two single-logs, etc...

Gregory Soyez
Parton showering meets perturbative QCD
QCD Meets Gravity 2023
Accuracy ↔ reproducing sets of MEs

- handles disparate scales
- all-order perturbative QCD

minimum: get the ME for an arbitrary number of well-separated emissions (NLL!)

Beyond NLL

- At NNLL we also want an arbitrary number of pairs of emissions
- N^3LL also requires triplets, etc...

For resummation experts:

- N^kLL counts exponentiating observables: $\Sigma(v) = e^{g_1(\alpha_s L) + g_2(\alpha_s L) + g_3(\alpha_s L) \alpha_s + \ldots}$
- NNLL requires any number of well-separated pairs, triplets for N^3LL, ...
- N^kDL counts observable logs: $\Sigma(v) = h_1(\alpha_s L^2) + h_2(\alpha_s L^2) \sqrt{\alpha_s} + h_3(\alpha_s L^2) \alpha_s + \ldots$
- DL has only soft&collinear, NDL has a unique single-log.
- NNDL has a unique pair or two single-logs, etc...

Robust construction in pQCD
Systematically improvable
“only” a handful of ME at each order thanks to QCD factorisation
difficulty: the shower algorithm generates spurious terms one needs to avoid/correct for
Physics result #2: NLL-accurate showers
Novel approach for testing accuracy

Resummation regime: $\alpha_s \log(v) \sim 1$, $\alpha_s \ll 1$

Idea for NLL testing:

$$\frac{\Sigma_{MC}(\lambda=\alpha_s L, \alpha_s)}{\Sigma_{NLL}(\lambda=\alpha_s L, \alpha_s)} \quad \text{v. 1}$$

with $\lambda = \alpha_s L$

NLL deviations

or

subleading effects?

Gregory Soyez
Parton showering meets perturbative QCD
QCD Meets Gravity 2023 17 / 25
Novel approach for testing accuracy

Resummation regime: $\alpha_s \log(v) \sim 1$, $\alpha_s \ll 1$

Idea for NLL testing:

$$\frac{\sum_{MC}(\lambda=\alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda=\alpha_s L, \alpha_s)} \sim 1$$

with $\lambda = \alpha_s L$

NLL deviations

or

subleading effects?
Novel approach for testing accuracy

Resummation regime: $\alpha_s \log(v) \sim 1, \alpha_s \ll 1$

Idea for NLL testing:

$$\frac{\Sigma_{MC}(\lambda=\alpha_s L, \alpha_s)}{\Sigma_{NLL}(\lambda=\alpha_s L, \alpha_s)} \text{ v. } 1$$

with $\lambda = \alpha_s L$

NLL deviations

or

subleading effects?
Novel approach for testing accuracy

Resummation regime: $\alpha_s \log(v) \sim 1$, $\alpha_s \ll 1$

Idea for NLL testing:

$$\frac{\Sigma_{MC}(\lambda=\alpha_s L, \alpha_s)}{\Sigma_{NLL}(\lambda=\alpha_s L, \alpha_s)} \xrightarrow{\alpha_s \to 0} 1$$

at fixed $\lambda = \alpha_s L$

- NLL deviations
- or
- subleading effects?
Assessing accuracy: y_{23}

NNLL if

$$\frac{\sum_{MC}(\lambda = \alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda = \alpha_s L, \alpha_s)} \xrightarrow{\alpha_s \rightarrow 0} 1$$

Failure of standard dipole showers

Pythia8, Dire(v1) deviate from NLL

Reason:

spurious recoil for commensurate-k_t
emissions at disparate angles
violates our NLL ME requirement
Assessing accuracy: y_{23}

NNLL if \[\frac{\sum_{MC}(\lambda=\alpha_s L, \alpha_s)}{\sum_{NLL}(\lambda=\alpha_s L, \alpha_s)} \xrightarrow{\alpha_s \to 0} 1 \]

Failure of standard dipole showers

- Pythia8, Dire(v1) deviate from NLL

New series of NLL-accurate showers

- PanLocal($0 < \beta < 1$): local recoil (dipole or antenna)
- PanGlobal($0 \leq \beta < 1$): global recoil

Cam. y_{23}, ratio to NLL

\[\frac{\text{MC}}{\text{NLL}}(s_0, \lambda) \]

Dipole(Py8)

Dipole(Dire v1)

PanLocal($\beta=\frac{1}{2}$, dip.)

