The gravitational eikonal and the NLO scattering waveform

QCD Meets Gravity 2023

Rodolfo Russo
14 December 2023

Queen Mary University of London
Based on:

2312.07452: NLO scattering waveform
in collaboration with:
Alessandro Georgoudis, Carlo Heissenberg

2306.16488: report on the gravitational eikonal
in collaboration with:
Paolo Di Vecchia, Carlo Heissenberg, Gabriele Veneziano
Amplitudes based techniques have revived the PM approach to the gravitational 2-body problem. Many new results for the impulse, total radiated (angular) momentum also in presence of spin, tidal . . .

However a systematic analysis of the scattering NLO PM waveform was started only recently . . . and for good reasons! See Mathieu’s and Fei’s talks

(i) One needs the $2 \rightarrow 3$ 1-loop amplitude which is very complicated

 Brandhuber . . . 2303.06111, Herderschee . . . 2303.06112, Elkhidir . . . 2303.06211, Georgoudis . . . 2303.07006

(ii) The subtractions needed to isolate the classical part are subtler

 Caron-Huot . . . 2308.02125

(iii) The waveform depends heavily on the choice of frame

The aim of this talk is to clarify (ii)-(iii) above for the NLO waveform

As usual, the comparison with PN results is crucial both at the technical and at the conceptual level
The setup

Consider two “elementary” objects interacting gravitationally. What is the final state if they scatter with an initial relative Lorentz factor $\sigma = -\frac{p_1 p_2}{m_1 m_2}$ and a large impact parameter b_J?

We expect the following qualitative picture

Some key classical quantities:

The centre-of-mass energy $E^2 = s = -(p_1 + p_2)^2 = (m_1^2 + m_2^2 + 2m_1 m_2 \sigma)$.

The angular momentum $J = p b_J$, $p = |\vec{p}_1|$, $Ep = m_1 m_2 \sqrt{\sigma^2 - 1}$

The impulse $Q_1^{\mu} = p_1^{\mu} + p_4^{\mu}$, $Q_2^{\mu} = p_2^{\mu} + p_3^{\mu}$.
The impulse: eikonal approach

Calculate the $2 \rightarrow 2$ scattering amplitude $A(E, q^2)$ focusing on the non-analytic terms as $q \rightarrow 0$ ($q \sim \hbar/b$ is the typical momentum carried by a single graviton exchanged between m_1 and m_2). In pictures

A spacetime picture of the scattering

Diagrammatic picture

The relation between b_e and Q follows from a stationary phase argument

$$S(s, Q^2) = 4E p \int d^{D-2} b_e e^{- \frac{i}{\hbar} bQ + 2i \delta(s,b_e)} \Rightarrow Q_\mu = \hbar \frac{\partial 2 \delta}{\partial b_e^\mu}, \quad |Q| = 2p \sin \left(\frac{\Theta}{2}\right)$$
In the KMOC approach, instead of deriving a classical evolution operator, one calculates diagrammatically directly expectation values, such as

$$\langle \text{in} | S^\dagger Q^\mu S | \text{in} \rangle \Rightarrow \text{the leading term is automatically classical}$$

By using $S = 1 + iT$, and $-i(T - T^\dagger) = T^\dagger T$, the imaginary terms is

$$Q^\mu_{2PM} = i \mathcal{F}T_q \left[q^\mu \text{Re} \mathcal{A}_1^{(4) [-1]} + i s^\mu \right]$$

Real, classical part of the 1-loop amplitude

$$s^\mu = \int \left(\frac{1}{2} (p_4^\mu - p_1^\mu) - (\ell^\mu - p_1^\mu) \right) \mathcal{A}_0^{(4)}(p_1, p_2; \ell) \mathcal{A}_0^{(4)*}(p_3, p_4; q - \ell) dL(\ell)$$

