Calculation of Direct photon production in nuclear collisions

High p_T at LHC workshop, Utrecht

Jan Cepila

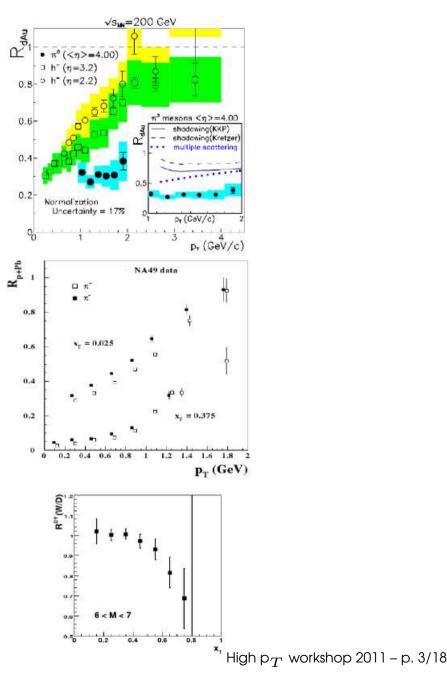
jan.cepila@fjfi.cvut.cz

CFRJS @ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic

High p_T workshop 2011 – p. 1/18

Outline of this talk

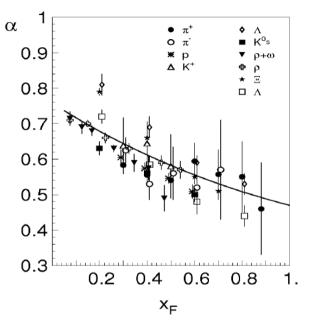
- Introduction and motivation
 - Properties of the nuclear suppression
 - Effects contributing to the suppression
- Calculation of the direct photon production
 - Direct photon production in pp via cda
 - Coherent scenario of the direct photon production in nuclear collisions
- Numerical Results
 - p(d)-A collisions
 - A-A collisions
- Conclusions



Introduction and motivation

- BRAHMS(RHIC) observed a suppression of particles produced at forward rapidity described by coherence effects
- Data at lower energies -NA49(SPS), E772(FNAL) - suggest similar suppression where no CGC or shadowing is possible
 - Kinematics
 - Light front momentum fraction of the projectile and the target m_T , u_T , m_T , $-u_T$

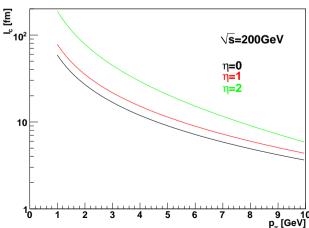
$$x_1 = \frac{m_T}{\sqrt{s}} e^y \quad x_2 = \frac{m_T}{\sqrt{s}} e^{-y}$$


- Feynman variable $x_F = x_1 x_2$
- High x_1 can be achieved also at midrapidity at high p_T - at RHIC $p_T = 30 GeV \sim x_1 = 0.3$

Introduction and motivation

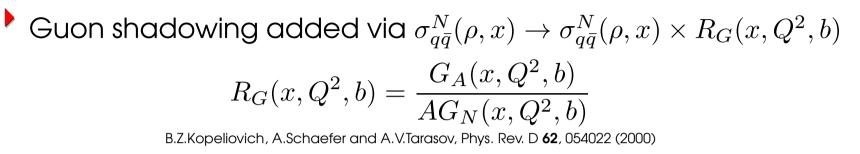
- The magnitude of observed suppression grows with rapidity(or x_1)
- We propose energy independent mechanism based on energy sharing restrictions in multiple interactions that lead to x_1 scaling

- The suppression comes from interplay of several effects coherence effects(quark and gluon shadowing) and energy sharing restrictions
- Each of them is dominant in certain kinematic region all of them has to be included in the calculation.

