# A 20-b accelerometer-based front-end for instrumentation 

Enrico Sentieri - STMicroelectronics
Andrea Baschirotto - Univ. Milan-Bicocca

Microelectronics Users eXchange MUX-2011 CERN, June, $9^{\text {th }}, 2011$

## Introduction

- Introduction
$\square$ Design Objectives
$\square$ Noise Budget Partitioning
- Architecture
$\square$ ADC Architecture


## Sensor Accelerometers (1)

- Displacement accelerometers measure the displacement (x) of a suspended proof mass (m) in response to an input acceleration (a)



## Sensor Accelerometers (2)

- Displacement capacitive sensors are widely used in several systems
- Accelerometers
- Pressure sensors
- Microphone
- etc...



## Sensor Accelerometer (3)

- Most popular technique to measure the proof mass displacement
- $\rightarrow$ Capacitive Position Sensing
- Different Sensor-Capacitive-Bridge topologies
- Example:
- Two nominally equal-sized capacitor are formed between the electrically conductive proof mass and stationary electrodes
- When the substrate undergoes acceleration
$-\rightarrow$ the proof mass displaces from the nominal position
- $\rightarrow$ capacitive half-bridge unbalacement

$\mathrm{a}_{\mathrm{in}} \longleftarrow$


5

## Sensor Accelerometer Interface (1)

- Capacitors sense AC signals
$-\rightarrow$ AC modulation sources for capacitive sensing
- The sensed signal is an Amplitude Modul. Signal
- The acceleration signal modulates a HF carrier
- To extract the envelopment
$-\Rightarrow$ The sensed signal need to be demodulated or sampled
- Accelerometer sensitivity $\approx$ modulation carrier amplitude


## Sensor Accelerometer Interface (2)

- SC Architectures are very popular

- MOS switches to connect the sensor and the circuit input.
- The thermal noise of MOS switches (kT/C noise)
- SC circuits are sample data systems
- It is not possible to insert an Anti-Alias filter between reading circuit and sensor
- $\rightarrow$ the input wide band noise is folded in base band
- SC have much higher noise


## Modulation/Demodulation

- Time Domain Signal Processing



## Modulation/Demodulation

- Frequency Domain Signal Processing



## Gain Error due to Op-Amp band limited (1)

- Modulation $\rightarrow$ the acceleration is transposed to the odd harmonics frequencies of the Modulation signal

$$
X_{2\ulcorner k+1}=\frac{4 \square V_{0}}{\pi} \square \frac{1}{2 \square k+1}
$$

- The ChAmp transfer-function shapes the modulated signal frequency spectrum
- High-frequency component attenuation
- $\rightarrow$ The Demodulated signal amplitude is affected by ChAmp Bandwidth
$\rightarrow$ Gain Error
- Gain error depends on process and temperature variations


## Gain Error due to opamp limited band (2)

## Ideal Op-Amp (GBW=1GHz)



## Gain Error due to opamp limited band (3)

Ideal Op-Amp (GBW=1MHz)


## Mod/Dem-Freq vs. Power Consumption

- Higher Mod/Dem-Freq
- :) In CMOS circuit, the electronics low frequency flickernoise which often extends to low MHz
- : Larger opamp Gain-Bandwidth
- $\rightarrow$ Higher Power Consumption
- $\rightarrow$ trade-off between performances and power consumption
- Typically the Mod/Dem-Freq $\left(f_{\mathrm{m}}\right)$ is from some tens of kHz to MHz
$\Rightarrow f_{\mathrm{m}}=100 \mathrm{kHz}$


## Design Objectives

$\square$ IntroductionDesign Objectives
Noise Budget Partitioning
Architecture
$\square$ ADC Architecture

BICOCCA

## Design Objectives (1)

- Design a digitizing accelerometer interface that uses the full bandwidth and dynamic range of the sensor
- $\rightarrow$ The Sensor Signal Full-Scale is $\pm 2 G$
- $\rightarrow$ The total equivalent acceleration noise $<2.5 \mu \mathrm{G}$
- sensor + electronic

$$
S N R=20 \square \log _{10}\left(\frac{2 G}{\sqrt{2}} \square \frac{1}{2.5 \mu G}\right)=115 d B
$$

## Design Objectives (2)

- Low power consumption
- Architecture choice

$-\rightarrow$ Open-Loop Capacitive sensor Interface
- Interface Topology
$-\rightarrow$ Charge Sensitive Amplifier with modulated input and synchronously demodulated output
- The capacitive bridge is driven (modulated) by a squared wave voltage
- Gain error (due to Sensor and Integrated Circuit process variation) has to be compensated
- Bias Voltage Amplitude $\rightarrow$ 10b resolution programmable


## Capacitive Sensor

- The Capacitive sensor
$\rightarrow$ fully-differential
- The bridge is driven by a differential signal a \& b
- With an acceleration
$\rightarrow$ the capacitive bridge is unbalanced $\rightarrow$ a differential charge is injected in the pins A \& B


Differential charge $\approx$ acceleration

## Capacitive Sensor Equivalent electrical Model



Sensor Topologies:

$$
\text { Cda1 }=\text { Cdb2 }=-\mathrm{Cda} 2=-\mathrm{Cdb} 1=\mathrm{SF} \cdot \mathrm{a}
$$

Jiangfeng Wu. "Sensing and Control Electronics for LowMass Low-Capacitance MEMS Accelerometers", Department of Electrical and Computer Engineering, Carnegie Mellon. University, Spring 8 EFGDSTUDI
SF : Scale Factor [F/g]
a: acceleration [g]

## Capacitive Sensor Parameters

- Sensor Input and Interconnection Capacitance
- $\rightarrow C_{p}=12 p F$
- $C_{\text {load }}=20 \mathrm{pF}$
- Sensor cap
- $\mathrm{C}_{0}=1 \mathrm{pF}$
- Scale Factor
- $\rightarrow$ SF = 300fF/G
- Sensor Dynamic Range
- $\rightarrow \pm 2 G \rightarrow S=2 G$
- Sensor Noise Density
- $\rightarrow \mathrm{a}_{\text {sn }}=100 \mathrm{nG} / \mathrm{sqrt}(\mathrm{Hz})$

- Sensor Bandwidth
- $\rightarrow \mathrm{BW}=300 \mathrm{~Hz}$


## Ideal Sensor Accelerometer Interface



## Technology Choice(1)

- The technology choice driven by:
- Performance
- Cost
- Process Maturity
- Analog Option Required


## Technology Choice (2)

- Standard CMOS technology with double thick oxide
- A rough system analysis
- $\rightarrow$ more than $90 \%$ device area is used for analog blocks
- $\rightarrow$ No need to use technology with high level of integration density
- $\rightarrow$ The technology choice is driven by analog requirement
- A Mature technology with two different thick oxide MOS has been selected:
- $70 \AA$ ( 3.3 V gate, $0.350 \mu \mathrm{~m}$ minimum channel length)
- $120 \AA$ ( 5.0 V gate, $0.500 \mu \mathrm{~m}$ minimum channel length)
- The 5.0V MOS slower and noisier than 3.3V MOS
- Two power supply domains (5.0V \& 3.3V) are available


