

CMOS Technologies for HV applications

Microelectronics Users eXchange MUX-2011

Rainer Minixhofer – Senior Manager R&D CERN, June 10th, 2011

a leap altead in analog

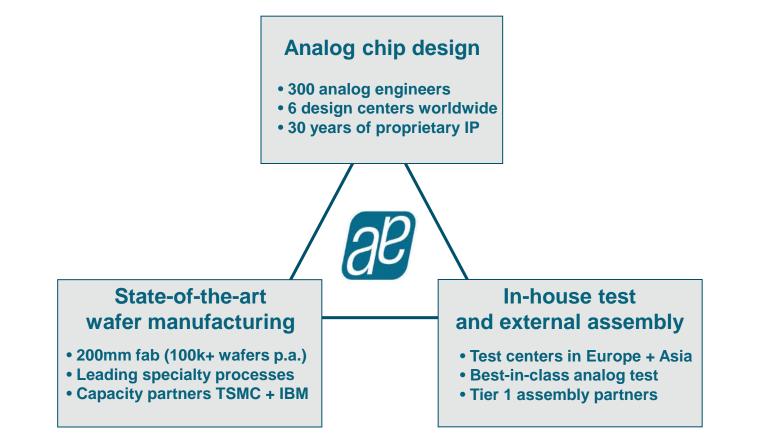
- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

a leap altead in analog

Let's scale down first

- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

a leap altead in analog


- Let's scale down first
- **Introduction & Company Overview**
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

Full control over design and manufacturing

a lean ahead in analim

a leap ahead in analog

Figures of Merit in High Voltage Technology

BVdss

a leap ahead in analog

- Initial Specification for LDMOS devices and defines usable voltage for circuit design
- Allows for adequate voltage margin to account for device hot-e degradation (reliability) and ESD robustness
- For H18, full device reliability lifetime is evaluated during technology qualification
- Statistical in line process control to avoid escapes below minimum value
- SOAC tool checking during design simulation alerts circuit designer to any inappropriate voltage use

Ron

- Minimum value is key for setting device size and overall circuit complexity
- For H18, device layout is optimized by device type to obtain a minimum Ron after meeting BVdss window as specified above

Process complexity

- Modularity to industry standard CMOS: H18 FET electrical specifications/models are identical to those of C18 technology for 1.8 and 5V LV FETs: easy porting of IP
- Minimal mask additions for HV devices: add of 2 masks compared with C18
- Maintain a rich HV device set: variety of BVdss and Vgs of HV LDMOS devices and specific HV devices include NPN, PNP, JFET, HV resistors and HV capacitors

Process flexibility and extendibility

- The single H18 process supports multiple BVdss specifications with scaled devices
- H18 is extendable without process changes to BVdss values as low as 10V and high as 120V
- Thus, designs completed now can be enhanced by addition of these extended voltage range devices in the future

Si-Limit: On-Resistance vs. Blocking Voltage Tradeoff

 $W = \sqrt{\frac{2 \cdot \varepsilon_{Si} \cdot V_{B}}{q \cdot N_{drift}}}$

 $V_B = \frac{W \cdot E_{crit}}{2} = \frac{W^2 \cdot q \cdot N_{drift}}{2\varepsilon}$

A simple model for HV Transistors:

For a one sided junction the depletion layer width at breakdown is:

and the breakdown voltage is:

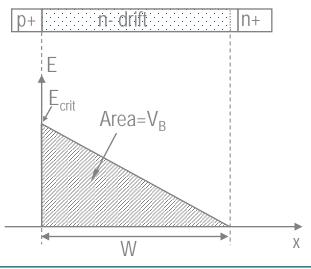
Specific on-resistance is given by:

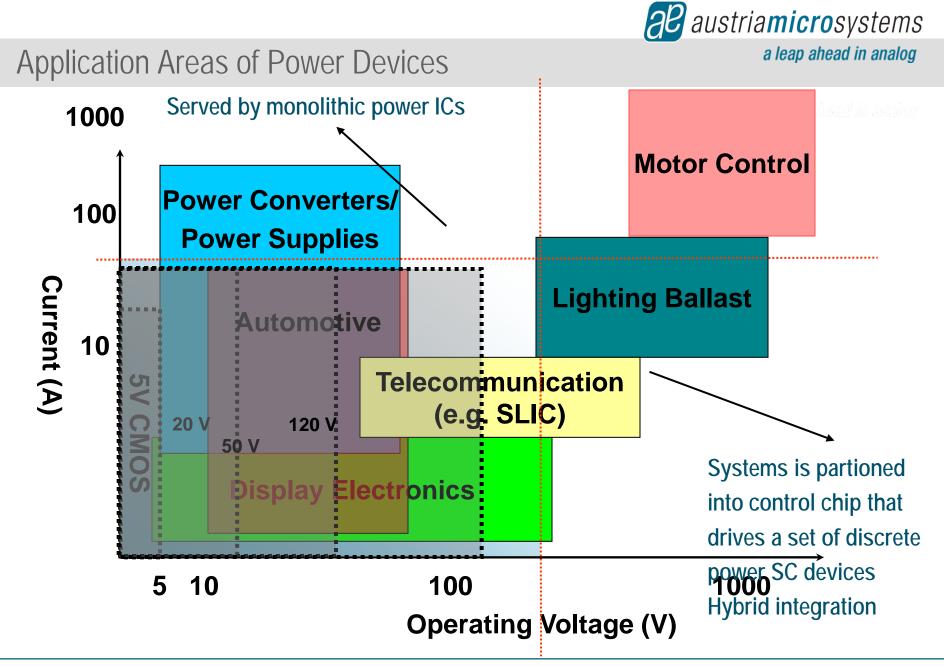
Breakdown occurs when the depletion layer reaches a certain thickness which is almost proportional to the breakdown $W = 2.58 \cdot 10^{-6} \cdot (V_B)^{\frac{1}{6}}$ voltage (avalanche effect):

Which finally yields:

$$R_{on,sp} \propto V_B^{2.5}$$

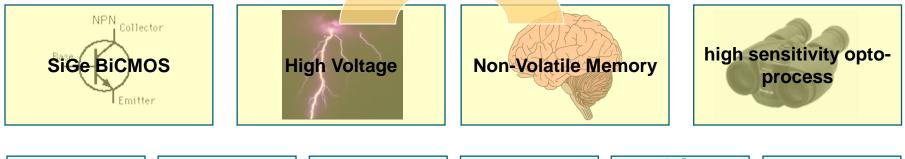
S:

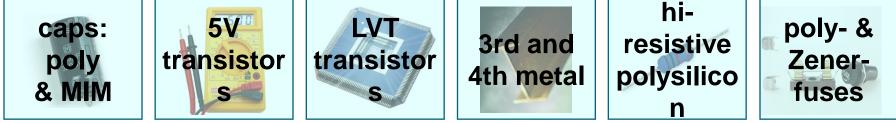

$$W = \sqrt{\frac{2 \cdot \varepsilon_{Si} \cdot V_{B}}{q \cdot N_{drift}}}$$


$$V_{B} = \frac{W \cdot E_{crit}}{2} = \frac{W^{2} \cdot q \cdot N_{drift}}{2\varepsilon_{si}}$$

$$R_{on,sp} = \rho \cdot W = \frac{W}{q\mu N_{drift}} = \frac{W^{3}}{2\mu V_{B}\varepsilon_{si}}$$

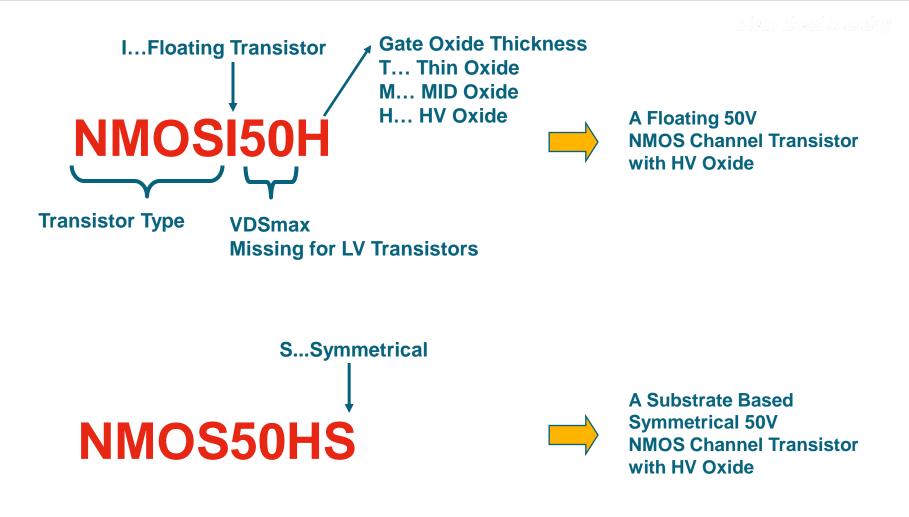
$$V_{B} = \frac{W}{V_{B}}$$


a leap abead in analog

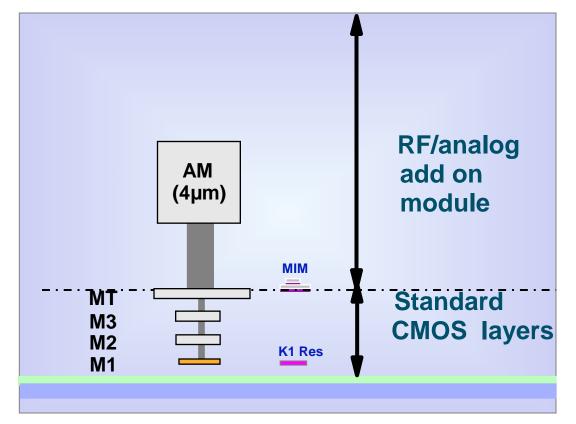

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

Process modularity on 0.35µm node

High flexibility through modularity:



MOS transistor naming H35


High Voltage Technology Process Flow

deep N-well		a leap alread in analog
	shallow trench isolation	
HV well	well implants for 1.8V and 5V	
HV Gate oxide	Gate oxidation for 5V	Net:
	Gate oxidation for 1.8V Gate formation FET extension implants for 1.8V FET extension implants for 5V spacer formation	•Triple gate process (1.8, 5 and 20V), but 1.8 and 20V optional
	pFET S/D/G implants nFET S/D/G implants	•2 additional HV masks to base CMOS
	final RTA anneal salicide formation	•Additional resistor
	contact formation Cu/AI interconnect metal-insulator metal capacitor thick last metal	masks optional •3LM-7LM options
HVCMOS ADDS	CMOS PROCESS	

H18 metal stack options

a lean ahead in analon

	AM Last Metal Option									
# Levels	3	3 4 5 6 7								
					MT					
				MT	M5					
			MT	M4	M4					
Standard Al wiring Levels		MT	M3	M3	M3					
	MT	M2	M2	M2	M2					
	M1	M1	M1	M1	M1					

H18 Process Information

. .

r leap altead in analog .

0.18µm HV CMOS - Key Technology Features

Currently available voltages RON (20V & 50V) NMOS Operating Voltages Blocking Voltages Layout scalable devices 1.8 V / 5 V / 20 V / 25 V / 50 V 15 & 105 mΩ mm² 20 V / 25 V / 50 V 30 V / 40 V / 70 V 20 - 120 V (120 V demonstrated)

0.18µm HV CMOS - Process Modules

Back end process modules

3 - 7 metal

Power metal (4 µm thick) Poly resistor High resistive poly MIM (metal insulator metal) capacitance

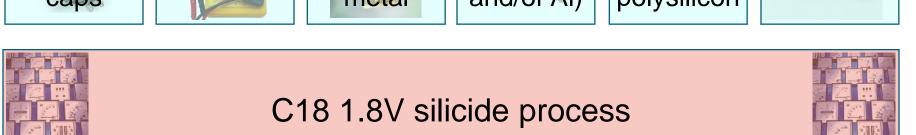
Front end process modules

1.8 V Gates

5.0 V Gates 20 V Gates Isolated low voltage NMOS and PMOS (1.8 V / 5.0 V)

Process modularity of H18

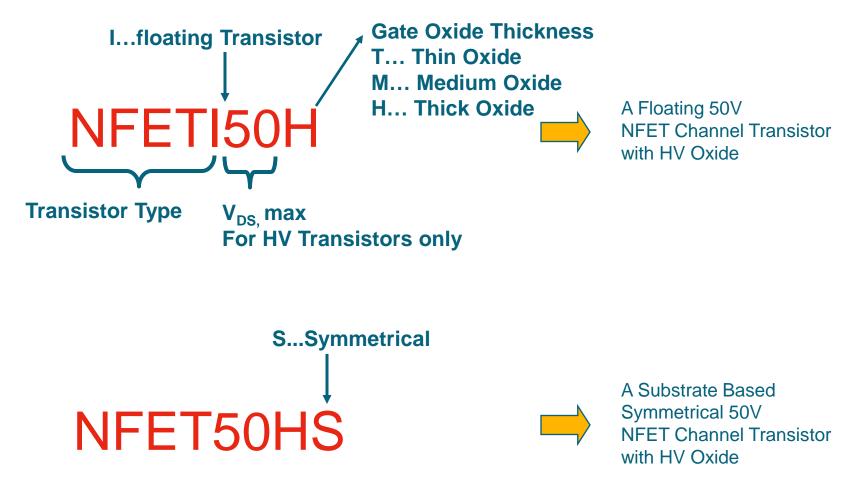
High flexibility through modularity:


15

High Voltage

Non-Volatile

Memor


a leap ahead in analog

*austriamicro*systems

HV MOS Transistor Naming Convention Cheat Sheet

a leap abead in analog

H18 device list

a leap ahead in analog

Existing C18 Devices

Thin oxide NFET/PFET 1.8V Medium oxide NFET/PFET 5V High Vt NFET/PFET 1.8V N+ diffusion resistor P+ diffusion resistor N+ poly resistor P+ poly resistor **K1 BEOL resistor** High resistivity poly resistor precision poly resistor Single Nitride MIM **Dual Nitride MIM** HighK MIM PCDCAP thin ox Vertical parallel plate capacitor (VNcap) Schottky Barrier Diode Ffuse Bondpad

Modifications to existing devices for HV process:

Thin oxide NFETi/PFETi 1.8V in HV wells Medium oxide NFETi/PFETi 5V in HV wells High Vt NFETi/PFETi 1.8V in HV wells N+ diffusion resistor in HV well P+ diffusion resistor in HV well

New Devices:

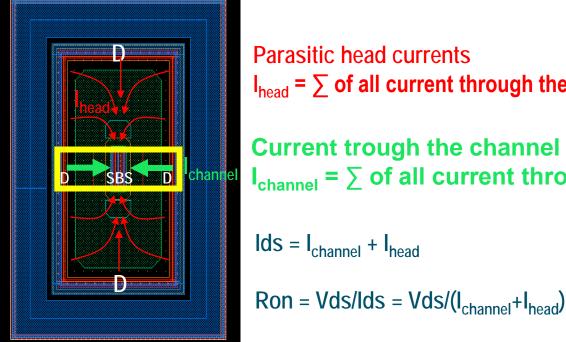
Thin oxide NFETi/PFET 20V Thick oxide NFETi/PFET 20V Thick oxide NFETi/PFET symmetric 20V Medium oxide NFETi 20V Medium oxide NFETi/PFET 25V Thin oxide NFETi/PFET 50V Medium oxide NFETi/PFET 50V Thick NFETi/PFET 50V Thick NFETi/PFET symmetric 50V 3 terminal JFET Parasitic VPNP (high V) Parasitic VNPN (isolated) NWell resistor in HV well PWell resistor in HV well High Voltage VNcap

t leap ahead in analog

- Suite of FETs with three gate oxide thicknesses
 - Low Voltage (LV) fets for standard 1.8 and 5V CMOS
 - LV fets in HV well for high voltage isolation to substrate
 - HV asymmetric fets for High Voltage applications
 - 3 gate oxide thicknesses, 2 maximum drain bias choices
 - HV symmetric fets for specialty applications (transmission gate)

	LV fets		LV fets i	LV fets in HV well		HV asymmetric fets in HV wells		netric fets Substrate)
Vds Vgs	1.8V	5.0V	1.8V	5.0V	20V**	50V	20V	50V
1.8V (3.5nm)	nfet* pfet* nfethvt pfethvt		nfeti* pfeti* nfetihvt pfetihvt		nfeti20t pfet20t	nfeti50t pfet50t		
5.0V (12nm)		nfetm pfetm		nfetim pfetim	nfet20mh nfeti25m pfet25m	nfeti50m pfet50m		
20V (52nm)					nfeti20h pfet20h	nfeti50h pfet50h	nfet20hs pfet20hs	nfet50hs pfet50hs

* RF layout available ** 25V Vds for nfeti25m,pfeti25m

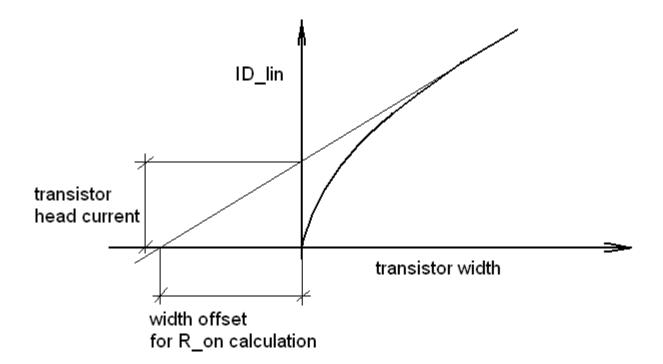

Wide vs. Small Devices: The Transistor Head effect

Parasitic head currents can't be 100% eliminated (up to 20uA)

Parasitic head currents $I_{head} = \sum$ of all current through the head

Current trough the channel $I_{channel} = \sum$ of all current through the channels

Parasitic head currents can't be neglected for low channel Currents (narrow devices) If channel currents are high (wide devices), parasitic head current can be neglected For simple calculation there are two different Ron [Ohm um] values for narrow and wide transistors



Ron Calculation

a leap altead in analog

Transistor head current

For small W devices the transistor current increases faster than for a large W device.

a leap abead in analog

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- **High Voltage Device Description**
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