PanLocal($\beta=\frac{1}{2}$, ant.)

PanGlobal($\beta=0$)

PanGlobal($\beta=\frac{1}{2}$)

Gregory Soyez

Parton showering meets perturbative QCD

QCD Meets Gravity 2023 18 / 25
Assessing accuracy: extensive observable list

\[\text{PanLocal}(0 < \beta < 1) \text{ and PanGlobal}(0 \leq \beta < 1) \text{ get expected NLL (i.e. 0)} \]
Physics:

\[\Delta \psi \] distribution due to spin correlations

Solution: adapt the Collins-Knowles alg.

build and update a spin correlation tree as shower progresses

\[\vec{n}_1 \vec{n}_2 \]
\[\Delta \psi_{12} \]
\[P_1 \]
\[P_2 \]
\[\vec{p}_1 \]
\[\vec{p}_2 \]
\[\vec{p}_3 \]
\[\vec{p}_4 \]
\[\vec{p}_5 \]

Tests:

both hard & collinear

also EEEC v. analytics

soft + hard collinear

first all-order result

\[\sigma_{\text{tot}} \]
\[\frac{d\sigma}{d\Delta \psi_{12}} \times 10^{-2} \] All channels

\[\mathcal{O}(\alpha_s^2) \cdot \langle S + C \rangle / \langle \mathcal{O}(\alpha_s^2) \rangle \]

No spin

Collinear spin

Soft + collinear spin

\[\gamma^* \rightarrow q \bar{q} \]

Toy shower

PanGlobal \(\beta = 0 \)

PanLocal (dip.) \(\beta = 0.5 \)

PanLocal (ant.) \(\beta = 0.5 \)

Pythia 8

Beyond large \(N_c \) (backup)

(collinear & soft) spin correlations

hadronic collisions DIS/VBF (backup)
Physics result #3: towards NNLL-accurate showers
(NNLL) accuracy ↔ reproducing (extra) sets of MEs

NNLL: include pairs of emissions

\[\eta = \ln \tan \frac{\theta}{2} \]

- Hard emission angle and \(k_t \) similar to "hard" Born
- Soft emission angle and \(k_t \) similar to earlier one (can be large angle)
NNLL: include pairs of emissions

Matching

Get exact 3-jet LO (2-jet NLO) ME
\equiv one hard emission (pair with the hard event)

Standard approaches work but require care to preserve NLL accuracy

\[\eta = \ln \tan \frac{\theta}{2} \]

NNLL: include pairs of emissions

Matching

Double-soft corrections

Two soft emissions at commensurate angles and k_t
(not necessarily collinear)

- Correction spurious shower ME \rightarrow correct ME
 watch out for flavour channels and colour flows
- Need to get the correct virtual contributions
 (done through a modified K_{CMW})

Gain: state-of-the-art (next-to-single-log) non-global logs

Beyond NLL: double-soft corrections

NSL accuracy tests: energy in a slice

no double-soft

double-soft, $n_f^{\text{real}}=0$

double-soft

Successfully reproduce next-to-single (non-global) logs for emissions in a slice
Conclusions and perspectives

Basics

Parton showers are extensively relied upon and need to be brought to high accuracy

PanScales

- Recoil issue limits standard generators to LL (and large N_c)
- Fixed in our PanScales ($\text{PanLocal}(0 < \beta < 1)$ and $\text{PanGlobal}(0 \leq \beta < 1)$) showers
- Included at NLL: subleading-N_c, spin correlations, hadron collisions
- First NNLL ingredients: (ee) 3-jet matching, double-soft corrections
- Prelim pheno effect: reduction of uncertainty at $Q \sim 100$ GeV (larger effects at $Q \sim 1$ TeV)

Future

- Beyond Drell-Yan (pp) and 3 jets (ee)
- Investigate phenomenology
- Add missing NNLL
- Provide public code
Open question

Can this have connections with “gravity”?