Real, classical tree-level amplitude

However a classical contribution from s^μ survives! Performing the same $\mathcal{F}T_q$ as before one get an apparently different result for the impulse
Choice of frame (baby version)

The eikonal and the KMOC results agree if interpreted in different frames

\[
Q_\mu = - \frac{b_\mu^e}{b_e} \left(\frac{2Gm_1m_2 (2\sigma^2 - 1)}{b_e \sqrt{\sigma^2 - 1}} + \frac{3\pi G^2 m_1 m_2 (m_1 + m_2) (5\sigma^2 - 1)}{4b_e^2 \sqrt{\sigma^2 - 1}} \right) + O(G^3)
\]

\[
Q_\mu = - \frac{b_\mu^J}{b_J} \left(\frac{Q_{1PM} + O(G^3)}{b_J \sqrt{\sigma^2 - 1}} + \frac{Q_{2PM} + O(G^3)}{b_J \sqrt{\sigma^2 - 1}} + \Re A_1 \right) + \frac{(\vec{p}_1)^\mu}{p} \frac{Q_{1PM}^2}{2p} + O(G^3)
\]

This is due to a different way of extracting the classical terms. It is convenient to introduce the operator

\[
\bar{\partial} = - \frac{b_\alpha^J}{b_J} \left(\frac{1}{2m_1} \frac{\partial}{\partial v_1^\alpha} - \frac{1}{2m_2} \frac{\partial}{\partial v_2^\alpha} \right) - b_J \left(\frac{\tilde{v}_1^\alpha}{2m_1} - \frac{\tilde{v}_2^\alpha}{2m_2} \right) \frac{\partial}{\partial b_\alpha^J}
\]

\[
p_1^\mu = -m_1 v_1^\mu, \quad p_2^\mu = -m_2 v_2^\mu, \quad \tilde{v}_1^\mu = \frac{\sigma v_2^\mu - v_1^\mu}{\sigma^2 - 1}, \quad \tilde{v}_2^\mu = \frac{\sigma v_1^\mu - v_2^\mu}{\sigma^2 - 1}
\]

so we have \(s^\mu = (Q_{1PM} \bar{\partial}) Q_\mu \). Note that \(\bar{\partial}(p_1 b_J) = \bar{\partial}(p_2 b_J) = 0 \).
Derivation

A sketch of an instructive derivation

\[\tilde{s}^{\mu} = \text{FT}_q \left[\int \left(\frac{1}{2} q^\mu - \ell^\mu \right) A_0^{(4)}(p_1, p_2; \ell) A_0^{(4)*}(p_3, p_4; q - \ell) dL(\ell) \right] \]

It is convenient to use \(\bar{p}_1^{\mu} = \frac{p_4^{\mu} - p_1^{\mu}}{2} = -p_1^{\mu} + \frac{q^{\mu}}{2} \), \(\bar{p}_2^{\mu} = \frac{p_3^{\mu} - p_2^{\mu}}{2} = -p_2^{\mu} - \frac{q^{\mu}}{2} \)

We have \(A_0^{(4)[-2]}(\bar{p}_1, \bar{p}_2; q) + 0A_0^{(4)[-1]} \) so we can focus in \(dL(\ell) \)

\[\delta(2\bar{p}_1 \cdot \ell + \ell \cdot (\ell - q)) \delta(2\bar{p}_2 \cdot \ell - \ell \cdot (\ell - q)) = \delta(2\bar{p}_1 \cdot \ell) \delta(2\bar{p}_2 \cdot \ell) + \ell \cdot (\ell - q) \left(\delta'(2\bar{p}_1 \cdot \ell) \delta(2\bar{p}_2 \cdot \ell) - \delta(2\bar{p}_1 \cdot \ell) \delta'(2\bar{p}_2 \cdot \ell) \right) + \cdots \]

By using the relation below, one can integrate by parts and the derivatives act only on \(\ell^\mu \)

\[\delta'(2p_1 \cdot \ell) = \frac{\tilde{v}_1^{\rho}}{2m_1} \frac{\partial}{\partial \ell^\rho} \delta(2p_1 \cdot \ell), \quad \delta'(2p_2 \cdot \ell) = \frac{\tilde{v}_2^{\rho}}{2m_2} \frac{\partial}{\partial \ell^\rho} \delta(2p_2 \cdot \ell) \]

The Fourier transform is factorised!