H18 High Voltage NFETs

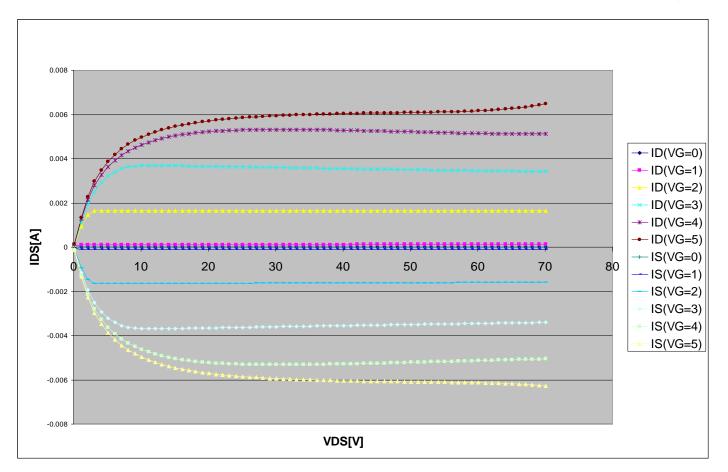
a leap shead in analog

	Asymmetric, thinnest oxide, isolated well		Asymm., med. oxide in substrate	Asymmetric, medium oxide, isolated well		Asymmetric, thickest oxide, isolated well		Symmetric, thickest oxide, in substrate	
Parameter	nfeti20t	nfeti50t	nfet20mh	nfeti25m	nfeti50m	nfeti20h	nfeti50h	nfet20hs	nfet50hs
Min Drain-source breakdown (V)	29	83	27	33	73	28	79	32	85
Tox (physical, nm) / Max VGS (V)	3.5 / 1.98	3.5 / 1.98	12 / 5.5	12 / 5.5	12 / 5.5	52 / 20	52 / 20	52 / 20	52 / 20
Ldrawn (µm)	0.2	0.2	0.4	0.4	0.4	0.5	0.5	0.7	1.3
V _T (short wide V)	0.43	0.40	0.80	0.71	0.72	2.0	2.14	2.15	2.15
IDsat (µA/ µm)	200	172	400	343	266	580	353	340	230
On Resistance $m\Omega$ -mm ²	35.1	168	17.1	45.2	143	29.5	138	47.1	316
On Resistance m Ω -mm ² (butted)*	29.8	155	14.4	39.2	132	25.5	128		

Pitch for R_{sp} on resistance calculation includes full drain, source, *and* independent body contact (*mh devices butted source contact)

H18 High Voltage PFETs

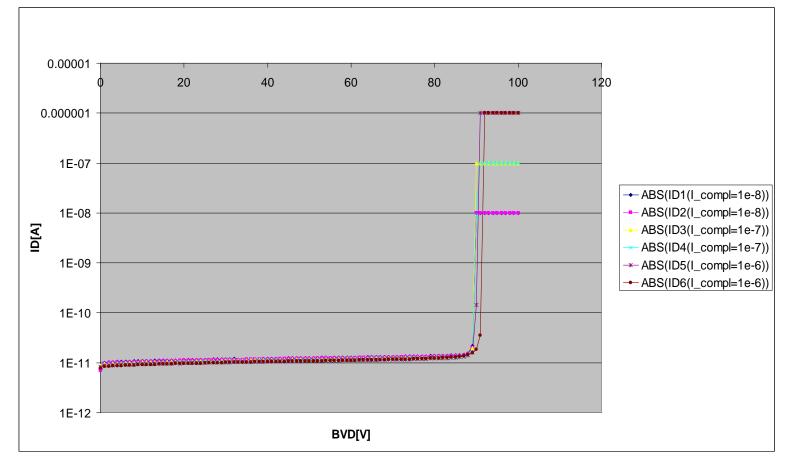
a leap ahead in analog


	Asymmetric, thinnest oxide		Asymmetric, medium oxide		Asymmetric, thickest oxide		Symmetric, thickest oxide	
Parameter	pfet20t	pfet50t	pfet25m	pfet50m	pfet20h	pfet50h	pfet20hs	Pfet50hs
Min Drain-source breakdown (V)	-30	-70	-32	-70	-35	-70	-28	-70
Tox (physical, nm) / Max VGS (V)	3.5 / 1.98	3.5 / 1.98	12 / 5.5	12 / 5.5	52 / 20	52 / 20	52 / 20	52 / 20
Ldrawn (µm)	0.2	0.2	0.6	0.6	0.6	0.6	2.0	3.0
V_{T} (short wide V)	-0.35	-0.35	-0.51	-0.52	-2.48	-2.52	-1.80	-1.80
IDsat (µA/ µm)	140	123	220	204	345	309	250	160
On Resistance $m\Omega$ -mm ²	53.0	187	66.0	194	63.0	183	129	630
On Resistance m Ω -mm ² (butted)*	41.8	166	53.8	174	51.7	166		

Pitch for R_{sp} on resistance calculation includes full drain, source, *and* independent body contact (*mh devices butted source contact)

H18 Devices: NFETI50 Device Family

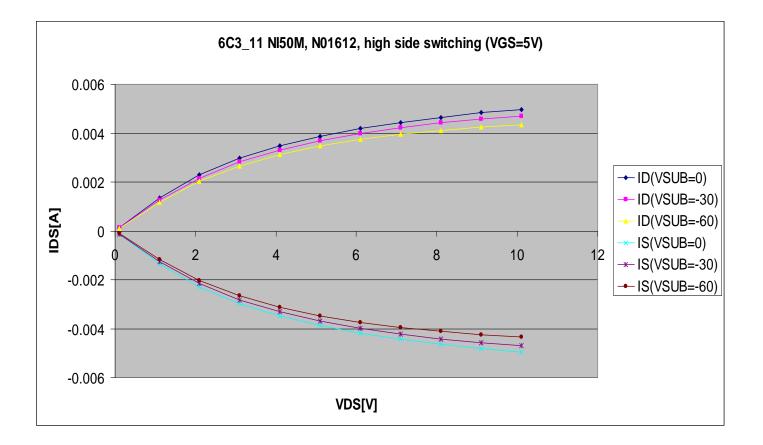
a lean shead in analon-


Note the active breakdown for the stationary curve tracing is for the 50V devices higher than 70V.