## Technology Choice (3)

- Resistors
- Linear Resistor (Doped-Poly resistor)
- Diffused Resistor
- poor linearity
- no flicker noise compared to the poly resistor
- HIPO (High resistance poly) resistor
- higher sheet resistance compared to poly resistor.
- extra mask $\rightarrow$ higher cost
- Capacitor
- High-linearity caps required for the Charge Amplifier feedback capacitor and ADC (Switched Capacitor) $\rightarrow$ Metal to metal capacitor is the best choice
- MIM (Metal Insulator Metal)
- Thin oxide $\rightarrow$ High density level
- Extra Masks $\rightarrow$ Higher Cost
- Fringed Capacitor
- Lower density
- No extra mask


# Noise Budget Partitioning 

$\square$ Introduction
$\square$ Design Objectives
$\square$ Noise Budget Partitioning
$\square$ Architecture
$\square$ ADC Architecture

## Noise Budget Partitioning (1)

- Starting from high level specifications
$\Rightarrow \rightarrow$ define the specification for each blocks of the system
- $\boldsymbol{\rightarrow}$ identify critical blocks
$=\rightarrow$ roughly definition of a suitable architecture of each block
- Simplifications
- This preliminary analysis should be done not considering mod/dem effects



## Noise Budget Partitioning (2)

- The Noise Budget partitioning is an iterative design process
- Some design specifications are defined based on preliminary analysis/assumptions
$-\rightarrow$ the required performances for each block are evaluated
- in case of any issue, the assumptions will be modified
- It's quite impossible, at the first run, to identify all the critical design parameter


## Noise Budget Partitioning (3)

- Target: Total noise $\rightarrow a_{n_{-} r m s}=2.5 \mu \mathrm{G}$
- Two different main Noise contributors:
- Sensor Noise (Brownian Noise) $\boldsymbol{\rightarrow} a_{\text {sn_rms }}$
- Electronic Noise $\rightarrow a_{\text {en_rms }}$
- Quantization Noise, Thermal Noise, \& Flicker Noise
- Sensor Noise ( $a_{\text {sn_rms }}$ ):

$$
a_{s n_{-} m s}=a_{s n} \square \sqrt{B W}=100 n G / \sqrt{H z} \square \sqrt{300 \mathrm{~Hz}}=1.73 \mu \mathrm{G}
$$

- Electronic Noise $\rightarrow$ Equivalent Acceleration noise is evaluated to match the design Objectives:

$$
a_{e n_{-} m s}=\sqrt{a_{n_{-} r m s}^{2}-a_{s n_{-} m s}^{2}}=1.81 \mu G
$$

## Noise Budget Partitioning

- Assuming no-noise sensor



## Noise Budget Partitioning (4)

- SNR due to the only electronic Noise evaluated at Sensor level:

$$
S N R_{e}=20 \square \log _{10}\left(\frac{S}{\sqrt{2}} \square \frac{1}{a_{e n \_m s}}\right)=117.9 \mathrm{~dB}
$$

$\Rightarrow$ First design specification,

- the SNR @ADC-output > 117.9dB
- $\rightarrow$ ADC resolution has to be:
$E N O B_{A D C}>\frac{S N R_{e}-1.76}{6.02}=19.3 \mathrm{bit}$


## ADC Performances (1)

- ADC resolution >19.3 bit
- SC- $\Sigma \Delta$ Architecture
$-\rightarrow$ the only one to satisfy this challenging design specifications.
- Oversampled ADC architecture $\rightarrow$ Relaxed the AntiAlias Filer requirements specification
- The small signal bandwidth
- Critical opamp flicker-noise
$-\rightarrow$ the ADC with Correlated Double Sampling or Chopper Stabilization technique


## ADC Performances (2)

- Which Power Supply?
- ADC under 5V supply domain
- $\rightarrow$ higher reference voltage compared to 3.3 V supply domain
- $\rightarrow$ Sample capacitor reduction (less area) and/or reduce the Oversampling Ratio (smaller opamp bandwidth)

$$
\begin{aligned}
& V_{\text {signal }} \propto V_{\text {ref }} \\
& V_{\text {noise }} \propto \sqrt{\frac{K_{b} \square T}{C_{s} \square O R}}
\end{aligned}
$$

$\mathrm{V}_{\text {ref: }}$ : ADC reference Voltage
$\mathrm{K}_{\mathrm{b}}$ : Boltzmann Constant
T : Temperature
$\mathrm{C}_{\mathrm{s}}$ : Sampling Capacitor
OR: Oversampling Ratio

## ADC Performances (3)

- Which Power Supply?
- 5.0V MOS have higher 1/f noise than 3.3V MOS
- Increased oxide thickness $\rightarrow$ Increased trap number in the silicon oxide interface.
- If the ADC is designed under 5.0 V domain
- $\rightarrow$ The Charge-Amplifier to be designed under the same supply domain to use all the available ADC dynamic range



## ADC Performances (4)

- Both solutions have some advantages (larger signal @5V) and some drawbacks (larger 1/f noise @5V)
- The best compromise performance vs. power consumption has been achieved supplying the ADC and Charge Amplifier at 3.3 V


## ADC Performances (5)

Assumptions:

- ADC Differential Reference Voltage $\boldsymbol{\rightarrow} 2.5 \mathrm{~V}_{\text {peak }}$
- Possible under 3.3V domain
- Maximum ADC Input signal $\rightarrow 2.0 \mathrm{~V}_{\text {peak }}$
- To avoid Modulator Saturation issue
- ~2dB of margin
- ADC resolution required 20 bit


## ADC Performances (6)

- Total Noise at ADC output
- ADC Noise
- Assuming dominant quantization noise


## Biasing and Reading Noise partitioning

$$
V_{n B i a s R e a d}=\sqrt{V_{n \_@ A D C o u t}^{2}-V_{n A D C}^{2}}=1.42 \mu \mathrm{~V}
$$

- The system is divided in to two different macro blocks:
- Reading (Charge Amplifier and AAF)
- Biasing (DAC and Driver)

|  | Noise Biasing/Noise Reading |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 / 1$ | $2 / 1$ | $1 / 1$ | $1 / 2$ | $1 / 3$ |
| Noise Biasing | $1.35 \mu \mathrm{~V}$ | $1.27 \mu \mathrm{~V}$ | $1 \mu \mathrm{~V}$ | $0.63 \mu \mathrm{~V}$ | $0.45 \mu \mathrm{~V}$ |
| $\mathrm{V}_{\text {nBias }}$ | $0.45 \mu \mathrm{~V}$ | $0.63 \mu \mathrm{~V}$ | $1 \mu \mathrm{~V}$ | $1.27 \mu \mathrm{~V}$ | $1.35 \mu \mathrm{~V}$ |
| Noise Reading <br> $\mathrm{V}_{\text {nRead }}$ |  |  |  |  |  |