We obtain the extra term on the previous page without the need of evaluating explicitly the 1-loop integral and directly in impact parameter space! (So we don’t need to worry about local terms)
The classical 5-point 1-loop amplitude (in pictures)

The first ingredient is the $2 \rightarrow 3$ 1-loop amplitude

Brandhuber...2303.06111, Herderschee...2303.06112, Elkhidir...2303.06211, Georgoudis...2303.07006

$$A_{1}^{\mu \nu} = B_{1}^{\mu \nu} + \frac{i}{2}(s_{\mu \nu} + s'_{\mu \nu}) + \frac{i}{2}(c_{1}^{\mu \nu} + c_{2}^{\mu \nu})$$

$s = \ldots$, $s' = \ldots$

Real, “irreducible” part of $A_{1}^{\mu \nu}$

$c_{1} = \ldots$, $c_{2} = \ldots$

In the classical limit up to quantum corrections

$$\frac{i}{2}(s_{\mu \nu} + s'_{\mu \nu}) \sim i s^{[-2]_{\mu \nu}} + 0 \mathcal{O}([-1]) , \quad \frac{i}{2} c_{1,2}^{\mu \nu} \sim \frac{i}{2} c_{1,2}^{[-1]_{\mu \nu}} , \quad B_{1}^{\mu \nu} \sim B_{1}^{[-1]_{\mu \nu}}$$

$$A_{1}^{\mu \nu} \sim i s^{[-2]_{\mu \nu}} + \left[B_{1}^{[-1]_{\mu \nu}} + \frac{i}{2} (c_{1}^{[-1]_{\mu \nu}} + c_{2}^{[-1]_{\mu \nu}}) \right]$$

It is tempting to interpret $\mathcal{F} \mathcal{T}_q[\ldots]$ and the waveform, but this is not fully correct ... See Mathieu’s talk
The NLO waveform: general considerations

The waveform is obtained from the expectation value of the metric fluctuation $h_{\mu\nu} = g_{\mu\nu} - \eta_{\mu\nu}$ in the final state: $\langle \text{in} | S^{\dagger} h_{\mu\nu} S | \text{in} \rangle$

$$h_{\mu\nu}(x) \sim \frac{4G}{r} \int_0^\infty e^{-i\omega U} \frac{\tilde{W}_{\mu\nu}(\omega n)}{\sqrt{8\pi G}} \frac{d\omega}{2\pi} + (\text{c.c.})$$

$$\langle \text{in} | S^{\dagger} a_{\mu\nu}(k) S | \text{in} \rangle = i \text{FT}[W_{\mu\nu}(k)] \equiv i\tilde{W}_{\mu\nu}$$

The new contribution $i s_{-1}^{\mu\nu} = \frac{i}{2} (s^{\mu\nu} - s_{-1}^{\mu\nu})$ can be calculated by following the same steps discussed for $s^{\mu\nu}$

The effect of the $s_{-1}^{\mu\nu}$ cut is to implement a change of frame (up to $O(G^3)$) a rotation and a U shift.

We can write the result for $i s_{-1}^{\mu\nu}$ in terms of the operator $Q_{1PM} \tilde{\delta}$
The NLO waveform: limits

The NLO waveform is the classical part of $A_1^{\mu\nu}$ in the (\vec{p}_1, b_e) frame. This is what is obtained directly in the eikonal approach!

From now on we work in the “eikonal” frame.