H18 Devices: NFETI50 Device Family

NFETI50M blocking curve

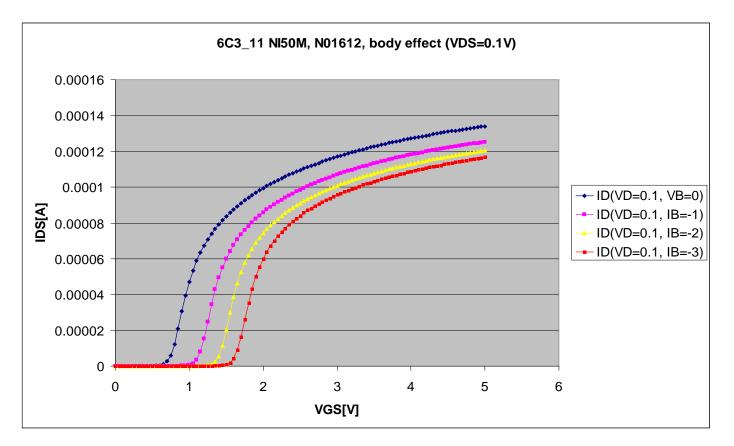
a leap shead in analog -


The breakdown should start abrupt without any premature leakage current

H18 Devices: NFETI50 Device Family

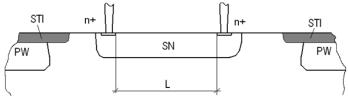
NFETI50M high side switching behavior

a leap shead in analog -


Note: The drain voltage in the curve with the lowest current is 60+10=70V above substrate potential.

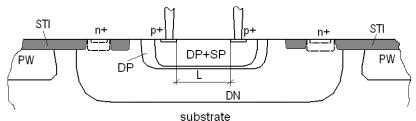
H18 Devices: NFETI50 Device Family

NFETI50M body effect


a leap ahead in analog

© 2010 austriamicrosystems

H18: HV Resistors



- Linear current-voltage relationship over wide range of applied voltage
- Resistance scales with width

austriamicrosystems

a leap ahead in analog

- The pinch-off characteristic for high current density is modeled
- Weff calculated from various W/L

	Rs (Ω / sq)	Temp Coeff (linear) 10 ⁻³ / K	Temp Coeff (quad) 10 ⁻³ / K
HV NW Resistor	3074	5.14	1.47
HV PW Resistor	725	2.32	0.53

a leap altead in analog

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

H18: Low Voltage FET Options

austriamicrosystems

a leap ahead in analog

		H18 Spec Target Value				
Device Description	Vt (mV)	ld sat (µA/µm)	Vdd (V)	Library Name		
Thin ox NFET	355	600	1.8	nfet		
Thin ox NFET in HV isolation	355	600	1.8	nfeti		
Thin ox PFET	420	260	1.8	pfet		
Thin ox PFET in HV isolation	420	260	1.8	pfeti		
High Vt NFET	525	500	1.8	nfethvt		
High Vt PFET	520	210	1.8	pfethvt		
5V Medium ox NFET	625	630	5.0	nfetm		
5V Medium ox NFET in HV isolation	625	630	5.0	nfetim		
5V Medium ox PFET *	650	345	5.0	pfet		
5V Medium ox PFET in HV isolation *	650	345	5.0	pfeti		

All specifications match those found in C18

 * Corresponds to shorter (0.5 μm) gate length device

a leap altead in analog

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

Design Documents

Basic Design & Process Information

Process Parameters Documents

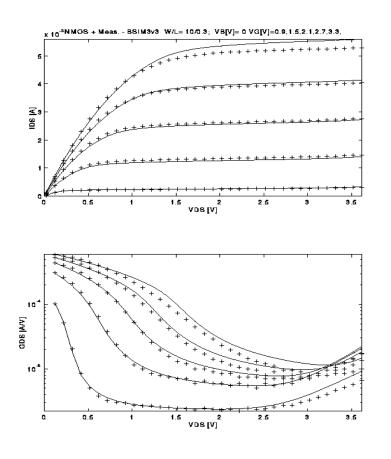
Operating conditions Structural & geometrical parameters Electrical parameters Figures of merit (e.g. FT ,FMAX) Compact Modeling Documents SPICE Models

Features and Limitations

Design Rule Documents Rules, Guidelines, Recommended Layout Structures

Element Layout Documents

Element specification Internal only RF-Devices RF Modeling Figures of merit (e.g. Qmax)

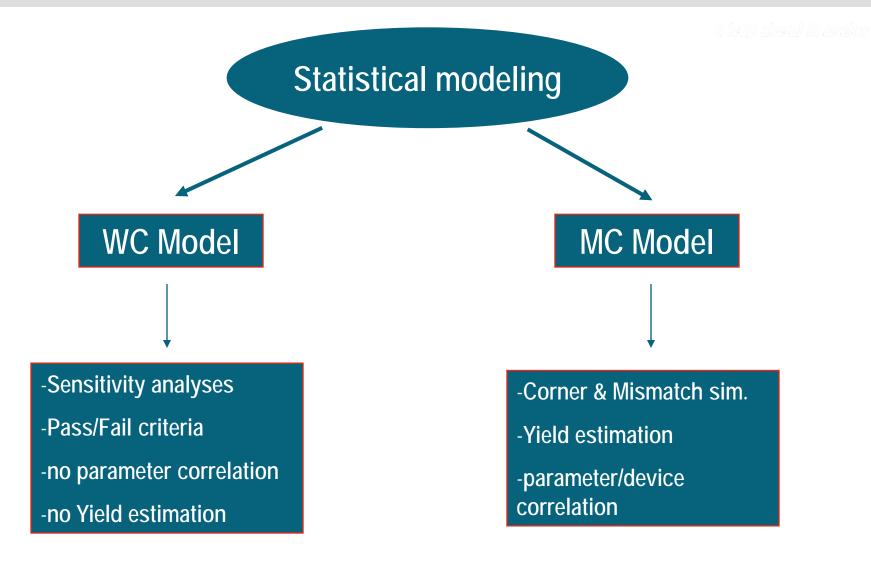

Noise Documents Noise Measurements Noise Modeling

Matching Documents Matching Measurements Matching Modeling

Parasitic Modeling Parasitic diodes and Bipolar Tr. for HVMOS

Compact modeling for the CMOS Process

- –PSP & BSIM3v3 for std. MOS transistor
 - •Scalable, physical, predictable.
- -High voltage transistor modeled as subcircuits
- JFET models for all diffusion resistors
 SGP model for all pnp (Vert,Lat)
 Voltage and Temp. dependent capacitance & resistor modeling
 Mismatch modeling for all devices
 Noise modeling (1/f & thermal noise)
 RF- modeling for MOS, Res, Cap, Varactor.



a leap ahead in analog

Process variation overview

a leap ahead in analog

H35 120V Devices (Compact Modeling)

a lean shead in smaloo

Model Features										
Device	Scalable Model	1/f noise ^{*)}	Temp. Modeling -40 – 180°C	Worst Case Model	Monte Carlo Model	Mismatch Parameter ^{*)}	parasitic model ^{*)}			
NMOSI120M	х	х	х	х	х	х	х			
NMOSI120H	х	х	х	х	х	х	х			
PMOS120M	x	x	x	x	х	х	х			
PMOS120H	х	х	х	х	х	х	х			