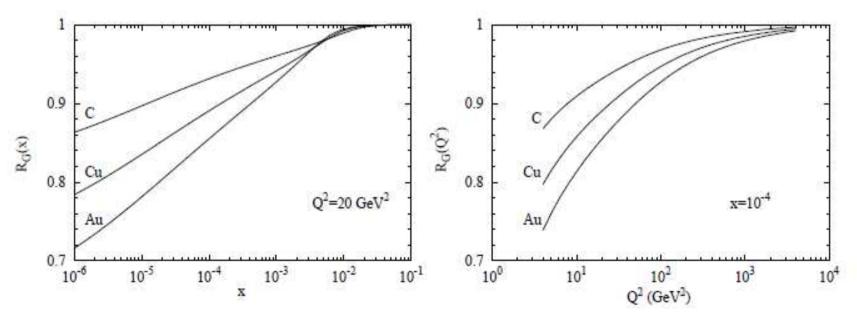


Coherence effects

Controlled by the coherence length


$$l_{c} = \frac{1}{q_{L}} = \frac{2E_{q}\alpha(1-\alpha)}{\alpha^{2}m_{q}^{2} + p_{T}^{2}}$$

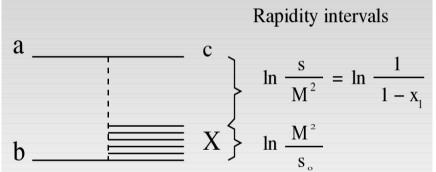
- ${}^{\bullet}$ p_{T} and α are transverse momentum and the fraction of the light-cone momentum of the quark carried our by the photon
- $E_q = x_q \frac{s}{2m_N} \text{ and } m_q \text{ are the energy and mass of the projectile quark}$ $q_L = \frac{M_{q\gamma}^2 m_q^2}{2E_q} \text{ is the longitudinal momentum transfer}$
- Corresponds to lowest Fock component $|\bar{q}q\rangle$ that represents the highest twist shadowing correction
- But coherence length drops $\underline{\mathbb{F}}_{_{0}}$ with increasing p_T and at large quark masses as $1/m_q^2$ - almost no suppression from coherence effects at high p_T



Gluon shadowing

Represents the leading twist correction to shadowing corresponding to higher Fock components with gluons

 $^{\bullet}$ Dominant at small scales and $x \lesssim 10^{-3}$



B.Z.Kopeliovich, J.Raufeisen, A.V.Tarasov and M.B.Johnson, Phys. Rev. C 67, 014903 (2003)

Effective energy loss

- We propose mechanism based on the energy sharing problem at large p_T induced by multiple initial state interactions
- One can interpret the suppression as a survival probability of the LRG in multiple interactions inside the nucleus
- Any process $a+b \rightarrow c+X$ at $x_1 \rightarrow 1$ is a LRG process

- The probability to radiate no gluons in the interval Δy is suppressed by Sudakov form factor $S(\Delta y)$
- Assuming an uncorrelated Poison distribution for gluons, the probability to have a rapidity gap Δy is $S(\Delta y) = e^{-\langle n_G(\Delta y) \rangle}$, where the mean number of gluons is $\langle n_G(\Delta y) \rangle = \Delta y \frac{dn_G}{dy}$
- Using a formula $\Delta y = ln(\frac{1}{1-x_1})$ one has $S(\Delta y) = (1-x_1)^{\frac{dn_G}{dy}}$

The height of the plateau in the gluon spectrum was estimated as

$$\frac{dn_G}{dy} = \frac{3\alpha_S}{\pi} ln(\frac{m_\rho^2}{\Lambda_{QCD}^2}) \sim 1$$

A

Gunion and Bertsch, Phys.Rev. D25, 746 (1982)

Energy conservation restrictions

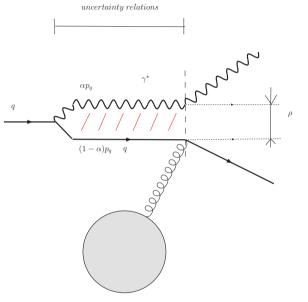
- ' Every additional inelastic interaction then contributes an extra suppression factor $S(x_1) \sim 1 x_1$
- The probability of an n-fold inelastic collision is related to the Glauber coefficients via AGK cutting rules

$$v_n(b,z) = e^{-\sigma_{eff}T_A(b,z)} \frac{(\sigma_{eff}T_A(b,z))^n}{n!} \quad \sigma_{eff} = 20mb$$