I am definitely not sure...

... but parton showers likely apply for weakly-coupled problems with widely separated scales.

Can that be helpful for extreme mass ratios? Is there some \(\log(\nu/c) \) enhancements?
Backup
What do Event Generators provide?

- Broad range of applications
- Searches
- Background (and signal) estimate

Example:

\[H \rightarrow ZZ \rightarrow 4\ell \]

[CMS, arXiv:1207.7235]
What do Event Generators provide?

Broad range of applications

- Searches
- Measurements

Idea: data v. MC
- allows the use of MC as modelling tool
- helps developing better MC

What do Event Generators provide?

- Broad range of applications
 - Searches
 - Measurements & modelling
- Tool to estimate uncertainties

Example:
- top mass measurement

 [ATLAS-CONF-2019-046]
What do Event Generators provide?

- Broad range of applications
- Searches
- Measurements & modelling
- Phenostudies

Long list of applications:
- New tools & observables (incl. substructure)
- Comparison to analytics
- Comparison to data
- BSM models

Graph:
- LH17 2-prong tagger
- 1/N_{truth} dN/dv
- $p_{T,jet}>2000$ GeV
- Pythia8(4C), anti-k_t(1.0)
- $65<m<105$
- W, LH17
- q/g, LH17
What do Event Generators provide?

Broad range of applications

- Searches
- Measurements & modelling
- Pheno studies
- Machine learning

- Deep Learning increasingly used at the LHC
- Training often done on MCs
- Shows interesting performance
- Example: boosted $W \rightarrow q\bar{q}$ v. QCD jet

[plot from Frederic Dreyer]
Many showers (Pythia, Sherpa, Vincia, Dire, ...) are **dipole/antenna** showers (main exception: Herwig)
Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #1:

\[(ij) \rightarrow (ik)(kj) \]

captures the soft/collinear limits

key ingredient: mapping

\[\tilde{p}_i, \tilde{p}_j \rightarrow p_i, p_j, p_k \]

before split \hspace{1cm} after split

includes recoil & energy-mom conservation
Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #2:
iterate dipole splittings (populate the full phase space with multiple emissions)

Rooted in QCD factorisation

\[P_{n+1}(v_{n+1}) = e^{-\Delta_n(v_0,v)} |M^2| (v) P_n(v_n) \]
Dipole/Antenna showers: ingredients

Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

ka_np \equiv \text{iterate dipole splittings (populate the full phase space with multiple emissions)}

Rooted in QCD factorisation

\[P_{n+1}(v_{n+1}) = e^{-\Delta_n(v_0,v)} |M^2(v)| P_n(v_n) \]

\text{Sudakov} \equiv \text{"no emissions" (virtuals)}

\text{real emission}
Many showers (Pythia, Sherpa, Vincia, Dire, ...) are dipole/antenna showers (main exception: Herwig)

Idea #2:
iterate dipole splittings (populate the full phase space with multiple emissions)

Several challenges:
- ordering variable (ν)
- beyond large/leading-N_c
- treat recoil properly
- assess/improve accuracy
Different ordering variables...

... can lead to different emission orderings

k_t (transv. mom.) ordering

q (virtuality) ordering

$k_{ta} > k_{tb}$

$\Rightarrow a$ emitted before b

$q_b > q_s$

$\Rightarrow b$ emitted before a
Recent progress (for completeness)

Lots of progress in several key directions over the past years:

- **(subleading) 1 → 3 splitting functions** (example: Dire(v2)).