## Noise Budget Partitioning

- Assuming no-noise sensor



## Sensor Transfer Function


$\mathrm{V}_{\text {bias }}$ is the differential Voltage applied to the sensor

$$
\frac{V_{\text {s@ADCInput }}}{a}=2 \square \frac{V_{\text {bias }}}{C_{f}} \square S F
$$

## Biasing Noise Gain



$$
\begin{aligned}
& V_{n a @ A D C i n p u t}^{2}=V_{n a}^{2} \square \frac{\square \square C_{d}}{\square C_{f}} \square+V_{n b}^{2} \square \frac{\square 2 \square C_{d}}{\square} C_{f} \square \\
& V_{n a @ A D C i n p u t}
\end{aligned}=\frac{2 \cdot C_{d}}{C_{f}} \square \sqrt{V_{n a}^{2}+V_{n b}^{2}}=\frac{2 \square S F \square a}{C_{f}} \cdot \sqrt{V_{n a}^{2}+V_{n b}^{2}} .
$$

## Charge Amplifier Noise Gain


$N G_{C h A m p}=1+\frac{2 \cdot C_{o}+C_{p}+C_{i n}}{C_{f}}$

## Biasing Voltage (1)

$$
\begin{gathered}
\frac{V_{s @ A D C \text { Input }}}{a}=2 \square \frac{V_{\text {bias }}}{C_{f}} \square S F \quad N G_{\text {ChAmp }}=1+\frac{2 \cdot C_{o}+C_{p}+C_{\text {in }}}{C_{f}} \\
V_{\text {nBis@ADChmout }}=\frac{2 \square S F \square a}{C_{f}} \cdot \sqrt{V_{n a}^{2}+V_{n b}^{2}}
\end{gathered}
$$

- To maximize the ADC input $\rightarrow$ two possibilities:
- Increase the Bias Voltage
- Decrease the ChAmp feedback cap ( $\mathrm{C}_{\mathrm{f}}$ )
- $\boldsymbol{\rightarrow}$ Increase the Charge Amplifier Gain
$=\mathrm{C}_{\mathrm{f}} \downarrow \rightarrow$ the (ChAmp \& BiasCircuit ) ADC input noise $\uparrow$
$\rightarrow$ No effect on the overall SNR


## Biasing Voltage (2)

- To optimize SNR
$=\rightarrow \mathrm{V}_{\text {bias }}$ has to be maximized
- $\rightarrow$ The Sensor Drivers has to be realized under 5.0V Supply Domain
- Considering Supply Variation \& Driver Output MOS headroom

$$
\rightarrow \mathrm{V}_{\text {bias }}=4.5 \mathrm{~V}
$$

## Charge Amplifier Feedback capacitor

- $\rightarrow \mathrm{V}_{\text {bias }}=4.5 \mathrm{~V}$
- The feedback cap $\left(C_{f}\right)$ is evaluated to maximize ADC DR when the maximum acceleration ( $\mathrm{a}_{\text {max }}$ ) is applied to the sensor

$$
\begin{aligned}
& V_{A D C}=2 \square \frac{S F \square a}{C_{f}} \square V_{\text {bias }} \\
& C_{f}=2 \square S F \square a_{\text {max }} \square \frac{V_{\text {bias }}}{V_{\text {ADCmax }}}=2 \square 300 f F / G \square 2 G \square \frac{4.5 \mathrm{~V}}{2 \mathrm{~V}}=2.7 p F
\end{aligned}
$$

## Biasing and Reading Noise partitioning (2)

- Read-out noise $\boldsymbol{\rightarrow}$ Charge Amplifier noise

$$
N G_{\text {ChAmp }}=1+\frac{2 \square C_{o}+C_{p}+C_{i n}}{C_{f}}>1+\frac{2 \square C_{o}+C_{p}}{C_{f}}=1+\frac{2+12}{2.7}=6.2
$$

- The Charge Amplifier Input Noise is amplified
- Bias Noise Gain

$$
N G_{\text {Biasmax }}=\frac{\Delta C_{\max }}{C_{f}}=\frac{2 \times S F \times a_{\max }}{C_{f}}=\frac{2 \times 300 f F / G \times 2 G}{2.7 p F}=0.44
$$

- The Bias Input Noise is amplified


## Biasing and Reading Noise partitioning (3)

- Reading Noise is more critical than Biasing Noise due to Charge Amplifier Noise Gain
- Strategy: Increasing the Reading Noise Budget compared to the Biasing Noise Budget
- $1 / 2$ may be the best compromise to increase the reading Noise Budget
- $1 / 3$ small improvement for Reading and bigger worsening for the Biasing Noise Budget

|  | Noise Biasing/Noise Reading |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 / 1$ | $2 / 1$ |  |

$V_{n \text { Read @ADCInput }}=1.27 \mu \mathrm{~V}$
$V_{n \text { Bias @ADCInput }}=0.63 \mu \mathrm{~V} \quad \square \quad V_{\text {nBias @DriverOutput }}=\frac{0.63 \mu \mathrm{~V}}{0.44}=1.43 \mu \mathrm{~V}$

## Noise Budget Partitioning

- Assuming no-noise sensor



## Noise Budget Partitioning Conclusion

- Starting from the high level system specifications
$-\rightarrow$ a preliminary noise breakdown
- To descend the hierarchy, it is necessary to define the architecture of each block
- $\rightarrow$ Next step $\rightarrow$ defining the circuits architecture and their noise budget
- It is mandatory to take into account the mod/dem effects


## Architecture

$\square$ Introduction
$\square$ Design Objectives
$\square$ Noise Budget Partitioning
$\square$ Architecture
$\square$ ADC Architecture

## Charge Amplifier

- Assuming no-noise sensor



## Charge Amplifier (1)



- Charge Amplifier needs a opamp input DC polarization


## Charge Amplifier (2)

$$
\frac{V_{C h A m p}}{V_{s}}=\frac{R_{f} \square C_{s} \square s}{1+R_{f} \square C_{f} \square S}
$$




- The Charge Amplifier Signal is Amplitude Modulated
- Carrier frequency $\rightarrow f_{m}$
- To reduce the Charge Amplifier gain error
- The pole frequency has to be lower than modulation frequency


## Charge Amplifier (3)

$$
\begin{aligned}
& V_{n}^{2}=4 \square k_{b} \square T \square R_{f} \\
& V_{\text {nChAmp }}=\frac{V_{n}}{1+C_{f} \square R_{f} \square s}
\end{aligned}
$$


$V_{\text {nChAmp @-f } m}=\sqrt{\frac{2 \square 4 \square k_{b} \square T \square R_{f}}{1+\left(2 \square \pi \square f_{m} \square R_{f} \square C_{f}\right)^{2}}} \square \sqrt{\frac{2 \square k_{b} \square T}{R_{f} \square\left(\pi \square f_{m} \square C_{f}\right)^{2}}}$
$=R_{f} \uparrow \rightarrow$ Output Noise density (due to $R_{f}$ ) $\downarrow$