Resuming over number of rescatterings leads to

$$f_{q/N}^{A}(x_1, Q^2, b, z) = \sum_{n=0}^{A} v_n(b, z) f_{q/N}^n(x_1, Q^2)$$

$$f_{q/N}^n(x_1, Q^2) = C_n f_{q/N}(x_1, Q^2) S^n(x_1)$$

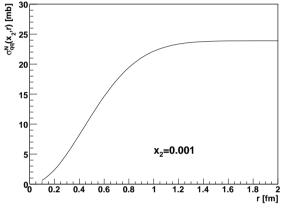

Structure function depends on the target \rightarrow breakdown of the QCD factorization(leading twist effect)

B.Z.Kopeliovich, J.Nemchik, I.K.Potashnikova, M.B.Johnson and I.Schmidt, Nucl. Phys. Proc. Suppl. 146, 171 (2005)

Direct photon production in pp

- We use the light-cone color dipole approach to calculate the direct photon production cross-section
- In the target rest frame, the photon production looks like the bremsstrahlung of a real massles photon
- The quark fluctuates into the coherent state $|q\gamma\rangle$ that is disrupted by the color interaction with a nucleon

Using LC wave functions and dipole cross section from DIS $\frac{d\sigma(qp \to \gamma X)}{dln\alpha d^2 p_T} = \frac{1}{(2\pi)^2} \int d^2 \rho_1 d^2 \rho_2 e^{i\vec{p}_T(\rho_1 - \rho_2)} \Psi_{\gamma q}(\alpha, \rho_1) \Psi_{\gamma q}^*(\alpha, \rho_2) \Sigma(\alpha, \rho_1, \rho_2)$ $\Sigma(\alpha, \rho_1, \rho_2) = \left(\sigma_{q\bar{q}}^N(\alpha \rho_1) + \sigma_{q\bar{q}}^N(\alpha \rho_2) - \sigma_{q\bar{q}}^N(\alpha |\rho_1 - \rho_2|)\right)$ $\frac{d\sigma(pp \to \gamma X)}{d^2 p_T} = \frac{x_1}{x_1 + x_2} \int_{x_1}^1 \frac{d\alpha}{\alpha^2} \sum_q Z_q^2 (f_q(\frac{x_1}{\alpha}) + f_{\bar{q}}(\frac{x_1}{\alpha})) \frac{d\sigma(qp \to \gamma X)}{dln\alpha d^2 p_T}$ B.Kopeliovich, In *Hirschegg 1995, Proceedings, Dynamical properties of hadrons in nuclear matter* 102-112


Direct photon production in pp

Essential components for the calculation:

Dipole cross sections - revised GBW parametrization

 \mathbf{n}

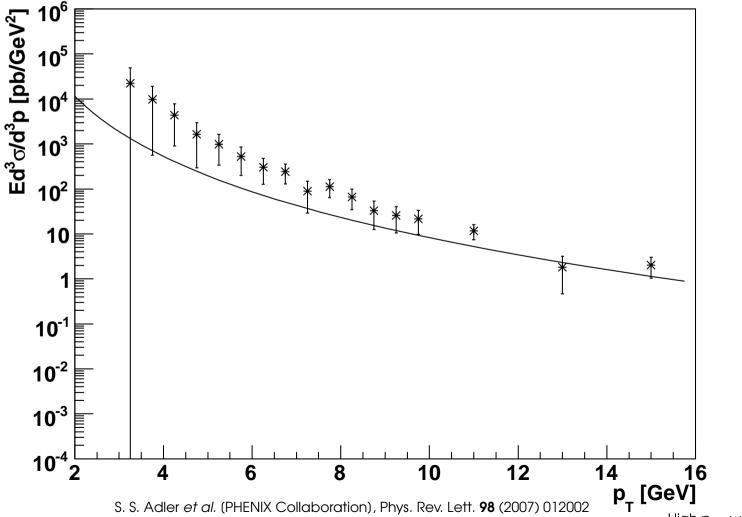
$$\sigma_{q\bar{q}}^{N}(x,r) = 23.9mb\left(1 - e^{-\frac{r^{2}Q_{0}^{2}}{4r_{0}(x)}}\right)$$
$$Q_{0}^{2} = 1GeV^{2} \quad r_{0}(x) = (\frac{x}{x_{0}})^{\lambda}$$
$$x_{0} = 0.000111 \quad \lambda = 0.287$$

