

Jet 1, pt: 70.0 GeV

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249

Observation and Studies of Jet Quenching in PbPb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

arXiv:1102.1957

Jet 0, pt: 205.1 GeV

Matthew Nguyen, CERN

or the CMS Collaboration

Utrecht, April 5th, 2011

- Details of PbPb jet analysis in CMS
- Measurement of the dijet asymmetry with calorimeter jets
- Jet-track correlations to trace the fate of the energy lost by quenched jets

Large background of soft particles, dN_{ch}/dη ~ 1600 for 0-5% PbPb @ 2.76 TeV

A schematic view of a jet measurement in heavy ions

Jets are reconstructed from energy reaching calorimeters

Partons lose energy as they traverse the dense medium

Some jet energy lost to

- -Low p_T particles
- -Large angle radiation
- -Material interactions, decays, etc.

Modified jet fragmentation may result in:

- A different fraction of jet energy reaching the calorimeters
- A different response for non-linear calorimeters

Heavy Ions with CMS

A Dijet in Central PbPb

At LHC energies, jets with p_T of order 100 GeV/c cleanly separable from background fluctuations in central PbPb collisions

- Jet are triggered at HLT with a p_T = 50 GeV/c threshold (uncorrected, background subtracted)
- Fully efficient by corrected p_T of ~ 100 GeV/c

Background Subtraction Method

- <E> and σ per tower calculated in strips of η
- Iterative Cone (R=0.5) algorithm run on subtracted towers
- Background energy recalculated excluding jets
- Jet algorithm rerun on background subtracted towers, now excluding jets, to obtain final jets

Note:

- Background energy = <E> + σ
- Towers with negative energy set to zero

- Collision centrality determined from the energy in the forward calorimeters
- Dijet Selection
 - $\circ~$ Leading jet: p_{_{T,1}} > 120 GeV/c, $|\eta|$ < 2
 - $\,\circ\,$ Subleading jet: p_{_{T,2}} > 50 GeV/c, $|\eta|$ < 2
 - Azimuthal Angle: $\Delta \phi_{12} > 2/3 \pi$ radians
- Monte Carlo
 - o PYTHIA 6.423, tune D6T
 - Embedded in real data (PYTHIA+DATA)
 or simulated data (PYTHIA+HYDJET)

Leading Jet p_T Distributions

No strong modification to shape of leading jet spectrum

Dijet Azimuthal Correlations

No strong angular deflection of reconstructed jets

Angular Decorrelation Quantified

No angular decorrelation beyond systematic uncertainties

Dijet p_T Asymmetry

Dijet p_T Asymmetry

Striking enhancement of asymmetry with increasing centrality

Dijet Imbalance Quantified

Smooth decrease in the fraction of balanced jets with increasing centrality

Jet-Track Correlations

Main idea: Use charged tracks to trace the fate of the energy lost by subleading jet

Asymmetry Dependence of Fragmentation

With increasing A_{J_1} some enhancement of low p_T , large angle production appears

Quantify overall p_T balance w.r.t. leading jet axis

Missing p_T

Quantify overall p_T balance w.r.t. leading jet axis

$$p_T^{||} \equiv \sum_{\text{tracks}} -p_{\text{T,track}} \cos\left(\phi_{\text{track}} - \phi_{\text{leading jet}}\right)$$

Missing p_T: Data vs. MC

Despite large fraction of unbalanced jets, overall p_T balance above 500 MeV is not affected by quenching

Missing p_T: Data vs. MC

Missing p_T: In vs. Out-of-Cone

MC: Large A_J events show balance carried by high p_T tracks at R > 0.8 \rightarrow multi-jet events

Data:

- In-cone balance not very different from MC
- Balance only recovered with low p_T tracks at large R

- Evidence for large jet quenching in PbPb collisions has been observed
 - $\circ~$ No large azimuthal decorrelation
 - Large momentum imbalance with increased centrality
- Jet-track correlations demonstrate that
 - $\,\circ\,$ Energy is transferred to low $p_{_T}$ particles
 - $\,\circ\,$ This energy is deposited outside the typical jet radius
- Data places constraints on the nature of parton energy loss and should challenge conventional models

Backup Slides

Jet Response and Resolution

April. 5th, 2011

Fully efficient for leading jet selection (> 120 GeV/c)High efficiency (~ 90%) for subleading jet sections (> 50 GeV/c)

Jet-Track on Linear Scale

Leading vs. Subleading Jet p_T

η Reflection Method

The background is evaluated within the cone symmetric about η This avoids ϕ dependent variations due detector efficiency or hydrodynamic flow The regions around mid-rapidity, $|\eta| < 0.8$, and $|\eta| > 1.6$ are excluded