We choose the (retarded) time origin U_0 to absorb the IR div. part and make the finite part as “simple” as possible . . . however the expressions are still very complicated! Let’s try some limits:

- The PN limit $\sigma = \sqrt{1 + p_\infty^2}$, $p_\infty \ll 1$, $u_{KT} = \frac{\omega b}{p_\infty}$ fixed. Too difficult for us now; Bini . . . 2309.14925
- Soft limit $u_{KT} \ll 1$

\[\tilde{W} = \tilde{W}[\omega^{-1}] + \tilde{W}[\log \omega] + \tilde{W}[\omega^0] + \tilde{W}[\omega(\log \omega)^2] + \tilde{W}[\omega \log \omega] + \cdots \]

We derived the highlighted terms from the NLO waveform. The universal ones match expectations from soft theorems.

Weinberg 1964-65, Laddha . . . 1806.01872, Sahoo . . . 2105.08739
Puzzles in the small velocity limit

Let us focus on the term $\tilde{W}[\omega \log \omega]$. I’ll not discuss/write it explicitly.

see Fei’s talk or 2312.07452

This term is basically determined by the “Compton” cuts

$$
\tilde{W}_1[\omega \log \omega] = \tilde{B}_{1O}[\omega \log \omega] \quad \text{and} \quad \tilde{B}_{1O}[\omega \log \omega] = \left[1 - \frac{\sigma(\sigma^2 - \frac{3}{2})}{(\sigma^2 - 1)^{3/2}} \right] \pi G E \omega \tilde{W}_0[\log \omega]$$

Recall that the waveform is a tensor. I’ll use the parametrisation

$$
k^\mu = \omega n^\mu = \omega (1, \sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \quad \text{,} \quad \tilde{W}(\omega, \theta, \phi) = \varepsilon^i \varepsilon^j \tilde{W}_{ij}(\omega n)$$

It is interesting to compare $\tilde{W}_1[\omega \log \omega](\omega, \theta, \phi)$ at small velocities with what has been obtained in the PN (MPM) approach

The surprise is that there are mismatches at 2.5PN order ($O(G^3/c^5)$) between the amplitudes and PN-MPM results for this non-universal term
The MPM approach (a sketchy/imprecise review)

To understand the situation let me attempt a 1-slide summary of the PN-MPM approach

Very challenging: 40 years of activity and many, many results! Blanchet 1310.1528

At low velocities we can expand the radiative field in $SO(3)$ multipoles

$$\frac{\tilde{W}_{ij}(\omega n)}{\kappa} = \sum_{\ell=2}^{\infty} \frac{1}{\ell!} n^{i_1} \cdots n^{i_{\ell-2}} U_{i_1i_2 \cdots i_{\ell-2}} - \frac{\ell}{\ell + 1} n^k n^{i_1} \cdots n^{i_{\ell-2}} \left(\epsilon_{khi} V_{jhi1 \cdots i_{\ell-2}} + i \leftrightarrow j \right)$$

$U_{i_1 \cdots i_{k+2}}$ is $O\left(\frac{1}{c^k}\right)$ ($V_{i_1 \cdots i_{k+2}}$ is $O\left(\frac{1}{c^{k+1}}\right)$) relative to the leading term in U_{ij}

$$M_{ij}, S_{ij}, \ldots$$

$I_{ij}, J_{ij}, (W, \ldots), \ldots$

Intermediate zone

$M_{ij} = I_{ij} + \frac{4G}{c^5} [W^{(2)} I_{ij} \ldots]$ Non-linear redefinition at order $1/c^5$

$U_{ij} = M_{ij}^{(2)} + \frac{G}{c^3} \left[-\frac{2}{7} M_{ij}^{(3)} M_{ij}^{(2)} \ldots \right]$ as done in Bini \ldots 2309.14925