H.Kowalski, L. Motyka and G. Watt, Phys. Rev. D 74(2006)

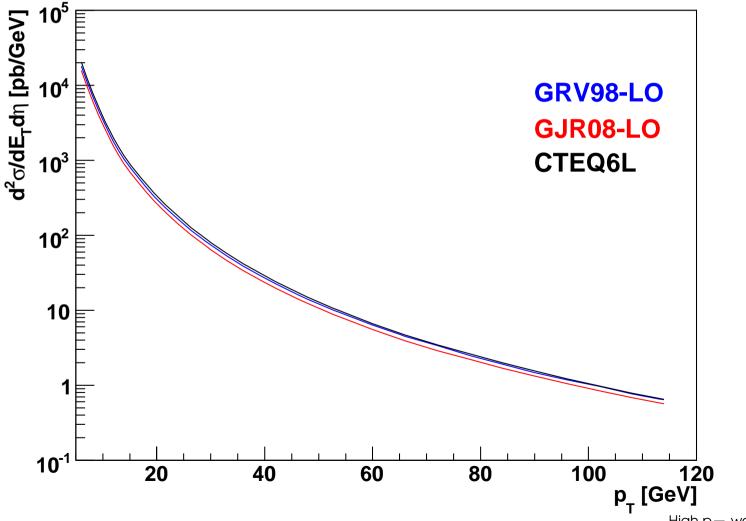
Light-cone wave functions

$$\Psi_{\gamma q}(\alpha, \rho_1) \Psi_{\gamma q}^*(\alpha, \rho_2) = \frac{\alpha_{em}}{\pi^2} [(m_q^2 \alpha^4) K_0(\epsilon \rho_1) K_0(\epsilon \rho_2) + (1 + (1 - \alpha)^2) \epsilon^2 K_1(\epsilon \rho_1) K_1(\epsilon \rho_2)]$$

B.Z.Kopeliovich, A.Schaefer and A.V.Tarasov, Phys. Rev. D 62, 054022 (2000)


Parton distribution functions - GRV98 LO parametrizations

M. Gluck, E. Reya and A. Vogt, Eur. Phys. J. C 5 (1998) 461


The direct photon production in pp

- Calculated cross section is in good agreement with data
- RHIC 200GeV at midrapidity

The direct photon production in pp

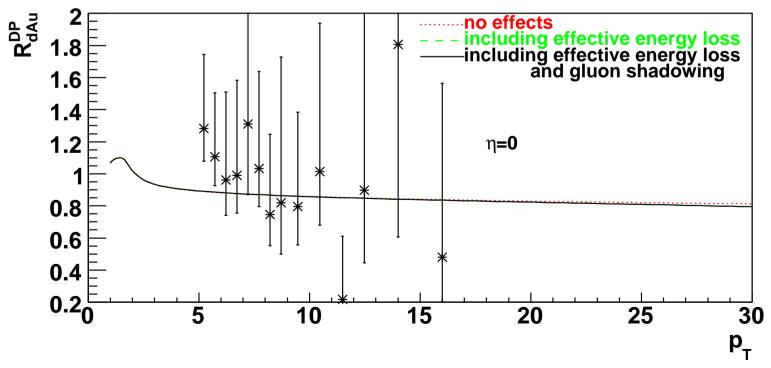
- No data yet available ...
- LHC 5.5TeV at midrapidity

Coherent scenario of p(d)-A collisions

Long coherence length limit - $< l_c > \gg R_A$

- High energy limit
- Fluctuation arises long before the quark enters the nucleus
- Transverse separations of the fluctuation are "frozen" through the propagation - they form eigenstates of interaction
- Interaction with the nucleons is coherent maximal quark shadowing