## Charge Amplifier (4)

- The noise spec $\rightarrow V_{\text {nRead }}=1.27 \mu \mathrm{~V}$
- Assumption:
- $R_{\mathrm{f}}$-Noise $\approx 1 / 3$ of the to Total Noise (negligible effect in the noise power budget)
- The ChAmp Output Noise density due to feedback resistor is:

$$
\frac{1.27 \mu \mathrm{~N}}{3 \square \sqrt{300}}=24 n \mathrm{~V} / \sqrt{\mathrm{Hz}}
$$

- Assumption: Modulation frequency $f_{\mathrm{m}}=100 \mathrm{kHz}$

$$
\begin{aligned}
& R_{f} \square \frac{2 \square k_{b} \square T}{V_{n_{-} \text {ChAmp@f=f}}^{2} \square\left(\pi \square f_{m} \square C_{f}\right)^{2}}=20 \mathrm{M} \Omega \\
& f_{\text {pole }}=\frac{1}{2 \square \pi \square R_{f} \square C_{f}}=3 k H z \ll f_{m}
\end{aligned}
$$

## Charge Amplifier (5)

- Large $R_{f}^{\prime}$ s
- are difficult to be integrated in standard CMOS process
- require large Area
- Switched Capacitor
- MOS operating in triode
- Integrated Resistor



## Charge Amplifier (6)

- Switched Capacitor capacitance sensing

"Correlated Double Sampling in Capacitive Position Sensing Circuits for Micromachined Applications"
Wongkomet, N.; Boser, B.E.;1998


## Charge Amplifier (7)

- Switched Capacitor capacitance sensing with CDS

"Correlated Double Sampling in Capacitive Position Sensing Circuits for Micromachined Applications"
Wongkomet, N.; Boser, B.E.;1998


## Charge Amplifier (8)

- MOS operating in Triode region


$$
R=\frac{(W / L)_{1}}{(W / L)_{2}} \square N \square R_{\text {ref }}
$$

- Good operation with small $\left(\mathrm{V}_{0}-\mathrm{V}_{\mathrm{i}}\right)$ to keep M 2 in triode
$-\rightarrow$ Same ChAmp Input and Output
- $\rightarrow$ This solution is mainly used when a pre-Amplifier is inserted after the Charge Amplifier


## Charge Amplifier (9)

- Integrated Resistor
- © No Noise Folding
- © Better Linearity/No dynamic limitation
- © Better Noise Performance
- : Huge Area increments
- Roughly Area Estimation
- Doped Poly Typical $\operatorname{Rs}(\Omega / s q)=300 \rightarrow$ area for $2 x 20 \mathrm{M} \Omega \& W=1 \mu \mathrm{~m}$

$$
A=\frac{2 \square 20 M \Omega}{300}=0.13 \mathrm{~mm}^{2}
$$

- $\operatorname{HIPO} \operatorname{Rs}(\Omega / s q)=1000 \rightarrow$ area for $2 x 20 M \Omega \& W=1 \mu m$

$$
A=\frac{2 \square 20 \mathrm{M} \Omega}{1000}=0.04 \mathrm{~mm}^{2}
$$

## Charge Amplifier (10)

- Diffused Resistor have Rs higher or equal to HIPO resistor
- :) Standard process (no extra mask)
- : Linearity Issue
- : Junction Leakage at the high Impedance Input of the Charge Amplifier


## Charge Amplifier (11)

- The choice between HIPO and doped Poly depends on cost evaluation (mask/process vs. area)
- The real area used for the feedback resistor is higher than first roughly estimation
- Distance between modules
- Active area density


## Charge Amplifier (12)

- ChAmp opamp
- Output swing \& Anti-Alias Filter Resistive Load
- $\rightarrow$ Two-Stage topology
- High current during the carrier rising/falling edge
- $\rightarrow$ Class-AB output stage
- Overall gain error reduction
- $\rightarrow$ Closed-Loop gain-gandwidth $>10 x f_{m}$
- ChAmp feedback factor $\approx 1 / \mathrm{NG}_{\text {ChAmp }}=1 / 6$
- Opamp noise is chopped
- $\rightarrow$ Thermal noise dominates
$-\Rightarrow$ Thermal noise reduction
- Large differential pairs and current generator MOS
$-\rightarrow$ high parasitic capacitor
- $\rightarrow$ stability Issue


## Charge Amplifier (13)

- Usually LN $\rightarrow$ PMOS input differential pair (PMOS have lower 1/f noise than NMOS)
- Recent technologies have small difference between P-Ch and N-Ch flicker noise $\rightarrow$ Op-Amp with N -Ch differential pair can achieve better Noise performance
- The advantages of N-Ch differential pairs:
- Higher $g_{m} \boldsymbol{\rightarrow}$ Lower thermal noise
- Higher rejection of the P-Ch current generator Noise.
- Opamp noise is choppered



## Charge Amplifier (14)

- Low Noise circuits design
- large transistor
$-\rightarrow$ large channel width and MOS area
$-\rightarrow$ thermal and $1 / f$ noise reduction
- In case of capacitive sensing

$$
N G_{C h A m p}=1+\frac{2 \square C_{o}+C_{p}+C_{i n}}{C_{f}}
$$

- Large Transistor
$-\rightarrow$ Large gate capacitance
- Increased Charge Amplifier Noise Gain


## Charge Amplifier (15)



- For dominant thermal noise (chopper)
- Minimum noise for

$$
C_{i n} \leq C_{\text {sensor }}+C_{\text {interconnect }}
$$

$$
\begin{aligned}
& N G_{\text {ChAmp }}=1+\frac{2 \square C_{o}+C_{p}}{C_{f}}=6.2 \\
& \frac{V_{n \text { Read@ADCInput }}}{N G_{\text {ChAmp }} \square \sqrt{B W}}=\frac{1.27 \mu \mathrm{~V}}{6.2 \square \sqrt{300 \mathrm{~Hz}}} \square 11 \mathrm{nV} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

## Charge Amplifier (16)

- This rough result is useful only to understand the challenge of the Charge Amplifier opamp design
- $\rightarrow 11 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ is an aggressive input noise target
- To reduce the noise
- Sol1 $\rightarrow$ mod/dem frequency $\left(f_{\mathrm{m}}\right)$ increase
- $\rightarrow f_{\mathrm{m}}>$ opamp flicker corner frequency
$-\rightarrow$ higher power consumption (the Mod/Dem frequency effects all the circuits specifications)
- Complexity in circuits Implementation
- Sol2 $\rightarrow$ chopper opamp


## Charge Amplifier (17)

- The opamp 1/f noise is modulated by the Choppered square wave at frequency $f_{1}$ (Odd harmonics)
- The opamp modulated output signal is down converted by the demodulation clock ( $f_{\text {dem }}$ )
- $F_{1}$ defined avoid that its odd harmonics are down converted in base band by the demodulation square wave