ATLAS Results

arXiv:1011.6182

FIG. 3: (top) Dijet asymmetry distributions for data (points) and unquenched HIJING with superimposed PYTHIA dijets (solid yellow histograms), as a function of collision centrality (left to right from peripheral to central events). Proton-proton data from $\sqrt{s} = 7$ TeV, analyzed with the same jet selection, is shown as open circles. (bottom) Distribution of $\Delta \phi$, the azimuthal angle between the two jets, for data and HIJING+PYTHIA, also as a function of centrality.

p_T Dependence of Quenching

Including the 3rd jet in PYTHIA

Collision Selection

- Reject Beam Halo (BSC)
- HF Coincidence
- Pixel cluster compatibility with vertex
- ECAL/HCAL Noise cleaning

Systematic Uncertainties on R_B

Table 2: Summary of the $K_B(A_J)$ systematic uncertainties.								
Source	0-10%	10-20%	20-30%	30-50%	50-100%			
Jet Energy Correction	4.8%	4.8%	4.8%	4.8%	4.8%			
Jet Energy Resolution	6.3%	6.3%	6.3%	6.3%	6.3%			
Jet Reconstruction efficiency	/0.0%	0.0%	0.0%	0.0%	0.0%			
Heavy Ion background	7.8%	6.5%	5.5%	4.5%	3.6%			
Total	11.1%	10.3%	9.6%	9.1%	8.7%			

Table 2: Summary of the $R_B(A_I)$ systematic uncertainties.

Table 3: Summary of the $R_B(\Delta \phi)$ systematic uncertainties.

Source	0-10%	10-20%	20-30%	30-50%	50-100%
Heavy Ion Background	12.6%	8.0%	5.3%	3.3%	1.0%
Jet Energy Correction	0.7%	0.7%	0.7%	0.7%	0.7%
Jet Energy Resolution	6.6%	4.7%	3.2%	1.6%	0.1%
Jet Reconstruction efficiency	3.2%	2.5%	1.9%	1.4%	0.8%
$\Delta \phi$ resolution	2.5%	2.5%	2.5%	2.5%	2.5%
Total	14.8%	10.0%	7.0%	4.7%	2.9%

$\textbf{High } \textbf{p}_{T} \textbf{ Suppression at RHIC}$

- π⁰ yields measured in
 p+p and central Au+Au
 @ 200 GeV
- The yield of high p_T
 hadrons is suppressed
 by a ~ 5 x compared to
 p+p expectation*

* p+p data scaled by the number of binary collisions

Springer Verlag. Landolt-Boernstein Vol. 1-23A.

- Correlation of hadrons of 4 GeV/c < p_{T, trigger} < 6 GeV/c 2 GeV/c < p_{T, partner} < p_{T, trigger}
- Near-side peak shows similar jet correlation in p+p and Au+Au
- Away-side jet correlation nearly extinguished in this p_T range
- Supports a geometrical picture of energy loss

A_j broadening due to Fluctuations

Different Gaussian smearing

PYTHIA+HYDJET

- Apply ATLAS's selection on the smeared jets:
 - p_{T1} > 100 GeV, p_{T2} > 25 GeV, dphi > pi/2
 - GenJet p_T > 0 GeV
- Applying a gaussian smearing to PYTHIA we can reproduce the results of the Salam paper.

LPCC: HI at the LHC

.

Gaussian

Smearing

True dijet

 Gaussian smearing of the leading jet makes the Aj distribution wider

Select only Jets above p_T = 3GeV

- Adding many low p_T jets, smeared to higher p_T than the true away side jet, compresses the Aj distribution
 - Tested by adding the 0-3GeV jets in the analysis

- Balanced dijets + fluctuations can fake a wide Aj distribution
 - Needs a very large number (~100) of low p_T jets per event
 - Remember: dn/d η^{ch} ~6 in letal < 5 -> ~60 charged particles/event
 - And a very large σ (20GeV) for the smearing
 - based on a Gaussian fit to the low \mathbf{p}_{T} part of the ATLAS min bias jet spectrum
 - + ATLAS reports σ ~8 GeV for their background fluctuations

- The HYDJET A_j distribution is created by the same mechanism
 - The hard part of a central HYDJET event consists of ~300 unquenched PYTHIA events with p_T hat of ~7GeV
 - Low \textbf{p}_{T} jets smear the leading jets by superposition and cause a combinatorial problem

- PYTHIA embedded in real data, including all background fluctuations and resolution effects does not show a widened A_i distribution
 - A cross check with p_That = 30GeV embedded in a large min bias data sample gave an identical reference distributions
 - ALICE R_{AA} shows a strong hardon suppression at 5-10GeV
 - Low p_T jets seem to be strongly suppressed

Comparing the ATLAS and CMS dijet selection pT hat > 30 GeV

- With the higher jet thresholds used for the CMS paper we are less sensitive to background fluctuations
 - ATLAS 100/20, CMS: 120/50 for leading/sub-leading

- The large σ (20GeV) smearing is based on a Gaussian fit to the low $p_{\rm T}$ part of the ATLAS min bias jet spectrum
 - ATLAS reports σ ~8 GeV for their background fluctuations

20GeV smearing closure test