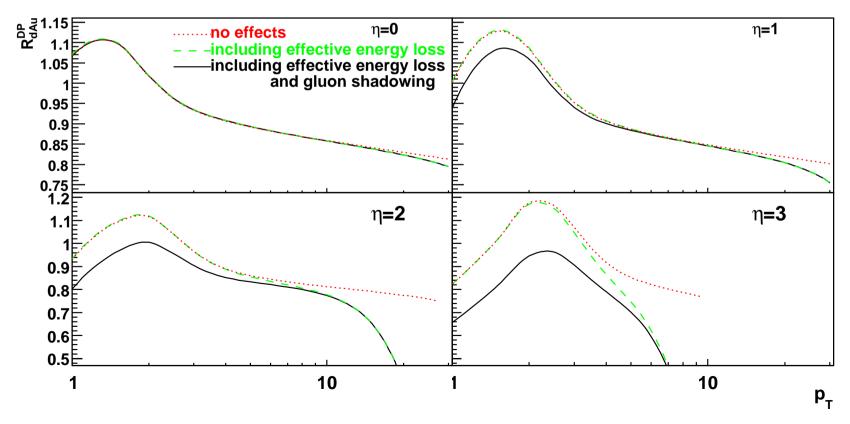
Glauber eikonalization can be used to evaluate the σ^{NA}


$$\sigma_{q\bar{q}}^{N}(\rho,x) \to \sigma_{q\bar{q}}^{A}(\rho,x) = 2 \int d^{2}b \left(1 - \left(1 - \frac{1}{2A}\sigma_{q\bar{q}}^{N}(\rho,x)T_{A}(b)\right)^{A}\right)$$

B.Z.Kopeliovich, J.Raufeisen, A.V.Tarasov and M.B.Johnson, Phys. Rev. C 67, 014903 (2003)

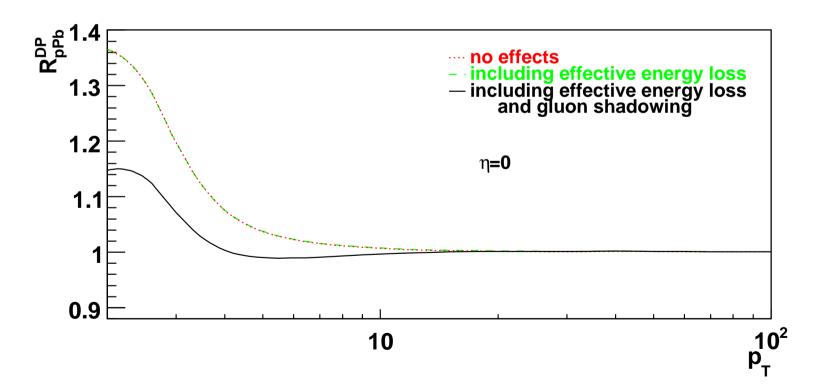
Numerical results - d+Au@RHIC(200GeV)

- The onset of isospin effects $R \rightarrow 0.8$ at high p_T
- Effective energy loss start to manifest themselves at $p_T\gtrsim 30$ GeV
- Gluon shadowing is negligible due to high x_2 at midrapidity