 See e.g. [Jadach et al,16], [Li,Skands,16], [Höche,Krauss,Prestel,17], [Höche,Prestel,17]

- **Subleading colour**

 - most showers are leading colour (even at leading-log)
 - complex soft-gluon patterns
 - see e.g. [Nagy,Soper,12], [Gieseke,Kirchgaesser,Plätzer,Siodmock,18], [Höche,Reichelt,20], [Forshaw,Holguin,Plätzer,20]

- **Amplitude-level showers**, see e.g. [Forshaw,Holguin,Plätzer,19]

- **Electroweak showers**

 - more involved splitting kernels than in QCD
 - explicit chirality/spin dependence
 - see e.g. [Kleiss,Verheyen,20], [Bauer,Ferland,Webber,17-18], [Bauer,DeJong,Nachman,Provasoli,19]
(Cumulative) distributions can (often) be written as

\[P(\nu < e^{-L}) = \exp \left[g_1(\alpha_s L) + g_2(\alpha_s L) + g_3(\alpha_s L)\alpha_s + \ldots \right] \]

leading log(LL) next-to-leading log(NLL) NNLL

Examples:

- **Thrust** \(T = \max_{|\vec{u}|=1} \frac{\sum_i |\vec{p}_i \cdot \vec{u}|}{\sum_i |\vec{p}_i|} \)

- **Cambridge y_{23}** \((\approx \text{largest } k_t \text{ in an angular-ordered clustering}) \)

- angularities

- ...

Note: substructure techniques (e.g. Lund-plane based) can help design more observables
(Cumulative) distributions can (often) be written as

\[P(\nu < e^{-L}) = \exp \left[g_1(\alpha_s L)L + g_2(\alpha_s L) + g_3(\alpha_s L)\alpha_s + \ldots \right] \]

in resummation regime:

\[\alpha_s \ll 1, \quad L \gg 1, \quad \lambda \equiv \alpha_s L \sim 1 \]

We should control at least \(\mathcal{O}(1) \) contributions
Lund-plane representation: transverse recoil boundaries

\[\eta = -\log \tan(\theta/2) \]

- Gluon \(a \) radiated at scale \(k_{ta} \) and angle \(\theta_a \)
- Gluon \(b \) radiated at scale \(k_{tb} \leq k_{ta} \)

Expected

\(a \) takes recoil iff \(\theta_{ab} < \theta_a \)
Lund-plane representation: transverse recoil boundaries

\[\eta = -\log \tan(\theta/2) \]

- gluon \(a \) radiated at scale \(k_{ta} \) and angle \(\theta_a \)
- gluon \(b \) radiated at scale \(k_{tb} \leq k_{ta} \)

Expected

\(a \) takes recoil iff \(\theta_{ab} < \theta_a \)

standard dipole shower
e.g. Pythia8/Dire

\[E_k < \frac{1}{2} m \bar{q} \]

\(\bar{q} \) recoils

\(q \) recoils

\(g \) recoils

\(g \) recoils

decided in dipole frame:
\(a \) takes recoil if
\[\theta_{bg}^{(dip)} < \theta_{bq}^{(dip)} \]

WRONG!
Lund-plane representation: transverse recoil boundaries

\[\eta = -\log \tan(\theta/2) \]

\[E_k \leq \frac{1}{2} m \bar{q} q \]

- Gluon \(a \) radiated at scale \(k_{ta} \) and angle \(\theta_a \)
- Gluon \(b \) radiated at scale \(k_{tb} \leq k_{ta} \)

Expected

- \(a \) takes recoil iff \(\theta_{ab} < \theta_a \)

PanLocal (step 1)

- Decided in event frame:
 - \(a \) takes recoil if \(\theta_{bg} < \theta_{bq} \)
 - Better but still wrong!
Lund-plane representation: PanLocal evolution variable

\[\eta = - \log \tan(\theta/2) \]

\[k_t \text{ ordering} \]

\[k_{tb} \text{ recoil from } q: \text{ OK} \]

\[E_k \leq \frac{1}{2} m_{q\bar{q}} \]
Lund-plane representation: PanLocal evolution variable

\[\eta = -\log \tan(\theta/2) \]