H35 120V Characteristic Curves

a leap ahead in analog

7.1 NMOSI120M

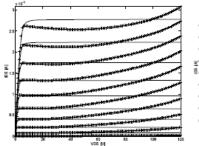
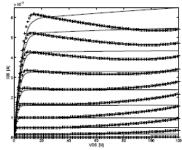
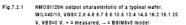




Fig.7.1.1 NNO81120M output oharaoteristic of a typical water. W/L=40/10, VO8= 1.0 1.6 2.0 2.6 3.0 3.6 4.0 4.6 6.0 6.6 V, VB8=0 V. + = measured, -- = B8IMSV3 model

7.2 NMOSI120H

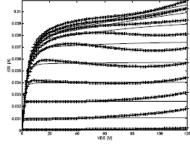


Fig.7.1.2 NMO81120M output obaraoteristic of a typical wafer. W/L=40/0.5, VGS= 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 6.0 6.6 V, VBS=0 V. + = measured, -- = B8IM3VS model

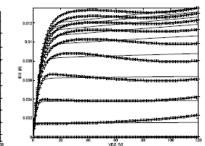


Fig.7.2.2 NMO81120H output oharaoteristio of a typical water. W/L=400.5, VOS= 2.9 4.8 6.7 8.8 10.6 12.4 14.3 16.2 18.1 20 V, VBS=0 V. + = measured, -- = B81M3v3 model

7.3 PMOS120M

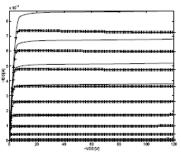


Fig.7.8.1 FMO8120M output charaoteristic of a typical wafer. W/L=2016, VO8= -1.0 -1.6 -2.0 -2.6 -0.0 -8.6 -4.0 -4.6 -5.0 -6.6 V, VB8=0 V. + = measured, -- = B81M8v3 model

7.4 PMOS120H

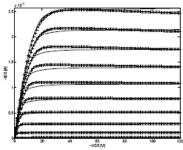


Fig.7.4.1 PMO8120H output oharaoteristic of a typical wafer. W/L=20/5, V08= -2.9 -4.8 -8.7 -8.6 -10.5 -12.4 -14.8 -16.2 -18.1 -20 V, VB8=0 V. + = measured, -- = B8IMSv8 model

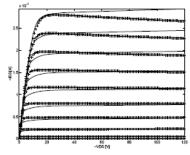
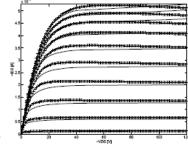
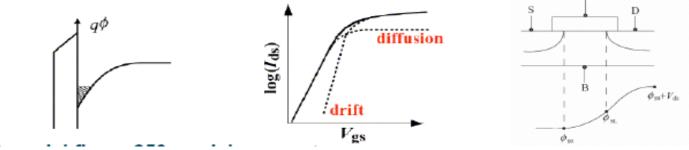
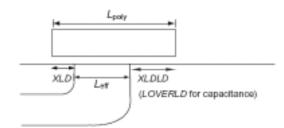


Fig.7.8.2 PMO8120M output oharaoteristio of a typical wafer. W/L=20/1, V68= -1.0 -1.5 -2.0 -2.5 -8.0 -3.5 -4.0 -4.5 -5.0 -6.6 V, VB8=0 V. + = measured, -- = B8IM3v8 model

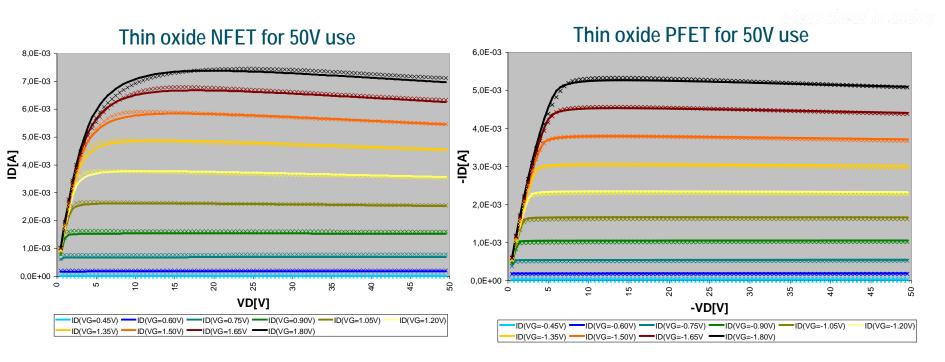



Fig.7.4.2 PNO8120H output oharaoteristic of a typical wafer. W/L=2011.2, VO8= -2.8 -4.8 -6.7 -8.8 -10.5 -12.4 -14.8 -18.2 -18.1 -20 V, VE8=0 V. + = measured, -- = B8IM3V3 model


HISIM-HV Model for HV LDMOS

a leap ahead in analog

- Developed as extension of HiSIM: Complete surface potential based model
 unified description of device characteristics for all bias regions
- Based on drift-diffusion theory using charge sheet and gradual channel approximation


- Capable of modeling symmetrical and asymmetrical devices: COSYM= 0/1
- Self-heating effect modeling: COSELFHEAT=0/1
- Substrate current modeling: COISUB=0/1

HV HSIM_HV Model to Hardware Results

a leap ahead in analog

Excellent agreement between measured results and HiSIM_HV SPICE model. Model features include:

- Surface potential iterative calculation used for an accurate description of drift region
- Self-heating included
- Simulation speed and accuracy is improved compared BSIM (SPICE) + subcircuit.

