Jet Production in p+p and Pb+Pb collisions from ATLAS

Monica Dunford CERN

On behalf of the ATLAS collaboration

6th International Workshop on High-pT Physics at LHC

Utrecht: April 4th-7th 2011

Overview

- Jet production at the LHC
 - Important test of the Standard Model in a new, unexplored energy region
 - Jets are the background to many new physics searches, it is important to understand them
- The results
 - Inclusive, di-jet and multi-jet cross sections
 - Jet shapes, Azimuthal decorrelation, di-jet production with a jet veto
 - Jet production in association with vector bosons
 - Jet quenching with pb+pb collisions

The ATLAS Detector

Design Goal: Precision measurements of the Standard Model and New Physics discovery

 Features is two large magnet systems (solenoid+toroid)

- Calorimeter has good granularity and coverage
 - EM Barrel $|\eta| < 1.475$, three sampling layers, $\Delta \eta x \Delta \varphi = 0.025 x 0.025$
 - Hadronic barrel, interaction length of 9.7
 - Coverage out to $|\eta| < 5.0$

Design Goals:
Lepton energy scale ~ 0.02%
Jet energy scale ~ 1%

Inclusive Jet Cross Section

Motivation: a probe of perturbative QCD at small distances

- Improvements in this analysis
 - Larger rapidity range
 - Extended p_t range (both low and high)
 - Greater dijet invariant mass (4.1 TeV)

Explores a new kinematic regime

Trigger and Selection

- Trigger three types
 - Minimum bias scintillators (located at $2.09 < |\eta| < 3.84$)
 - Central jet trigger $|\eta| < 3.2$
 - Forward jet triggers $3.1 < |\eta| < 4.9$
- Selection
 - Jet $p_t > 20$ GeV
 - -|y| < 4.4

For each p_t -bin, chose the highest threshold trigger with > 99% efficiency

Jet reconstruction

- Jet inputs are clustered with an anti-k_T algorithm
 - Infrared safe, collinear safe
 - Distance parameters 0.4, 0.6 (different sensitivity to non-perturbative QCD effects)
- Jet response corrected for
 - Non-compensating calorimeter
 - Inactive material
 - Out-of-cone effects
- Data and MC-based η, p_t
 dependent calibration

- Jet energy scale is the dominant uncertainty
 - Improved from 7% to 2.5% for central jets p_t>60 GeV

Use several *in-situ* methods to confirm the jet energy scale uncertainties

Inclusive Jet Cross Section

- Comparing to NLO predictions (NLOJet++)
- Some disagreement at high jet p, and |y| but in general good agreement

p _T [GeV]	y	Abs. JES	Unfolding	Cleaning	Trigger	Jet Rec.
20	2.1-2.8	+40% -30%	20%	0.5%	1%	2%
20	3.6-4.4	+80% -50%	20%	0.5%	1%	2%
100	< 0.3	10%	2%	0.5%	1%	1%

 $p_{_{
m T}}^{10^3}$ [GeV] 10² Jet energy scale dominates uncertainties

Inclusive Jet Cross Section

Comparison between different PDF sets and Powheg

Powheg, larger at low p_t, smaller at high p_t compared to NLOJet++ These are regions with large scale uncertainties for NLOJet++

Di-Jet Cross Section

Trigger

 Use an OR of central and forward jet triggers to be fully efficient over all η

Selection

- Lead jet $p_t > 30 \text{ GeV}$
- Subleading jet p_t>20 GeV
- -|y| < 4.4
- $-|y_{max}|$ is maximum rapidity of the two leading jets

Cross section falls rapidly with invariant mass, measured up to 4 TeV

Di-Jet Cross Section

- Comparing NLOJet++ to Powheg with different tunes
 - R=0.4, Powheg models the data
 - R=0.6, Powheg predicts larger cross sections
 - Low di-jet mass → nonperturbative corrections have significant influence

Multi-jet Cross Section

Motivation

- Test of higher order pQCD
- Multi-jet final states important for searches

eta vs. phi

- Trigger
 - Use two or three-jet triggers with symmetric threshold
 - 10 GeV trigger threshold → Fully efficient at p_t>60 GeV

Selection

- One jet $p_t > 80$ GeV, other jets $p_t > 60$ GeV
- -|y| < 2.8
- 70% of charged particles in jet come from primary vertex (JVF)

Additional Jet Uncertainties

• Multi-jet environment is more 'crowded' therefore additional jet energy scale uncertainties are required

- → Jets from pile-up reaches 3.4% for six-jet cross section if not removed
- →Uncertainties in quark/gluon fraction up to 3% additional uncertainty
- →Uncertainty due to close-by jets up to 1.5%

Multi-jet Cross Section

- MC are normalized to inclusive two-jet cross section
- Different models all tend to model the data within uncertainties

Multi-jet Cross Section

• Measurement of three-jet to two-jet ratio: Reduces uncertainties, sensitive to discrepancies in LO (left) and