Ex.: $f_{1}=1000 \mathrm{kHz} \& f_{\text {dem }}=100 \mathrm{kHz}$


## Charge Amplifier (18)

First Stage of the Chopper Charge Amplifier Op-Amp


## Charge Amplifier (19)

- Both solutions (Choppered and CT) have been designed and compared.
- CT solution performs the best results with the in term of:
- Power consumption
- Performances
- Linearity
- Development time
- Op-Amp specification:
- GBW $\approx 10 \mathrm{MHz}$
- Input referred Noise $\approx 11 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Current Consumption $\approx 2.2 \mathrm{~mA} \rightarrow 7.3 \mathrm{~mW} @ 3.3 \mathrm{~V}$


## Anti-Alias Filter (1)

- Large ADC Over Sampling Ratio
- $\rightarrow$ One single pole Filter is enough to reduce the folding noise issue
- The Reading Block Noise budget is mainly used by the Charge Amplifier (High Complexity).
- If active solution is implemented the AAF Op-Amp needs Chopper Stabilization technique in order to remove the flicker Noise

- Passive Filter with external capacitor solution is widely used in very high performance standalone ADC.


## Anti-Alias Filter (2)

- The value of the AAF resistor is designed in order to have an attenuation of 0.4 dB between the Dem. output and the ADC Input

$F_{\mathrm{s}}=6 \mathrm{MHz}, C_{\mathrm{s}}=10 \mathrm{pF} \rightarrow R_{\mathrm{eq}}=17 \mathrm{M} \Omega$
$R_{\text {aff }}=800 \Omega$


## Anti-Alias Filter (3)

- The AAF noise voltage:

$$
\begin{aligned}
& \quad v_{n_{R_{\text {aaf }}}}=\sqrt{4 \square k_{b} \square T \square R_{\text {aaf }} \square B W}=65 n V \quad \text { Negligible } \\
& \mathrm{C}_{\mathrm{ext}}=20 \mathrm{nF} \gg \mathrm{C}_{\mathrm{s}}
\end{aligned}
$$

Cut-Off frequency: 10 kHz < Modulation frequency

Attenuation at the ADC sampling frequency: -56dB

## Anti-Alias Filter (4)

## Passive Anti-Alias Filter solution

- © Simple
" © Less Risk compared with Active solution
- © Noiseless
- © No power consumption
- : Requires external capacitors
- : Gain Error


## Bias Circuit

- Assuming no-noise sensor



## Bias Circuits

- Low Power/Low Noise Application $\boldsymbol{\rightarrow}$ Reduce no. of circuits
- The Biasing circuit is divided in two blocks
- DAC that is used to set the amplitude of the Carrier
- Driver feeds the Sensor and Buffer the DAC output
- High Impedance input Driver
- Two possible Implementations:
- DAC dynamic Range 4.5V
- Driver $\rightarrow$ Buffer
- : Rail-to-Rail Input Stage Op-Amp
- DAC dynamic Range 2.5V (as ADC)
- Driver $\rightarrow$ Non-Inverter gain configuration
- : : The DAC and Driver Input Noises are amplified


## Bias circuit / Rail-to-Rail Input Stage (1)



## Bias circuit / Rail-to-Rail Input Stage (2)

- Rail-to-Rail Input stage critical point $\rightarrow$ distortion due to different offset of the P -ch and N -ch diff-pairs

—P-Ch Differential Pair Offset
- A squared wave is added to the carrier, its amplitude is equal to the difference between the N -ch and P -Ch differential pairs Offset.
- The carrier amplitude is effected by Offset Issue and it depends on DAC setting $\rightarrow$ equivalent to an INL issue


## Bias circuit / Rail-to-Rail Input Stage (3)

- INL problem reduced increasing the MOS sizes to be < DAC INL
- Additional problem $\rightarrow$ the diff-pair differential Flicker Noise is modulated
- The power of the modulated Flicker Noise is equal to the sum of P-Ch and N-Ch differential pairs Flicker Noise power
- The Driver Modulated Flicker Noise is demodulated in base band by the Demodulator and so it appears at ADC output



## Bias circuit / Non Inverting Amplifier (1)

## Fully Differential Difference Amplifier



- © No extra Pole due to current generator
- () Good CMRR
- : More design Complexity
- : Needs Common Mode Feedback Circuit


## Bias circuit / Non-Inverting Amplifier (2)

- Single Ended opamp
- :) Simple Architecture
- () Less power (No CMFB)
- : Extra pole due to differential to Single-Ended MOS diode
- : No Common Mode Rejection (the Common Mode and Differential signals
 are Amplified)


## Bias circuit / DAC Architecture



- Differential DAC inserted before the Modulator
- () Static DAC.
- : DAC noise is not Choppered (Inserted before Modulator).
- Two possible topologies:
- Current Steering

Resistive DAC Array (Poly Resistor)



- Poly Resistor Flicker Noise is lower than MOS flicker Noise


## Rp1pp (p+poly res) Flicker/Thermal Noise evaluation (1)

- Flicker noise (pink noise) is present in polysilicon resistor with thermal noise.
- It depends on bias voltage, area and frequency as shown below:

$$
\mathrm{Vn}^{2} \propto \mathrm{~V}_{\text {bias }}{ }^{2} / \text { (W.L.f) } \rightarrow \text { flicker noise increases as bias voltage increases }
$$

- Ideal thermal noise for $1 \mathrm{k} \Omega \rightarrow \sqrt{ }\left[4 * 1.38 \mathrm{e}-23 \cdot 300 \cdot 10^{3}\right]=4.07 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Total noise simulation graph of $1 \mathrm{k} \Omega, \mathrm{Rp} 1 \mathrm{pp}$ resistor with $1 \mathrm{uA}(\rightarrow \Delta \mathrm{V}=1 \mathrm{mv})$



## Rp1pp (p+poly res) Flicker/Thermal Noise evaluation (2)

- Total noise simulation of $1 \mathrm{k} \Omega, \mathrm{Rp} 1 \mathrm{pp}$ resistor with $100 \mathrm{uA}(\rightarrow \Delta \mathrm{V}=0.1 \mathrm{~V})$




## MDAC Architecture

- DAC Flicker Noise Reduction
- : Increase the dimension of the Resistor (Huge Impact on device area)
- () Move the Modulation before the DAC $\rightarrow$ MDAC Architecture



## MDAC topology (1)

- 10 Bit Differential MDAC Single Resistor String solution:
- 2*1024 resistors
- 2*1024 switches
- () Good linearity
- (2) Too Small value of the Resistor Module
- : Huge Number of switches
- Area
- Parasitic Capacitor



## MDAC topology (2)

10 Bit Differential MDAC Double resistors (Segmented)String Array

\$DEGLI STUDI

## MDAC topology (3)

- 10 Bit Differential MDAC Double Resistor String Array solution:
- 2*64 resistor
- 2*64 switches
- © Worse linearity
- () Bigger Resistor Module
- () Reduced Number of switches