Outline

a leap abead in analog

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

H18: LV and HV ESD Protection

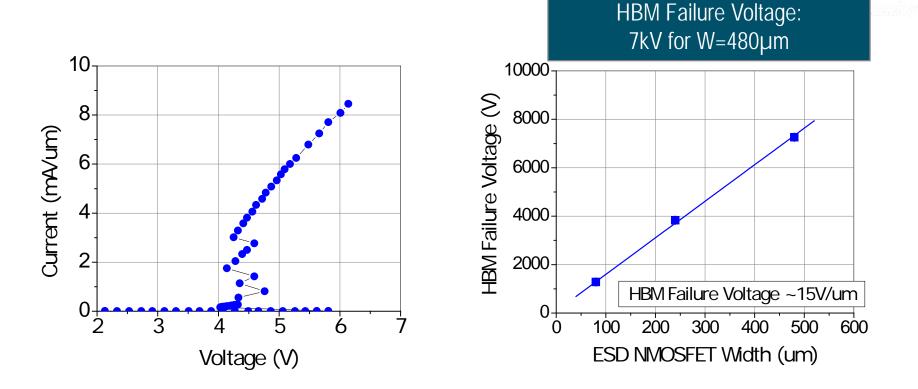
a leap ahead in analog

Strategies for 1.8V and 5.0V Applications:

- Power Supply Protection Devices
 - 1.8V or 5.0V RC-Triggered Power Clamp
 - 1.8V or 5.0V Silicide-Blocked NFET
- I/O ESD Protection Devices
 - P+/NW Diodes
 - N+/PW Diodes
 - 1.8V or 5.0V Silicide-Blocked NFET
- ESD protection devices are offered in standard well and in HV Well

Strategies for 20V, 25V and 50V:

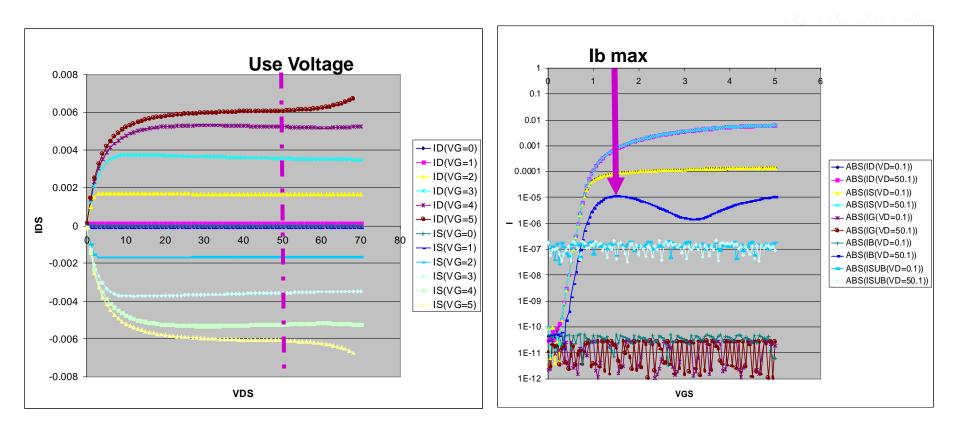
- Power Supply Protection Devices
 •HV Clamp based on 20V, 25V or 50V HV-PFETs
- I/O ESD Protection Devices
 - 25V Forward Diode
 - 50V Forward Diode


Characterization

- Use 100ns TLP, 30ns and 1ns TLP to emulates device behavior under HBM, MM and CDM conditions
- Also wafer level testing with HBM tester

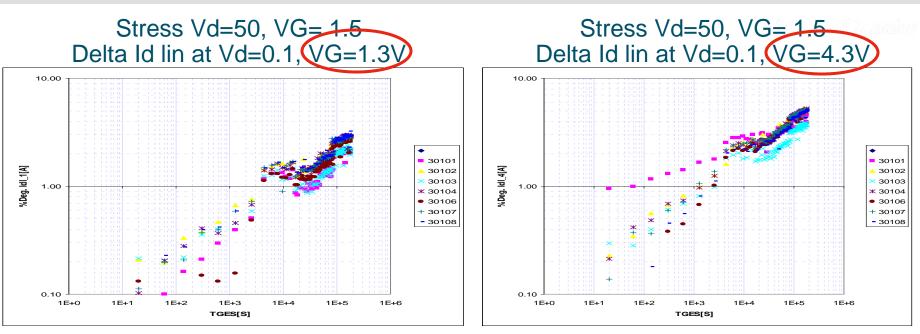
LV Silicided 1.8V NFET Scalability

a leap ahead in analog


- 100ns TLP I-V of a 1.8V, gate-grounded silicide-blocked NFET with drain silicide-block length of $2\mu m$
- HBM data shows good scaling of failure voltage ~15V/ μ m of device width

- ESD protection devices are available in H18 HIT-Kit for protection of low voltage and high voltage devices
- ESD devices are designed to be fully scalable to enable a area optimized solution
- Detailed recommendations and ESD data summary is available in ESD Reference Guide that is provided with the HIT-Kit
- ESD Design review is provided upon request for all designs
- Demonstrated scalable ESD solutions (HBM 2-8kV)
- Failure currents of protections exceed tester capability

HV NFET SOA and Reliability



Forward IV and body current plots for isolated HV NMOS NFETI50M Output current stable (Ids) beyond use voltage Body current (Ib) peaks at Vgs~1.5V

HV Isolated NFET Idlin Stability (NFETI50M)

a leap ahead in analog

Id_{lin} parameter shift with (stress time) is key for power applications
Measure Id_{lin} stability after stress at Vds=50V, Vgs=1, 1.5V (worst case)
Gm, Vt, Id_{sat} drift << Id_{lin}
Use data to construct SOA tradeoffs with respect to L, Vd,% shift (lifetime)
Id_{lin} lifetime > 10 years ; *industrial* and *automotive* grade stability
Id_{lin} lifetime @60V stress exceeds *consumer* grade stability

Temperature lifetime profile: (-40 +125)° C for 15 years	
	(-40 +150)° C for 10 000 hours
Voltage levels:	VG1.98V/5.5V/20V
	VD1.98V/5.5V/20V/50V
Oxides:	Defect Density: <1 Defect/cm ²
	max. oxide area: 5mm ²
ESD:	ESD Library up to 4kV HBM*

