# Studying Higgs Boson Self-Interactions at the ATLAS Experiment Fermilab – Physics Forum

Rachel Hyneman, Fundamental Physics Directorate - ATLAS 07 September 2023





### Outline

SLAC

- Why do we care about Higgs **Boson self-interactions?**
- How do we measure Higgs **Boson self-interactions?**
- A measurement probing Higgs Boson selfinteractions
- How does this result fit into the broader ATLAS Higgs **Boson Self-Interactions Program**?



## Why do we care about Higgs Boson self-interactions?

## Introduction



## The Standard Model of Particle Physics

#### A theory of fundamental particles and how they interact





## The Standard Model of Particle Physics

#### A theory of fundamental particles and how they interact



7 Sept 2023

SLAC





#### Why is there more Matter than Anti-Matter?

#### Is our universe stable?



## ESA What is Dark Matter?



#### R. Hyneman - Physics Forum (Fermilab)

## The Standard Model of Particle Physics

#### A theory of fundamental particles and how they interact



7 Sept 2023

SLAC





#### Why is there more Matter than Anti-Matter?

#### Is our universe stable?







R. Hyneman - Physics Forum (Fermilab)

🥙 😣

### The Higgs Boson and its Potential





R. Hyneman - Physics Forum (Fermilab)

### The Higgs Boson and its Potential



## The Higgs Boson and its Potential



$$V(h) \sim \lambda v h^3 + \frac{1}{4} \lambda h^4$$

What if the potential looks a little different?

R. Hyneman - Physics Forum (Fermilab)

R. Hyneman - Physics Forum (Fermilab)

### New Physics and the Higgs Potential



"Second Order" phase transition in early universe

 → required for "Electroweak Baryogenesis"
 ( = Electroweak Phase Transition as the source of Matter-Antimatter Asymmetry)

### New Physics and the Higgs Potential





### New Physics and the Higgs Potential





How Do We Measure the Higgs Potential?





How Do We Measure the Higgs Potential?





#### How Can We Study the Higgs Potential at Colliders?



## How Can We Study the Higgs Potential at Colliders?



#### Sensitivity to New Physics in the Self-Couplings

Contribution of ggF diagrams to di-Higgs invariant mass spectrum (~energy)

# VBF Di-Higgs invariant mass spectrum (~energy) for various $\kappa_{2V}$



## How do we measure Higgs Boson self-interactions?

### The ATLAS Detector



## ATLAS and the Large Hadron Collider





#### ATLAS → General purpose detector

Today: Run 2 (2015-2018)

**SLAC** 7 Sept 2023

R. Hyneman - Physics Forum (Fermilab)

## The ATLAS Detector



## **The ATLAS Detector**



R. Hyneman - Physics Forum (Fermilab)



## Identifying jets from *b*-quarks



**SLAC** 

## Identifying jets from *b*-quarks



#### A measurement probing Higgs Boson self-interactions

arxiv:2301.03212

The ATLAS  $HH \rightarrow b\bar{b}b\bar{b}$  Analysis



#### **Di-Higgs Boson Decays**



## What Makes 4b a Challenging Final State?



7 Sept 2023

**SLAC** 





## What Makes 4b a Challenging Final State?



**SLAC** 







7 Sept 2023



R. Hyneman - Physics Forum (Fermilab)

## What Makes 4b a Challenging Final State?

~2400 HH Events

(ATLAS Run 2)

~800  $HH \rightarrow b\overline{b}b\overline{b}$  Events

~500  $HH \rightarrow bbbb$  Events

(~20 VBF)

7 Sept 2023

SLAC

 $BR(HH \to b\bar{b}b\bar{b}) \sim \frac{1}{2}$ 

Trigger+Acceptance

 ATLAS

 EXPERIMENT

 Run: 362619

 Event: 524614423

 2018-10-03 08:06:34 CEST

"The small signal cross section combined with the huge QCD 4b background make it **essentially impossible** to determine the Higgs boson self-coupling in  $pp \rightarrow 4b$ ."

[from "Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis," Baur et. al., <u>CERN-TH/2003-069</u>]

~10<sup>8</sup> Background Events

000.000

<u>Ladamuro</u> for finding

nice quote

## What Makes 4b a Challenging Final State?

SLAC



## Isolating $HH \rightarrow b\overline{b}b\overline{b}$ Events





R. Hyneman - Physics Forum (Fermilab)

#### The "Mass-Plane"




2*b* background processes ~ 4*b* background processes

 $\rightarrow$  use 2b data to estimate backgrounds in the 4b region?





#### **Density Ratio Estimation with Histograms**



## **Density Ratio Estimation with Histograms**



Multi-Dimensional Histogram Reweighting?