- \(\log k_t \)
- \(q \) side
- \(\bar{q} \) side

- \(k_t \) ordering
- \(k_{tb} \) recoil from \(a \): not OK

Gregory Soyez
Parton showering meets perturbative QCD
QCD Meets Gravity 2023 7 / 20
Lund-plane representation: PanLocal evolution variable

\[\eta = -\log \tan(\theta/2) \]

\[v \propto k_t e^{-\beta|\eta|} \]

ordering \(k_{tb} \) recoil from \(q \): OK

commensurate \(k_t \) emissions generated from central to forward rapidities

\[\Rightarrow \text{no recoil issue} \]
Kinematic map

(just to give an idea of what it takes)

\[p_k = a_k \vec{p}_i + b_k \vec{p}_j + k_\perp \]
\[p_i = a_i \vec{p}_i + b_i \vec{p}_j - f k_\perp \]
\[p_j = a_j \vec{p}_i + b_j \vec{p}_j - (1-f)k_\perp \]

with (PanLocal(\(\beta\)), variables \(\nu\) and \(\tilde{\eta}\))

\[|k_\perp| = \rho \nu e^{\beta |\tilde{\eta}|} \quad \rho = \left(\frac{2\vec{p}_i \cdot Q \vec{p}_j \cdot Q}{Q^2 \vec{p}_i \cdot \vec{p}_j} \right)^{\beta/2} \]
\[a_k = \sqrt{\frac{\vec{p}_j \cdot Q}{2\vec{p}_j \cdot Q \vec{p}_i \cdot \vec{p}_j}} |k_\perp| e^{+\tilde{\eta}}, \]
\[b_k = \sqrt{\frac{\vec{p}_i \cdot Q}{2\vec{p}_j \cdot Q \vec{p}_i \cdot \vec{p}_j}} |k_\perp| e^{-\tilde{\eta}}, \]

\(f \approx \Theta(\tilde{\eta})\) and E-mom conservation

\(f\) decides where to put recoil
- \(f \to 1\) when \(k \to i\)
- \(f \to 0\) when \(k \to j\)

Where to put the transition?
- Pythia8/Dire: equal angles in dipole rest frame
- PanLocal: equal angles in event frame
A last example

- Look at angle $\Delta \psi_{12}$ between two hardest “emissions” in jet
 (defined through Lund declusterings)
A last example

- Look at angle $\Delta \psi_{12}$ between two hardest “emissions” in jet (defined through Lund declusterings)
- quite large NLL deviations in current dipole showers
- differences between quark and gluon jets

![Graph showing $\Delta \psi_{12}$ and various curves for different NLL, Dire(v1), quark, and Dire(v1), gluon. The x-axis represents $|\Delta \psi_{12}|$ ranging from $\pi/4$ to π, and the y-axis represents $\Sigma_{MC}/\Sigma_{NLL}(\Delta \psi_{12}, k_{t2}/k_{t1})$. The graph highlights the NLL, Dire(v1), quark, and Dire(v1), gluon curves with specific conditions: $-0.6 < \alpha_s \log \frac{k_{t1}}{Q} < -0.5$ and $0.3 < k_{t2}/k_{t1} < 0.5$. The graph also indicates that the differences between quark and gluon jets are significant.]
A last example

- Look at angle $\Delta \psi_{12}$ between two hardest “emissions” in jet (defined through Lund declusterings)
- Quite large NLL deviations in current dipole showers
- Differences between quark and gluon jets
- PanScales showers (here PanGlobal) get the correct NLL

![Graph showing $\Delta \psi_{12}$ vs. $|\Delta \psi_{12}|$ with NLL, Dire(v1), quark, Dire(v1), gluon, and PanGlobal lines]
A last example

- Look at angle $\Delta \psi_{12}$ between two hardest “emissions” in jet (defined through Lund declusterings)