NLO (right) calculations

H_t is interesting since it is stable under renormalization scale variations

Jet Shapes

- Sensitive to details of parton shower fragmentation and underlying event
- Selection
 - Only one primary vertex
 - At least one jet $p_t > 30$ GeV and |y| < 2.8
- Observable
 - Average fraction of jet p_t inside an annulus: $\rho(r)$
 - Average fraction of jet p_t inside a cone: $\Psi(r)$

Jet Shapes

- Majority of energy is concentrated near to axis
- Jets Narrower with increasing p_t, moderate rapidity dependence
 - Pythia in reasonable agreement
 - Herwig++ predicts broader jets
 - Alpgen narrower at high p_t
- At low p_t, shape gluon-like; at higher p_t shape is a quark/ gluon admixture

Azimuthal Decorrelation

- Tests QCD modeling of $\Delta \phi$ distribution
 - A multi-jet environment without needing to measure the additional jets
- Selection
 - Jet $p_t > 100 \text{ GeV}$, |y| < 2.8
 - Two leading jets, |y| < 0.8
 - $-\Delta \varphi$: angle between 2 leading jets
- Events with additional high p_t jets widen the distribution

Azimuthal Decorrelation

- Results compared to NLOJet++
- Systematics dominated by jet energy scale (2-17%) and unfolding (1-19%)
- Good agreement overall, prediction relative low in range 110<p_t< 160 GeV

Di-jet production with Jet Veto

- Test QCD with large jet rapidity separation, high p_t
- Selection
 - Only one primary vertex
 - $p_t > 20 \text{ GeV}, |y| < 4.5$
 - Average di-jetp_t>50 GeV
- Compared to NLO

Shown: Fraction of jets with no jets inside Δy

B: Highest y

Di-jet production with Jet Veto

- Compared to NLO predictions: HEJ and POWHEG
- POWHEG has good agreement, only disagreements at large Δy
- HEJ does not well describe the data in some cases

Shown: Mean number of jets inside Δy

Jets with a W Boson

An important test of QCD in addition to an important background to many new physics searches

Selection

- Jet $p_t > 20$ GeV, |y| < 2.8, no jet with $\Delta R < 0.5$ of lepton
- 75% of charge particles in jet come from primary vertex
- Lepton $p_t > 25$ GeV, $|\eta| < 2.4$ (2.47 for electron)
- Missing $E_t > 25$ GeV, $W_{mT} > 40$ GeV

For Z+jets see M. Beckingham's talk

W+jets: Backgrounds and Systematics

QCD multi-jet events can 'fake' an electron

→ Must use a data-driven control sample to
subtract the QCD multi-jets from W+jets signal
→ In muon channel, heavy flavor events
dominate the QCD background

Jet energy scale dominates the uncertainties

→More than 20% in the high jet multiplicities

→Other major uncertainties include
uncertainties from QCD backgrounds and
lepton reconstruction

W+jets: Results

Excellent agreement to NLO calculations

Compare to Alpgen, Sherpa and NLO MCFM

→Pythia is a LO calculations and does not model the multiplicity spectrum well

Alpgen, Sherpa and Pythia normalized to NNLO inclusive W cross section

Jet Quenching in Pb+Pb

→ "Centrality" quantified as total energy in forward calorimeter

dN/dE_T [Te/

→ Binned in fractions of total Pb+Pb cross section

Recover p+p behavior in peripheral collisions (small nuclear overlap)

- First jet: $p_t > 100 \text{ GeV}, |\eta| < 2.8$
- $-\Delta \phi > \pi/2$
- Second jet: highest p_t jet with
 p_t > 25 GeV in opposite
 hemisphere

Jet Reconstruction in Pb+Pb

- Use anti- k_T algorithm (R = 0.4), with calorimeter towers
- Event-by-event background subtraction needed
 - Underlying event estimated for each longitudinal layer and η slice separately Since separately

 - Exclude jets from averaging $D = \frac{E_T^{TowerMax}}{\langle E_T^{Tower} \rangle} > 5$

Excludes jets with large "core" region

No change in topological features of the events No jets are removed by or in the subtraction procedure

Jet Quenching in Pb+Pb

- Observe that di-jets in opposite hemispheres become more unbalanced with increasing centrality
- Points to strong jet energy loss in a hot, dense medium

Many cross-checks done \rightarrow Compared calorimeter vs. track jets, varied the jet η range, varied the jet radius, verified events are not in one region of detector, no large anomalously missing E_t , no high p_t muons

Jet Quenching in Pb+Pb

Δφ primarily back-to-back for all centralities, at high centrality second jet is at large angles with respect to recoil direction

Conclusions

- Many new tests of perturbative QCD ongoing at ATLAS
- With 2010 LHC data, have extended the reach to large rapidities, high transverse momentums and large invariant masses
- In Pb+Pb collisions, observe di-jet unbalance, suggesting strong jet energy loss in a hot, dense medium

With 2011 LHC operations already starting, we are looking forward to even more data and new results!