#### Density Ratio Estimation with Neural Networks



$$w(\vec{x}) = p_{4b}(\vec{x}) / p_{2b}(\vec{x})$$

Train Neural Network with specific Loss function:  $\mathcal{L}(R(\vec{x})) = \mathbb{E}_{x \sim p_{2b}} \left[ \sqrt{R(\vec{x})} \right] + \mathbb{E}_{x \sim p_{4b}} \left[ \frac{1}{\sqrt{R(\vec{x})}} \right]$ 

$$\rightarrow \arg \min_{R} \mathcal{L}(R(\vec{x})) = w(\vec{x})$$

High-dimensional, "Event-level" reweighting!

arxiv:1911.00405 Kanamori et. al. (JMLR)







#### Background Modeling Strategy: Uncertainties

# Uncertainty from limited training statistics/network initialization



#### Uncertainty from domain transfer



#### **Observed Data**

SLAC

7 Sept 2023



R. Hyneman - Physics Forum (Fermilab)

#### Results - $\kappa_{\lambda}$

#### Constraining the HHH coupling



## Results - $\kappa_{2V}$

Constraining the HHVV coupling



## Results - $\kappa_{2V}$

#### Constraining the HHVV coupling





#### How Have We Been Improving HH Measurements?

140 95% upper limit on  $\mu_{SM}$ **More data**  $\sigma_{qqF}$  31.2 fb 120 &  $\sigma_{qqF+VBF}$  32.8 fb Better techniques to analyze data Hartman  $L^{-0.5}$  luminosity scaling .00 - fitted  $L^{-0.76}$  scaling 80 Increasing dataset by factor 60 of x improves limits by  $x^{-0.5}$ 40 (↓ better) 20 Results improving by factor of ~  $x^{-0.76}$ 0 20 120 40 60 80 100 0 Integrated luminosity [fb<sup>-1</sup>]

SLAO

## How does this result fit into the broader ATLAS HH Program?

#### **Combination and Future Prospects**



Combination:  $HH \rightarrow b\bar{b}b\bar{b}, b\bar{b}\tau\tau, b\bar{b}\gamma\gamma$ 



# Combination: $HH \rightarrow b\bar{b}b\bar{b}, b\bar{b}\tau\tau, b\bar{b}\gamma\gamma$



 $\rightarrow b\bar{b}b\bar{b}$  final state less sensitive to BSM  $\kappa_{\lambda}$ , but most sensitive to BSM  $\kappa_{2V}$ 

#### Looking to the Future: The High-Luminosity LHC



## Looking to the Future: The High-Luminosity LHC



#### HH Prospects at the High-Luminosity LHC: $\kappa_{2V}$





#### How is CMS Doing?



## How is CMS Doing?



# Boosted $X \rightarrow b\overline{b}$ Tagging in ATLAS





## Boosted $X \rightarrow b\overline{b}$ Tagging in ATLAS



ATL-PHYS-PUB-2023-021



## Boosted $b\overline{b}$ Tagging in ATLAS Today



Factor of ~2x Improvement in GN2X compared to Xbb!

Significantly more correlations accessible to GN2X

Enabled by new architectures (GNNs/Transformers)



## Conclusions

- Measuring HH production probes the Higgs boson potential, which could hold the key to big question left unanswered by the Standard Model
  - ... but, it's hard to measure!
- Machine learning is enabling measurements in "impossible" channels, like  $b\overline{b}b\overline{b}$
- Clever analysis strategies will allow us to make the best use of upcoming data

# **Thanks for listening!**

# **Additional Material**



#### Sensitivity to New Physics in the HHVV Coupling



New physics  $\rightarrow$  more signal!

# b-Tagging in ATLAS

Improving ATLAS analyses through Machine Learning-based object identification



## The Evolution of Boosted $b\overline{b}$ Tagging in ATLAS



#### **GN1** Architecture



#### Performance is not the End of the Story



O(30%) uncertainty on the selection efficiency of  $H \rightarrow b\overline{b}$  signal events by the Xbb tagger

Precise calibration critical for the future of GN2X!

#### Trigger Efficiency for ggF $HH \rightarrow b\overline{b}b\overline{b}$ Events



Combination of Triggers (Run 2):

- 2 *b*-jet + 1 jet
- 2 *b*-jet + 2 jet

#### Run 3:

"Asymmetric" requirements on jet  $p_T$ 



#### **Full Analysis Selection**



# "Pairing" Higgs Bosons

Combinatorics: three possible pairings given four *b*-tagged jets



#### Pairing $\gtrsim$ 70% accurate for VBF ( $\gtrsim$ 90% for $\kappa_{2V}$ far from 1)





#### Categorization


### Observed m<sub>HH</sub> Distributions in ggF Categories



### Observed m<sub>HH</sub> Distributions in VBF Categories



### Neural Networks for Density Estimation

(Lemma) best discriminator between two classes:



$$\lambda = \frac{p_A}{p_A + p_B}$$

NNs classify data well  $\rightarrow$  approximate  $\lambda$ 

$$\frac{p_A}{p_B} = \frac{\lambda}{1-\lambda}$$

→ a classification NN can approximate the density ratio!