Radiative zone

Near-zone

The near field is derived from the source motion example: $I_{ij} \sim x(i x_j)$

It is clearly interesting to get to $O(1/c^5)$
The self-force limit

Beside the non-linear definition there are other half-PN effects. The one important for us is the tail terms: $U_{ij} = U_{ij}^{\text{inst}} + U_{ij}^{\text{tail}} + \ldots$

$$U_{\text{tail}}^L(U) = 2GE \frac{c^3}{L} \int_0^{+\infty} d\tau M_{L}(\ell+2)(U - \tau) \left[\ln \left(\frac{\tau}{2b_0} \right) + \kappa_\ell \right], \quad \kappa_\ell = \frac{2\ell^2 + 5\ell + 4}{\ell(\ell + 1)(\ell + 2)} + \sum_{k=1}^{\ell-2} \frac{1}{k}$$

Tail contribution to the ℓ-order multiple: time domain

"Harmonic" numbers

In the leading "self-force" limit, these are the only half-PN corrections

The leading order of \tilde{W} is $O(\nu)$

$$\nu = \frac{m_1m_2}{m^2}, \quad m = m_1 + m_2, \quad \Delta = \frac{m_1 - m_2}{m}$$

A non-trivial part of the 1-loop 5-point amplitude follows from black-hole perturbation theory (and so is $\sim \tilde{W}_0^{\mu\nu}$)

See for instance, Fucito, Morales 2311.14637

In the spirit of the talks by Nabha's and Jordan's talks on Monday
Comparison at $\mathcal{O}(\nu)$

We have

$$\tilde{W}_1[\omega \log \omega] = B_{1O}[\omega \log \omega] + \tilde{W}_C[\omega \log \omega] + 2iGE \log \tilde{b}_0 \omega \tilde{W}_0[\log \omega], \quad \log(2b_0) = \log \tilde{b}_0 + \gamma$$

$$\tilde{W}_C[\omega \log \omega],\text{MPM}$$

$$= -\frac{1}{24} p_\infty iG^2 m^3 \nu (35(\cos(2\theta) + 3) \cos(2\phi) + 140i \cos(\theta) \sin(2\phi) + 22 \sin^2(\theta))$$

$$+ \frac{1}{60} G^2 m^3 \Delta \nu \sin(\theta)(\cos(\phi) + i \cos(\theta) \sin(\phi))(\cos(\theta)(307 \cos(2\phi) - 67) + 614i \sin(\phi) \cos(\phi))$$

$$+ \frac{1}{120} p_\infty iG^2 m^3 \nu \left[(79 \cos(2\theta) + 57 \cos(4\theta) + 420) \cos(2\phi)
ight.$$

$$
+ 2 \sin^2(\theta) \left(51(\cos(2\theta) + 3) \cos(4\phi) + 204i \cos(\theta) \sin(4\phi) + 63 \cos(2\theta) + 400 \right)$$

$$
+ 4i \cos(\theta)(42 \cos(2\theta) + 97) \sin(2\phi) \right] + \mathcal{O}(p_\infty^2) + \text{(quadratic in } \nu).$$

It matches the amplitudes based result if the the IR cutoffs are related by

$$\log \mu_{IR} = -\ln \tilde{b}_0 + \frac{1}{2}$$

and $U \mapsto U + 2Gmp_\infty^2$ (matching the time origin)!

Comment: in this check the “harmonic” numbers κ_ℓ up $\ell = 4$ are used, but the analogue terms in the V_ℓ are washed away by the soft limit
Comparison at $\mathcal{O}(\nu^2)$

At order ν^2 the result don’t seem to match . . .