## Driver Feedback resistor (1)



- The squared wave current flowing in the feedback resistor modulates the flicker Noise of the P-Poly resistance
- The resistor flicker noise is folded in base band by the demodulator



## Driver Feedback resistor (2)

Ideal Op-Amp
Ideal FeedBack resistor
Periodic Steady-State Analysis 'pss': time $=(0 \mathrm{~s}->10 \mathrm{us})$ - /OUT $-/ \mathrm{IN}$


Periodic Noise Analysis `pnoise': freq $=(1 \mathrm{~Hz} \mathrm{->} 150 \mathrm{kHz})$


Steady state Noise Analysis
Ideal Op-Amp Poly Resistor

Periodic Steady-State Analysis 'pss': time $=(0 \mathrm{~s}->10 \mathrm{us})$

- /OUT - /IN


Periodic Noise Analysis 'pnoise': freq $=(1 \mathrm{~Hz} \mathrm{->} 150 \mathrm{kHz})$


## Driver Feedback resistor (3)

- Solutions
- Increase the value of the feedback resistor
$-\rightarrow$ maximum current reduction
$\rightarrow$ thermal noise increase
- Increase the feedback resistor area
- $\rightarrow$ flicker noise reduction
$-\Rightarrow$ parasitic capacitor increase
$-\rightarrow$ stability issue and/or reduced closed loop bandwidth
- Use Diffused resistor, with negligible flicker noise
- $\rightarrow$ Linearity Issue


## Driver Operational Amplifier (1)

- Output Dynamic range and Resistive feedback
$-\rightarrow$ Two stage operational Amplifier
- Low power
$-\rightarrow$ Class AB Output Stage
- Input Voltage Range [125mV-to-2.625V]
$-\Rightarrow$ P-Ch Input stage and supplied under 5V domain
- Output Voltage Range [125mV-to-4.625V]


## Driver Operational Amplifier (2)



## Driver Operational Amplifier (3)

- The Input Voltage Range is compatible with 3.3V MOS
- 3VMOS better noise performance than 5VMOS
$\Rightarrow$ (M1, M2, M3, M4, M5 and M6 are 3.3V MOS)
- Ahuja compensation
$-\rightarrow$ move the output pole at higher frequency
- Output series resistor to Sensor Capacitive load adds a zero that help stability



## Noise Budget Partitioning

- Assuming no-noise sensor



## Biasing Circuit Design (1)

- Driver Gain $G_{\text {Driver }}=4.5 \mathrm{~V} / 2.5 \mathrm{~V}=1.8$

$$
\begin{gathered}
V_{n \text { Bias@DriverOutput }}=\frac{0.63 \mu V}{0.44}=1.43 \mu V_{r m s} \\
V_{\text {nBias@Driverlnput }}=\frac{V_{\text {nBias@DriverOutput }}}{G_{\text {Driver }}}=\frac{1.43 \mu V_{r m s}}{1.8}=0.79 \mu V_{r m s}
\end{gathered}
$$

- The noise budget is equally divided between MDAC \& Drivers

$$
V_{n M D A C}=V_{n D \text { rivers }}=\frac{V_{n \text { Bias@Driver!nput }}}{\sqrt{2}}=0.56 \mu V_{r m s}
$$

- Two equal single-ended drivers are used

$$
V_{n D \text { river }}=\frac{V_{n D r i v e r s}}{\sqrt{2}}=0.4 \mu V_{r m s}
$$

## Biasing Circuit Design (2)

- Driver Noise Contributors
- Opamp
- Feedback resistor
- The Driver Noise budget is equally divided between opamp and Feedback resistor contributors (No optimization)

$$
\begin{aligned}
& V n_{D_{-} O P}=V n_{D_{-} R F B}=\frac{V n_{D_{\text {river }}}}{\sqrt{2}}=\frac{0.4 \mu \mathrm{~V}}{\sqrt{2}}=0.28 \mu \mathrm{~V} \\
& \qquad \begin{array}{l}
V n_{D_{-} O P} \\
\sqrt{B W}
\end{array}=\frac{V n_{D_{-} R F B}}{\sqrt{B W}}=\frac{0.28 \mu \mathrm{~V}}{\sqrt{300}}=16 \mathrm{nV} / \sqrt{\mathrm{Hz}} \\
& V n_{D_{\_} R F B} \square^{2}=\frac{4 \square k_{b} \square T \square R_{2}}{\square \sqrt{B W} \square} \begin{array}{l}
1+\frac{R_{2}}{R_{1} \square} \\
R_{2}=28 \mathrm{k} \Omega \square R_{1}=35 \mathrm{k} \Omega
\end{array} \\
& \left.I f b\right|_{\max }=70 \mu \mathrm{~A}
\end{aligned}
$$

## Biasing Circuit Design (3)

- Opamp design is mainly driven by gain bandwidth requirement
- GBW=4MHz
- Input referred Noise density= $28 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Driver Current Consumption =300uA
- Total Driver Current consumption
- $I_{\text {tot }}=300 \mu \mathrm{~A}+300 \mu \mathrm{~A}+72 \mu \mathrm{~A}=672 \mu \mathrm{~A}$
- $P_{\text {tot }}=3.4 \mathrm{~mW}$



## Biasing Circuit Design (4)

- DAC Noise three contributors:
- Reference Voltage
- Resistor Array
- Switches
- The Noise Budget is equally divided between the three contributors
- No optimization
- The single ended contributors are:

$$
\frac{V n_{\text {MDAC }}}{\sqrt{6}}=\frac{0.56 \mu \mathrm{~V}}{\sqrt{6}}=0.22 \mu \mathrm{~V} \square 13 \mathrm{nV} / \sqrt{\mathrm{Hz}}
$$

## Biasing Circuit Design (5)



- The relationship between Coarse and Fine resistor depends on DAC Linearity requirements
- Ex.: $R_{f}=4 \cdot R_{c}$

$$
\begin{aligned}
& (13 n V / \sqrt{H z})^{2}=4 \times K_{b} \times T \times 8 \times\left(R_{c}+R_{f}\right) \\
& R_{c}=255 \Omega \quad \quad R_{f}=1020 \Omega \\
& I_{D A C}=\frac{V_{\text {ref }}}{32 \times R_{c} \times 2}=153 \mu \mathrm{~A}
\end{aligned}
$$

## Biasing Circuit Design (6)

- Power consumption reduction
$-\rightarrow$ two external caps filter the noise coming from $\mathrm{V}_{\text {REF }}$
- The DAC reference opamp is choppered
- Static opamp
- $\rightarrow$ Low power consumption (<100 $\mu \mathrm{A}$ per-buffers)