### **Neural Networks for Density Estimation**



 $p_{2b}(\vec{x}) \cdot w(\vec{x}) = p_{4b}(\vec{x})$ 

# Train NN with specific Loss function: $\mathcal{L}(R(\vec{x})) = \mathbb{E}_{x \sim p_{2b}} \left[ \sqrt{R(\vec{x})} \right] + \mathbb{E}_{x \sim p_{4b}} \left[ \frac{1}{\sqrt{R(\vec{x})}} \right]$ $\rightarrow \arg \min_{R} \mathcal{L}(R(\vec{x})) = w(\vec{x})$

"Event-level" reweighting!

arxiv:1911.00405 Kanamori et. al. (JMLR)



### **Reweighting Neural Network – Details**

#### Architecture and Input Variables

|                                                             | $\mathrm{ggF}$                                                                                                                                                                                                                                                                                                                                                                                    | VBF                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 3 Densely-<br>Connected<br>Hidden Layers<br>(50 Nodes Each) | <ol> <li>log(p<sub>T</sub>) of the 2<sup>nd</sup> leading Higgs boson<br/>candidate jet</li> <li>log(p<sub>T</sub>) of the 4<sup>th</sup> leading Higgs boson<br/>candidate jet</li> <li>log(ΔR) between the closest two Higgs<br/>boson candidate jets</li> <li>log(ΔR) between the other two Higgs</li> </ol>                                                                                   | <ol> <li>Maximum dijet mass from the possible<br/>pairings of the four Higgs boson candi-<br/>date jets</li> <li>Minimum dijet mass from the possible<br/>pairings of the four Higgs boson candi-<br/>date jets</li> <li>Energy of the leading Higgs boson can-<br/>didate</li> </ol>                                                                                                        | 3 Densely-<br>Connected<br>Hidden Layers<br>(20 Nodes Each) |
| Single-Node<br>Output                                       | <ul> <li>boson candidate jets</li> <li>5. Average absolute η value of the Higgs boson candidate jets</li> <li>6. log(p<sub>T</sub>) of the di-Higgs system</li> <li>7. ΔR between the two Higgs boson candidates</li> <li>8. Δφ between jets in the leading Higgs boson candidate</li> <li>9. Δφ between jets in the subleading Higgs boson candidate</li> <li>10. log(X<sub>W4</sub>)</li> </ul> | <ul> <li>4. Energy of the subleading Higgs boson candidate</li> <li>5. Second-smallest ΔR between the jets in the leading Higgs boson candidate (from the three possible pairings for the leading Higgs candidate)</li> <li>6. Average absolute η value of the four Higgs boson candidate jets</li> <li>7. log(X<sub>Wt</sub>)</li> <li>8. Trigger class index as one-hot encoder</li> </ul> | Single-Node<br>Output                                       |
|                                                             | <ol> <li>Number of jets in the event</li> <li>Trigger class index as one-hot encoder</li> </ol>                                                                                                                                                                                                                                                                                                   | 9. Year index as one-hot encoder (for years inclusive training)                                                                                                                                                                                                                                                                                                                              |                                                             |

### **Background Modeling – Uncertainties**

Bootstrap Uncertainty – quantifying "noise" in the neural network training



### Background Modeling

7 Sept 2023



### Background Modeling

"Non-closure" Uncertainty – testing the background modeling in an orthogonal dataset



### Other Background Modeling Checks



### Table of Event Yields

### Both ggF (top) and VBF (bottom) signal regions

| Category                                        | Data | Expected   | ggF Signal    | VBF Signal    |
|-------------------------------------------------|------|------------|---------------|---------------|
|                                                 |      | Background | $\mathbf{SM}$ | $\mathbf{SM}$ |
| ggF signal region                               |      |            |               |               |
| $ \Delta \eta_{HH}  < 0.5, X_{HH} < 0.95$       | 1940 | 1935(25)   | 7.0           | 0.038         |
| $ \Delta \eta_{HH}  < 0.5, X_{HH} > 0.95$       | 3602 | 3618(37)   | 6.5           | 0.036         |
| $0.5 <  \Delta \eta_{HH}  < 1.0, X_{HH} < 0.95$ | 1924 | 1874(21)   | 5.1           | 0.037         |
| $0.5 <  \Delta \eta_{HH}  < 1.0, X_{HH} > 0.95$ | 3540 | 3492(35)   | 4.7           | 0.040         |
| $ \Delta \eta_{HH}  > 1.0, X_{HH} < 0.95$       | 1880 | 1739(22)   | 2.9           | 0.043         |
| $ \Delta \eta_{HH}  > 1.0, X_{HH} > 0.95$       | 3285 | 3212(37)   | 2.8           | 0.041         |
| VBF signal region                               |      |            |               |               |
| $ \Delta \eta_{HH}  < 1.5$                      | 116  | 125.3(44)  | 0.37          | 0.090         |
| $ \Delta \eta_{HH}  > 1.5$                      | 241  | 230.6(53)  | 0.06          | 0.21          |