- quite large NLL deviations in current dipole showers

- differences between quark and gluon jets

- PanScales showers (here PanGlobal) get the correct NLL

- ML could “wrongly/correctly” learn this
Beyond large N_c

Physics:

Keep track of the $C_F - C_A/2$ transitions

First generate assuming $C_A(/2)$, then correct in one of 2 ways:

1. segment
 - factor $2C_F/C_A$ if in quark segment
 - OK in the angular-ordered limit

2. NODS
 - (soft) $q\bar{q}g$ matrix-element correction
 - also OK for 2 emissions at \sim angles

Fixed-order tests:

as in pythia

WRONG
similar to recoi earlier

perform as expected
Beyond large N_c

Physics:

Keep track of the $C_F - C_A/2$ transitions

First generate assuming $C_A(/2)$, then correct in one of 2 ways:

1. **segment**
 - factor $2C_F/C_A$ if in quark segment
 - OK in the angular-ordered limit

2. **NODS**
 - (soft) $q\bar{q}g$ matrix-element correction
 - also OK for 2 emissions at \sim angles

All-order tests:

- **LL accuracy tests** - CFFE method

- **NLL accuracy tests** - NODS method

Non-global logs: large-N_c + (full-N_c at $O(\alpha_s^2)$)
(Collinear) spin correlations

Physics:

\[\Delta \psi \] distribution due to spin correlations

Solution: adapt the Collins-Knowles alg.

build and update a spin correlation tree as shower progresses

Tests:

both hard & collinear

also EEEC v. analytics

soft + hard collinear

first all-order result

\[\sigma_{\text{tot}} \] vs. \(\Delta \psi \)

- Toy shower
- PanGlobal \(\beta = 0 \)
- PanLocal (dip.) \(\beta = 0.5 \)
- PanLocal (ant.) \(\beta = 0.5 \)
- Pythia 8
Hadronic collisions

Physics:

- hadron collision \(\Rightarrow \) initial-state radiation
- Consider Drell-Yan
- existing showers have the same recoil issue as for final state
 earlier emission takes recoil instead of the \(Z \)
- fix is essentially the same (modulo kinematic differences)
- includes colour and spin
- so far limited to colour singlet production

Tests:

- explicit test of DGLAP
- usual tests: \(Z \)-boson \(p_T \), event shapes
 + multiplicity, non-globals, beyond large-\(N_c \), spin

Gregory Soyez
Parton showering meets perturbative QCD
QCD Meets Gravity 2023 12 / 20
Matching within PanScales

Matching = exact fixed-order generator + parton shower resumming logs

Physics

Focus on e^+e^- collisions. We want

✓ exact $q\bar{q}g (\mathcal{O}(\alpha_s))$ distributions
✓ maintain NLL accuracy

Benefit: “NNDL” accuracy for event shapes

$$\Sigma(L) = h_1(\alpha_sL^2) + \sqrt{\alpha_s}h_2(\alpha_sL^2) + \alpha_s h_3(\alpha_sL^2) + \ldots$$

Implementation

Several possibilities:

- **simple multiplicative** matching (accept first emission with probability $P_{\text{exact}}/P_{\text{shower}}$)
- **MC@NLO-like** matching
- **POWHEG-like** matching (with β scaling and careful veto to avoid double-counting when switching from POWHEG to the shower)

(*) Note: N^kLL expands $\ln \Sigma(\alpha_sL, \alpha_s)$ for “exponentiating” observables; N^kDL directly expands $\Sigma(\alpha_sL^2, \alpha_s)$

alternative viewpoint: NLL requires an arbitrary number of single-logs (α_sL^n); NDL requires only one ($\alpha_sL(\alpha_sL^2)^n$)
Accuracy tests

\[SD_z > 0.25, \beta_{SD} = 0 \ln k_t / Q, \sqrt{s} = 2 \text{ TeV} \]