* According to MIL-STD-883C method 3015.7 and JESD22-A114 and ANSI/ESD STM5.1

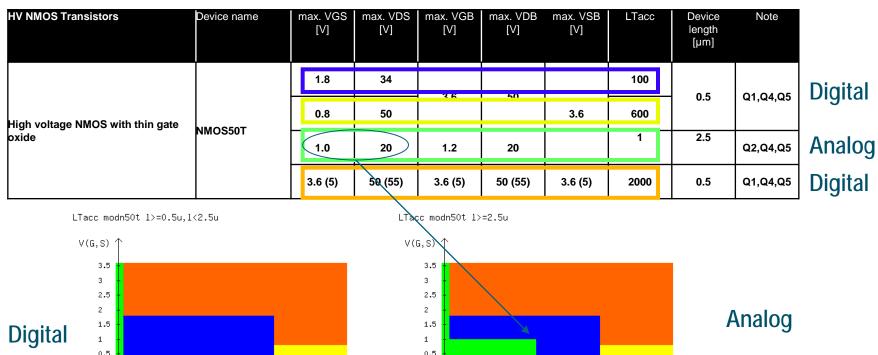
Outline

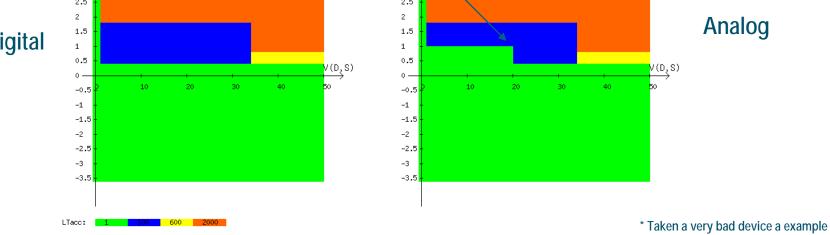
a leap abead in analog

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- **Design Kit**
- Conclusions

Analog/Mixed Signal High Performance Interface Tool Kit

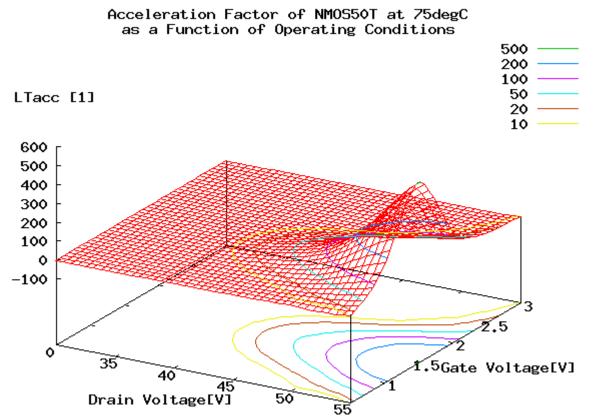
The AMS HIT-Kit enables product developers to concentrate on their core competence IC design rather than on setting up and mastering the EDA environment


This leads the Partner to:


- **.** Shorter Time to Market
- Complete Environment for First Time Right Designs
- . More Efficient Designs (Die Size, Performance, Yield)

LTacc – LifeTime Acceleration Factor for Simulation a leap ahead in analog

LTacc defined in the Process Parameter Document:



NMOS50T HC Reliability Model

a loop alloud in allolog

-Acceleration Factors for NMOS50T based on self-heating and operating conditions analysis.

- "Plug and Play" for IC designers
- All major EDA tools supported
- All process technologies supported with latest versionsof EDA tools
- All devices supported throughout the whole design flow
- Complete modeling of active and passive devices

(high accuracy, Monte Carlo, corner, mismatch, noise, HDL, IC package, up to system level)

a leap ahead in analog

HIT-Kit Benefits (cont.)

- Supports complete flow for RF, Mixed Signal and High Voltage design
- Additional Userware for special Tasks

(Bonding-Diagram Editor, Safe Operating Area Check, Revision Block Generator etc.)

- Full Mixed-Signal Library Concept
- HIT-Kit is fully compliant with QS9000 quality certificate
- HIT-Kit developers provide technical support

Customer Support

Hotline

Online Documentation http://asic.austriamicrosystems.com

Data sheets

Design Documents

HIT-Kit Information

•Tool usage

News & Alerts

Download area

Special High-Voltage Designer Forum

Training & Tutorials

austriamicrosystems High-Voltage CMOS Designers Forum

Due to of the variety of applications that can be realized using a High-Voltage CMOS process, different design methods and layout techniques are applicable. High-Voltage CMOS design is always based on the designers experience and knowledge of the process. It is very important that designers are familiar with all devices and their parasitics.

This forum provides the possibility to gain detailed design knowledge and High-Voltage CMOS process (H35) related information:

Process information

- High Voltage technology selection guide
- H35 process options and available devices

Design support

- <u>High Voltage Design Kit</u> (v3.70)
- Frequently Asked Questions (FAQs)
- High Voltage Discussions
- Safe Operating Area Check (SOAC)
- CDF Parameters and Pcell Parameters
- High Voltage Glossary

Design documents:

- H35 50V CMOS Process Parameters ENG-238
- H35 50V CMOS Design Rules ENG-243
- H35 50V CMOS Noise Parameters ENG-244
- H35 50V CMOS Matching Parameters ENG-245

Additional documentation:

- Layout Guidelines
- Parasitic Devices

Requirements: This service is offered to registered users only. You need to have a valid user account on our technical web server. If not yet registered, you may create your personal web account here. Please note that a mutual Confidentiality Agreement (CA) has to be signed with austriamicrosystems AG to get registered. For further information please contact our local sales representative. Please send your feedback and/or suggestions for improvement to hitkit@austriamicrosystems.com

Outline

a leap altead in analog

- Let's scale down first
- Introduction & Company Overview
- **Technology Integration**
- High Voltage Device Description
- Low Voltage RF Device Description
- **Device Models**
- ESD, SOA and Reliability
- Design Kit
- Conclusions

- H35/H18 is a HV CMOS power management platform which exceeds or matches BCD technology performance at lower process complexity (cost).
 - ➢HV n- and p-channel specific on-resistance is lower than all foundry offerings from 30V-80V BV_{ds}
 - offers a rich suite of HV FETs, bipolars, JFETs and SBDs in a triple-well triple-gate oxide process
- H35/H18 supports a rich suite of passive components including precision resistors, capacitors, varactors, ESD components
- ➤ H35/H18 LV devices are IP-compatible to the CMOS 350/180nm platform (C35/C18) for IP re-use across derivative nodes
- > H35/H18 device library is hardware verified with full reliability qualification
- We offer a long experience of High-Voltage CMOS process development and design to our customers.

Some famous last words....

a leap shead in analog

Do you have it in smaller size?

AP austria**micro**systems

a leap ahead in analog

austria**micro**systems AG Full Service Foundry 8141 Unterpremstaetten AUSTRIA T: +43 3136 500 Email: foundry@austriamicrosystems.com http://www.austriamicrosystems.com http://asic.austriamicrosystems.com

Your partner for High Performance Analog IC Solutions