### More Results (Likelihood Scans)



### More Results (2D Limits)



**SLAC** 

### **HEFT and SMEFT Constraints**

![](_page_84_Figure_2.jpeg)

R. Hyneman - Physics Forum (Fermilab)

### Uncertainties

| Dominant uncertainties:          |                 | $\mu_{ggF+VBF}$ (Upper limit on HH signal strength) |                    |  |
|----------------------------------|-----------------|-----------------------------------------------------|--------------------|--|
|                                  |                 | Source of Uncertainty                               | $\Delta \mu / \mu$ |  |
| Theoretical sig                  | nal             | Theory uncertainties                                |                    |  |
| modeling                         |                 | Theory uncertainty in signal cross-section          | -9.0%              |  |
| Experimental background modeling |                 | All other theory uncertainties                      | -1.4%              |  |
|                                  |                 | Background modeling uncertainties                   |                    |  |
|                                  |                 | Bootstrap uncertainty                               | -7.1%              |  |
|                                  |                 | CR to SR extrapolation uncertainty                  | -7.5%              |  |
| Uncertainties                    | $\mu_{ggF+VBF}$ | 3b1f nonclosure uncertainty                         | -2.0%              |  |
| Statistical Only                 | 6.0             |                                                     |                    |  |

![](_page_85_Picture_3.jpeg)

|    | _ |
|----|---|
|    |   |
| JL | 4 |

+ Background Modeling

+ Theoretical

7.1

8.1

## Combination: $HH \rightarrow b\bar{b}b\bar{b}, b\bar{b}\tau\tau, b\bar{b}\gamma\gamma$

![](_page_86_Figure_2.jpeg)

|    | bb    | ww    | ττ     | ZZ     | ΥY      |
|----|-------|-------|--------|--------|---------|
| bb | 34%   |       |        |        |         |
| ww | 25%   | 4.6%  |        |        |         |
| ττ | 7.3%  | 2.7%  | 0.39%  |        |         |
| ZZ | 3.1%  | 1.1%  | 0.33%  | 0.069% |         |
| ΥY | 0.26% | 0.10% | 0.028% | 0.012% | 0.0005% |

Combined upper-limit on SM HH Cross-Section: 2.4  $\times \sigma_{SM}$  (2.9 Exp.)

### HH Prospects at the High-Luminosity LHC: $\kappa_{\lambda}$

![](_page_87_Figure_2.jpeg)

![](_page_87_Figure_3.jpeg)

$$0.0<\kappa_{\lambda}<2.5$$

→ Move from probing  $\mathcal{O}(\sim 10)$ effects to  $\mathcal{O}(\sim 1)$  effects

> ☆ "Log Likelihood Scan" limits utilize different assumptions (expected background *includes* SM HH signal)

![](_page_87_Picture_7.jpeg)

### HH Prospects at the High-Luminosity LHC

![](_page_88_Figure_2.jpeg)

~ Observation sensitivity (3.4 $\sigma$ ) to SM HH signal by end of HL-LHC!

→ If our understanding of the Higgs potential is roughly correct, we should be able to see a "bump"

### HH Prospects @ HL-LHC: Uncertainty Scenarios

### **Baseline Scenario**

| Systematic uncertainties         | Scale factors for<br>HL-LHC baseline scenario |  |  |
|----------------------------------|-----------------------------------------------|--|--|
| Theoretical uncertainty          | 0.5                                           |  |  |
| b-jet tagging efficiency         | 0.5                                           |  |  |
| c-jet tagging efficiency         | 0.5                                           |  |  |
| Light-jet tagging efficiency     | 1.0                                           |  |  |
| Jet energy scale and resolution  | 1.0                                           |  |  |
| Luminosity                       | 0.6                                           |  |  |
| Background bootstrap uncertainty | 0.5                                           |  |  |
| Background shape uncertainty     | 1.0                                           |  |  |

### **Other Scenarios:**

No Systematic **Uncertainties** (Statistical Only) • Run 2 Systematic **Uncertainties** • Run 2 Systematic Uncertainties, with theoretical uncertainties halved