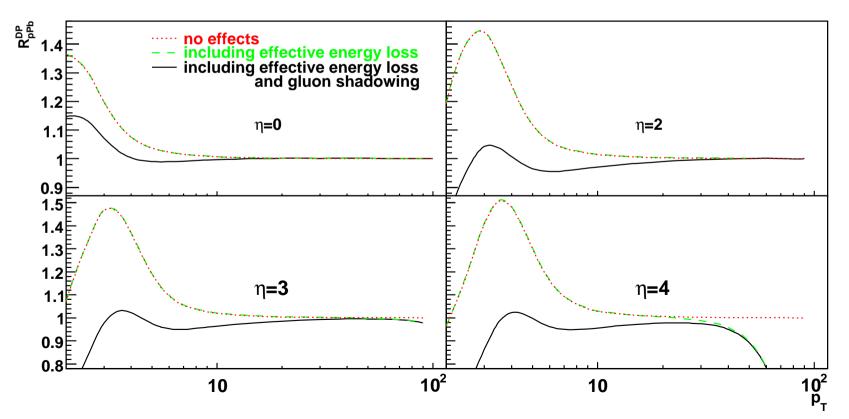


D. Peressounko (PHENIX Collaboration), Nucl. Phys. A 783 (2007) 577

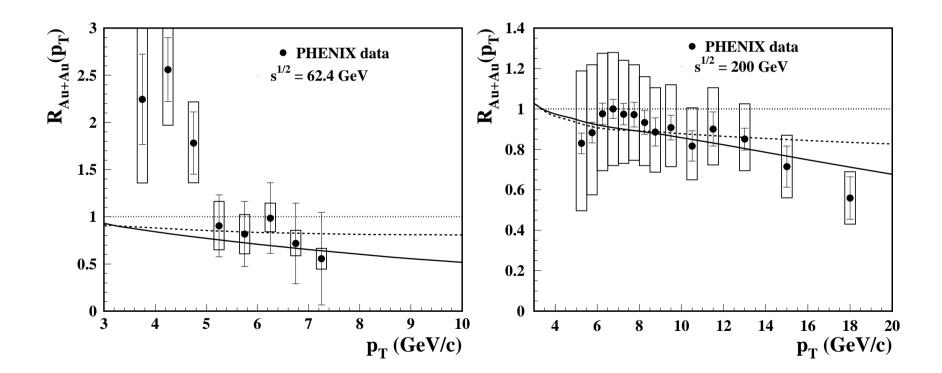
Numerical results - d+Au@RHIC(200GeV)


- Magnitude of energy loss effects rises with rapidity dominates at high p_T
- Gluon shadowing rises from almost 0% at $\eta = 0$ to ~ 10 % at $\eta = 3$ and gradually decreases with p_T

Numerical results - p+Pb@LHC(5.5TeV)


- The QCD factorization predicts $R \rightarrow 1$ at high p_T
- Effective energy loss negligible at this p_T range manifest themselves at much higher p_T
- Gluon shadowing \sim 20% at low p_T

Numerical results - p+Pb@LHC(5.5TeV)


- Effects of energy conservation rise with rapidity and are clearly observable at p_T >30GeV at $\eta = 3 4$ they can be verified at LHC
- Gluon shadowing rises from \sim 20% at $\eta=0$ to \sim 50% at $\eta=4$ at low p_T

Numerical results - Au+Au@RHIC(200GeV)

- ' The onset of isospin effects Rightarrow 0.8 at high p_T
- Effective energy loss mechanism gives a stronger suppression at high p_T in a better agreement with data

T. Sakaguchi (PHENIX Collaboration), Nucl. Phys. A 805 (2008) 355

K. Reygers (PHENIX Collaboration), J. Phys. G 35 (2008) 104045

Conclusions

- Direct photon production cross-sections were calculated within the color dipole approach in the RHIC and LHC kinematic regions
- We included coherence effects (quark and gluon shadowing) and corrections for energy conservation in our calculations to evaluate nuclear effects.
- At RHIC energy
 - Calculations of the dAu/pp production rate show ~20% effect of isospin
 - The suppression driven by energy sharing problem in multiple initial state interactions is weak at midrapidity at high p_T but rapidly rises with rapidity
 - The effect of the gluon shadowing is \sim 5-10%

Conclusions

At LHC energy

- Calculations of the pPb/pp production rate show no isospin effects and consequently one should expect $R \rightarrow 1$ in accord with QCD factorization.
- The suppression driven by energy sharing problem in multiple initial state interactions is very weak at midrapidity at high p_T and starts to play role at very forward rapidity $\eta \sim 3-4$
- The effect of the gluon shadowing is \sim 20-50%
- In central Au-Au collisions at RHIC the effective energy loss mechanism represents a significant effect and describes well available data also at high p_T

Data from RHIC and LHC at forward rapidity needed (FoCal@ALICE) for better comparison Thank you for your attention!