\[
\frac{\tilde{W}_C^{[\omega \log \omega], \text{MPM}}}{\kappa \omega \log \omega} = \text{(linear in } \nu) \\
- \frac{1}{160} i G^2 m^3 \left[842 i \sin(2\theta) \sin(\theta) \sin(4\phi) + (102 \cos(2\theta) + 241 \cos(4\theta) + 1025) \cos(2\phi) \\
+ \sin^2(\theta)(421 \cos(2\theta) + 3) \cos(4\phi) + 543 \cos(2\theta) + 705) \\
+ 4i \cos(\theta)(181 \cos(2\theta) + 161) \sin(2\phi) \right] + \mathcal{O}(p_\infty^2). \\
\]

\[
\frac{\tilde{W}_C^{[\omega \log \omega]}}{\kappa \omega \log \omega} = \text{(linear in } \nu) \\
+ \frac{G^2 m^3 \nu^2}{160} p_\infty \left[822 \sin(2\theta) \sin(\theta) \sin(4\phi) - i(142 \cos(2\theta) + 231(\cos(4\theta) + 5)) \cos(2\phi) \\
- i \sin^2(\theta)(\cos(2\theta)(411 \cos(4\phi) + 513) + 1233 \cos(4\phi) + 775) \\
+ 4 \cos(\theta)(171 \cos(2\theta) + 211) \sin(2\phi) \right] + \mathcal{O}(p_\infty^2). \\
\]

However, the $\mathcal{O}(\nu^2)$ mismatch is not that bad . . . but what does it mean?

\[
\frac{\tilde{W}_C^{[\omega \log \omega]} - \tilde{W}_C^{[\omega \log \omega], \text{MPM}}}{\kappa \omega \log \omega} \equiv \text{mis}_{\nu^2} 1/c^5 \\
= -i G^2 m^3 \nu^2 p_\infty \left(\sin^2(\theta) \sin^2(\phi) + 1 \right) \left(\cos(\phi) + i \cos(\theta) \sin(\phi) \right)^2 + \mathcal{O}(p_\infty^2). \\
\]
The role of the BMS frame

The non-linear terms contribute at $\mathcal{O}(G^2, \nu^2)$ thanks to the static part of the near-zone multipoles ($I_{ij}^{(2)} \sim p_ip_j$ with no G!)

$$G(M_a^{(3)} M_j^{(2)}) \sim G^2 \text{ since } M_{ij}^{(2)} \sim I_{ij}^{(2)} \sim G^0 \text{ and } M_{ij}^{(3)} \sim I_{ij}^{(3)} \sim G^1$$

But the static part of the waveform depends on the choice of BMS frame.

So the time-dependent part of \tilde{W}^{MPM}_1 depends on the BMS frame!

The BMS choice already played a role in the comparison between MPM and amplitudes results for the static angular momentum

Following that discussion a natural guess is that the (current) amplitude result is in the “canonical” frame, while we know that the MPM is in the “intrinsic” frame. The two are related by the same $\mathcal{O}(G)$ supertranslation

$$\alpha_i \text{ are simple } \theta\text{-dependent quantities, see } 2312.07452$$

$$U \rightarrow U - T(n), \quad T(n) = 2G(m_1 \alpha_1 \log \alpha_1 + m_2 \alpha_2 \log \alpha_2)$$

$$\delta_T h_{AB} = -T(n) \partial_u h_{AB} + r [2D_A D_B - \gamma_{AB} \Delta] T(n)$$

One can check that

$$mis_{\nu^2} = i\omega T(n) \tilde{W}^{[\log \omega]}_0$$

Damour 2010.01641, Veneziano ... 2201.11607, ...
Conclusions and outlook

I presented a first step in the analysis of the scattering PM waveform

- Both the eikonal and the KMOC approaches agree in a non-trivial way once the subtractions are properly calculated and interpreted.
- The comparison with the PN results is interesting both technically and conceptually. I focused on the radiation-reaction effects up to 2.5PN: there is full agreement once the amplitudes and the MPM results are written in the same frame.

Outlook Many open questions:

- Is the choice of a BMS frame relevant in other comparisons (PN versus NR, PN versus NRGR-EFT)? Is it relevant for bound orbits?
- Does the agreement at $\mathcal{O}(G^2)$ survive beyond the soft limit?
- When does the naive eikonal exponentiation break down? (If it does)
- NNLO waveform? . . .