- no matching
- wrong matching (no veto)
- correct matching

- visible effect at large \(k_t \) (right)
- spurious effect if not careful
- “correct” matching OK everywhere

\[\lim_{s \to 0} \frac{\Sigma_{PS} - \Sigma_{NNDL}}{\Sigma_{NNDL}} \]

\[\gamma^* \rightarrow q\bar{q}, \alpha_s \Lambda^2 = 1.296 \text{ (no matching)} \]

- PanLocal (\(\beta_{PS} = \frac{1}{2}, \text{dip.} \))
- PanLocal (\(\beta_{PS} = \frac{1}{2}, \text{ant.} \))
- PanGlobal (\(\beta_{PS} = 0 \))
- PanGlobal (\(\beta_{PS} = \frac{1}{2} \))

Gregory Soyez
Parton showering meets perturbative QCD
QCD Meets Gravity 2023 14 / 20
Accuracy tests

- no matching ⇒ wrong NNDEL
- with matching ⇒ OK at NNDEL

visible effect at large \(k_t \) (right)
spurious effect if not careful
“correct” matching OK everywhere
Correct reproduction of the double-soft matrix elements
Extra double-soft results: multiplicity, δK

NNDL accuracy tests: Lund multiplicity

- **No double-soft**
 - $C_A = 2, C_F = \frac{3}{2}$
 - N_{PS}, N_{NDL}

- **With double-soft**
 - $C_A = 2, C_F = 3$
 - $n_f = 5$

Reproduces NNDL multiplicity

Energy in a slice: $PG_{\beta = \frac{1}{2}}$

- No double-soft
- Double-soft (only real)
- Double-soft (real + δK)

Requires the correct K_{CMW} prescription
Extra double-soft results: multiplicity, δK

No large shift of central value but large reduction of the uncertainty estimates
Uncertainties:

- renormalisation scale variation:
 for NLL-accurate showers include compensation term to maintain 2-loop running for soft emissions
- factorisation scale variations (note: use of toy PDFs)
- term associated with lack of matching for $k_t \sim M_Z$
- for LL showers: a term associated with spurious recoil for commensurate k_t's

Observations: Differences are relatively small except

- at very small k_t for dipole-k_t (esp. w global recoil)
- NLL brings significant uncertainty reduction
Example #2: $\Delta \psi_{12}$

Drell-Yan, $M_Z = 91.1876$ GeV

- Dipole-k_t with global recoil (LL) quite off
- All others [local dipole-k_t(LL) and PanScales(NLL)] similar

PanGlobal($\beta_P = 0$) [NLL]
PanGlobal($\beta_P = 0.5$) [NLL]
PanLocal($\beta_P = 0.5$, dip.) [NLL]
PanLocal($\beta_P = 0.5$, ant.) [NLL]
Dipole-k_t(global) [LL]
Dipole-k_t(local) [LL]

PanScales [NLL]

Parton showering meets perturbative QCD
QCD Meets Gravity 2023

Gregory Soyez
Example #2: \(\Delta \psi_{12} \)

Drell-Yan, \(M_Z = 91.1876 \) GeV

- Dipole-\(k_t \) with global recoil (LL) quite off
- All others [local dipole-\(k_t \) (LL) and PanScales (NLL)] similar

Drell-Yan, \(M_{Z'} = 500 \) GeV

- At higher scale: dipole-\(k_t \) (LL) \(\neq \) PanScales (NLL)
- DANGER: false sense of control from lower-energy info!
Details:
- PanLocal($\beta = 1/2$) dipole shower
- heavy quarks (preliminary, $m_c = 1.5$ GeV, $m_b = 4.8$ GeV)
- multiplicative matching
- extra $A_3 (\alpha_s \equiv \alpha_s^{(CMW)} + A_3 \alpha_s^3)$
- interfaced as a Pythia8 plugin
- hadronisation from Pythia8 (Vincia tune)

Observations:
- Promising start
- further tuning needed
- 4-jet matching would greatly help
- what about NNLL?