## Power Consumption

|  | Current <br> Consumption <br> $[\mu \mathrm{AA}]$ | Supply Voltage <br> $[\mathrm{V}]$ | Power <br> Consumption <br> $[\mathrm{mW}]$ |
| :--- | :---: | :---: | :---: |
| Charge Amplifier | 2200 | 3.3 | 7.3 |
| Anti-Alias Filter | 0 | 3.3 | 0 |
| Drivers | 672 | 5.0 | 3.4 |
| Differential MDAC | 353 | 3.3 | 1.16 |

## Driver Noise vs. DAC Output Slope (1)



Output steps would have to be as more ideal as possible


## Driver Noise vs. DAC Output Slope (2)

- Tal current generator noise is modulated by the diff-pair unbalancement in slew-rate conditions
$-\rightarrow$ Additional noise




## Driver Noise vs. DAC Output Slope (3)

- Tail current generator modulated noise reduction
- Sol1 $\rightarrow$ Increase Op-Amp Gain Bandwidth
$\rightarrow \rightarrow$ Increase power consumption
- Sol2 $\rightarrow$ Decrease DAC Output Signal Slope
- $\boldsymbol{\rightarrow}$ Increase Gain error (The effect is equivalent to reduce the Carrier Amplitude)
$-\rightarrow$ To match the maximum ADC dynamic range the Charge Amplifier gain has to be increased
- Trade off GBW vs. Slope $\rightarrow$ Power vs. Noise


## ADC Architecture

$\square$ Introduction
$\square$ Design Objectives
$\square$ Noise Budget Partitioning

- Architecture
$\square$ ADC Architecture


## 20b 250Hz ADC

- Sigma-Delta is the only possible 20b ADC solution
- No matching requirement
- Oversampling requirement (easy to be performed at small signal bandwidth)


## 20b 250Hz Sigma-Delta ADC

## Overall Specs

- ADC Resolution: > 20 bit (SNR >123 dB)
- THD
- Bandwidth
- Output rate
- Anti Aliasing Filter
$<-90 \mathrm{~dB}$
$1 \mathrm{~Hz}-250 \mathrm{~Hz}$
500 Sps
- Supply Voltage
- Area

External
3.3 V
$<3.5 \mathrm{~mm}^{\wedge} 2$

## 20b 250Hz Sigma-Delta ADC

- Noise Budget calculation
- Reference Voltage: 2.5V
- Input Amplitude: $4 \mathrm{~V}_{\mathrm{pp}}\left(1.4 \mathrm{~V}_{\mathrm{rms}}\right)$
- For $125 \mathrm{~dB}-\mathrm{SNR} \rightarrow$ Total Noise $\approx 700 \mathrm{fV}^{2}$


## 20b 250Hz Sigma-Delta ADC

- Noise Budget calculation
- For $125 \mathrm{~dB}-$ SNR $\rightarrow$ Total Noise $\approx$
$700 \mathrm{fV}^{2}$
- Noise Budget
- Opamp Noise after chopper
- kT/C Noise
- 250 fV ${ }^{2}$ < kT/(Cs.OSR)
- Reference Noise
- $\mathrm{Q}_{\text {noise }}+$ Other noise
$150 \mathrm{fV}^{2}$
$250 \mathrm{fV}^{2}$
$200 \mathrm{fV}^{2}$
$<50 \mathrm{fV}^{2}$
$\rightarrow$ Equivalent SNR (considering only $\mathrm{Q}_{\text {noise }}$ ) $=136 \mathrm{~dB}$
$\Rightarrow$ MATLAB SNR requirement $>136 \mathrm{~dB}$


## 20b 250Hz Sigma-Delta ADC

- Sampling frequency choice
- Low sampling frequency
- Quantization noise
- Low OSR $\rightarrow$ low resolution
$\Rightarrow \rightarrow$ high order
- $Q_{N}$ is not the key limitation !!!
- Thermal noise
- Low OSR $\rightarrow$ large in-band noise

$$
N_{\text {inband }}=\frac{\frac{k T}{C_{s}}}{O S R}=\frac{2 \cdot F_{b}}{F_{s}} \leftrightarrow \frac{k T}{C_{s}}
$$

- For a given DR $\rightarrow$ Larger $\mathrm{C}_{\mathrm{S}} \rightarrow$ higher Power
- High sampling frequency
- Smaller sampling period
- Larger opamp bandwidth spec $\rightarrow$ higher power
- Larger slew-rate $\rightarrow$ higher power


## 20b 250Hz Sigma-Delta ADC

- Sampling frequency choice
- Trade-off choice
- $\rightarrow$ OSR= 8.192
- $\rightarrow$ Fs $=250 \times 2 \times 8.192=4.096 \mathrm{MHz}$
$\Rightarrow \mathrm{N}_{\text {inband }}{ }^{2}=\left(\mathrm{kT} / \mathrm{C}_{\mathrm{S}}\right) / \mathrm{OSR}$
$\Rightarrow \mathrm{C}_{\mathrm{S}}=\mathrm{kT} /\left(\mathrm{N}_{\text {inband }}{ }^{2} \cdot \mathrm{OSR}\right)=10 \mathrm{pF}$


## 20b 250Hz Sigma-Delta ADC - Topology Choice

- Single-bit 2+2-MASH
- () No DAC cap mismatch sensitivity
- : Cap mismatch sensitivity in the noise canceling network
- : Large Slew-rate requirements

- Stability !!!


## 20b 250Hz Sigma-Delta ADC - Topology Choice

- $2^{\text {nd }}$-order FeedForward single-loop

- No signal in P \& R
- Maximum opamp output swing $\rightarrow$ Quantizer LSB
- Useful for multi-bit quantizer
- $\rightarrow$ Small integrator output swing


## 20b 250Hz Sigma-Delta ADC - Topology Choice

- 3-bit 2 ${ }^{\text {nd }}$-order FeedForward single-loop
- © DAC cap mismatch sensitivity
- :) No Cap mismatch sensitivity in the noise canceling network
- © No Finite opamp sensitivity in the noise canceling network
- :) Reduced Slew-rate requirements
- : Feedback DAC network with DEM

$P=Q \cdot\left(-1+z^{-1}\right) \cdot z^{-1} \quad R=Q \cdot\left(-2+z^{-1}\right) \cdot z^{-1} \quad Y=X+Q \cdot\left(1-z^{-1}\right)^{2}$


## 20b 250Hz Sigma-Delta ADC - Topology Choice

- Silva's Topology $\leftarrow \leftarrow$
- : © Two input branches
- Lower load for the previous stage
- (:) Single DAC

$P=Q \cdot\left(-1+z^{-1}\right) \cdot z^{-1}$
Nys's Topology
- : : Three input branches
- Higher load for the previous stage
- : Two DACs



## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FF Topology
- Amplitude swing @ Integrator outputs
- Output swing $<\mathrm{V}_{\mathrm{FS}} / 2 \rightarrow$ relaxed opamp output swing
$-\rightarrow$ Low Power Consumption





## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FF Topology
- Integrator output step histogram
- SR is still important




## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FFSDM $\rightarrow$ Stability \& Recovery Test
- Input overload signal
- The structure recovers from overload
- No reset circuit is need



## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FFSDM - SC Implementation



## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FFSDM $\rightarrow$ Architecture development
- $Q_{\text {noise }}$
- DAC non-linearity (Cap mismatch)
- Instability / Recovery time
- Idle tones
- Quantizer $\mathrm{V}_{T H}$ Error
- FF Adder Gain Error

- Circuit design development
- Opamp performance effects
- Gain, Bandwidth, Slew-Rate
- Sampling Jitter
- Thermal noise


## 20b 250Hz Sigma-Delta ADC - Topology Choice

- Simulink model
- Transient effects (SR, QN, Jitter, mismatch)
- Small signal effects (Thermal\&1/f, Gain\&Bandwidth)



## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FFSDM - Real opamp performance
- Gain $=50 \mathrm{~dB}, \mathrm{UGB}=25 \mathrm{MHz}, \mathrm{SR}=40 \mathrm{~V} / \mu \mathrm{s}$
- Poor opamp gain requirement $\rightarrow$ LowPowerCons



## 20b 250Hz Sigma-Delta ADC - Topology Choice

- FFSDM - Real opamp performance

PSD vs Frequency - Jitter $=000$ ps

- SNR $_{\text {NoJitter }}$
- 192.71 dB
- 168.08 dB
- 192.71 dB
- 192.71 dB
- 168.078 dB



## 20b 250Hz Sigma-Delta ADC - Topology Choice

- Dither Avoids Spurious_Tone generation at low signal-level
- @ Low-Level Multibit ADC behaves like a single-bit ADC
- Dither is implemented with an SC branch
- $C_{\text {dit }}=1 / 10 \mathrm{Cb}$
- connected at the $2^{\text {nd }}$-opamp input
- dith frequency = Fs/4
- $\rightarrow$ input tones at Fs/4, i.e. far from the signal band
- can be disabled (dithEn signal)



## 20b 250Hz Sigma-Delta ADC - Implementation

- Input noise reduction
- The aggressive AAF reduces input noise bandwidth
- It reduces settling time of the sampling operation
- The final sampled value depends on charging starting point
- $\rightarrow$ Sampling error depends on signal amplitude
- THD

$\square$


## 20b 250Hz Sigma-Delta ADC - Implementation

- Input noise reduction - Solution
- The sampling capacitor is reset at the beginning of the sampling phase
- $\rightarrow$ The signal-dependent error is canceled



## 20b 250Hz Sigma-Delta ADC - Implementation

- $1^{\text {st }}$-opamp design
- 1/f Noise $\rightarrow$ Chopper
- FFSDM
- $\rightarrow$ Reduce swing
- $\rightarrow$ Telescopic cascode
- Different input.vs.output CM compensated in the SC structure



## 20b 250Hz Sigma-Delta ADC - Implementation

- Chopper concept
- Chopper frequency choice: Trade-off motivation
- Low chopping frequency $\rightarrow$ Larger in-band noise folding
- High chopping frequency $\rightarrow$ Large-\&-frequent opamp output steps
- Chopper frequency choice $\rightarrow \mathrm{F}_{\mathrm{s}} / 8$



## 20b 250Hz Sigma-Delta ADC - Implementation

- Chopper concept
- In a two-stage opamp only the $1^{\text {st-stage }}$ in chopped
- Negligible $2^{\text {nd }}$-stage $1 / \mathrm{f}$ noise
- Smaller $1^{\text {stt-stage output swing }}$
- In a single-stage opamp
$-\rightarrow$ The full opamp is chopped
- $\rightarrow$ Significant output swing
- !!! BUT in FF-SDM
- $\rightarrow$ small $1^{\text {stt-opamp output }}$ swing
- $\rightarrow$ Chopper is not critical



## 20b 250Hz Sigma-Delta ADC - Implementation

- Chopper Transient evolution
- Output1 $\rightarrow$ pink line
- Output2 $\rightarrow$ Green line


DC-gain UGB
Settling time
(closed loop configuration)
Chopper frequency
Current consumption

93dB
35 MHz
$<120 \mathrm{~ns}$

Fs/8
$390 \mu \mathrm{~A}$

## 20b 250Hz Sigma-Delta ADC - Implementation

- Multibit ADC
- ADC Threshold voltage generation
- Passive SC solution in the comparator (single-ended version)
- Charge balance

$$
V_{c}(2)=V_{i n}-\frac{C_{p}}{C_{p}+C_{m}} V_{R}
$$

- $\mathrm{V}_{\mathrm{TH}}=7 \rightarrow \mathrm{C}_{\mathrm{p}}=7 \cdot \mathrm{C} \& \mathrm{C}_{\mathrm{m}}=1 \cdot \mathrm{C}$

- $V_{T H}=5 \rightarrow C_{p}=5 \cdot C \& C_{m}=3 \cdot C$
- $V_{T H}=3 \rightarrow C_{p}=3 \cdot C \& C_{m}=7 \cdot C$

$$
V_{c}(2)=V_{i n}-\frac{C_{p} V_{R+}+C_{m} V_{R-}}{C_{p}+C_{m}}=V_{i n}-\frac{C_{p}-C_{m}}{C_{p}+C_{m}} V_{R+}
$$

## 20b 250Hz Sigma-Delta ADC - Implementation

- Multibit ADC
- Fully-differential scheme



## 20b 250Hz Sigma-Delta ADC - Implementation

- Multibit ADC
- Fully-differential scheme



## 20b 250Hz Sigma-Delta ADC - Implementation

- Multibit DAC
- Fixed total opamp input capacitance
- Independent on the input data
- Fixed total load for $\mathrm{V}_{\mathrm{R}+}$ \& $\mathrm{V}_{\mathrm{R}-}$
- Independent on the input data



## 20b 250Hz Sigma-Delta ADC - Implementation

- Multibit DAC: 3bit operation example



## 20b 250Hz Sigma-Delta ADC - Implementation

- Multibit DAC: 3bit operation example



## 20b 250Hz Sigma-Delta ADC - Simulation

- $\mathrm{A}_{\mathrm{in}}=-4 \mathrm{~dB}_{\mathrm{FS}}$, Dither=NO



## 20b 250Hz Sigma-Delta ADC - Simulation

- $\mathrm{A}_{\mathrm{in}}=-4 \mathrm{~dB}_{\mathrm{FS}}$, Dither=YES



## Overall System Power Consumption

|  | Current <br> Consumption <br> $[\mu \mathrm{M}]$ | Supply Voltage <br> $[\mathrm{V}]$ | Power <br> Consumption <br> $[\mathrm{mW}]$ |
| :--- | :---: | :---: | :---: |
| Charge Amplifier | 2200 | 3.3 | 7.3 |
| Anti-Alias Filter | 0 | 3.3 | 0 |
| Drivers | 672 | 5.0 | 3.4 |
| Differential MDAC | 353 | 3.3 | 1.16 |
| ADC | 890 | 3.3 | 3 |

