VHMPID:

ALICE Detector Upgrade in the High-p_T Region

Gergő Hamar (MTA KFKI RMKI, Budapest) on behalf of the:

VHMPID Collaboration

(and the **REGARD** Group)

6th International High-p_T Physics Workshop, Utrecht

04-07. April 2011.

Outline

• VHMPID

- ALICE and PID
- Physics motivation
- Detector outline
- HPTD
 - Triggering and tracking
- Test Beam Measurements
 - TGEM study at PS
 - HPTD at PS
 - VHMPID at PS and SPS
- Summary

Outline

• VHMPID

- ALICE and PID
- Physics motivation
- Detector outline
- HPTD
 - Triggering and tracking
- Test Beam Measurements
 - TGEM study at PS
 - HPTD at PS
 - VHMPID at PS and SPS
- Summary

Partice Identification at ALICE

ITS, TPC, TRD, TOF, Muon Arm, ZDC, V0, T0, HMPID, EMCal, PHOS, Very High Momentum Particle Identification Detector

VHMPID inside **ALICE**

PID at ALICE

VHMPID: π ,**K**,**p** separation at 5 GeV/c < p_T < 25 GeV/c ⁶

Physics Motivations for VHMPID

- π , K, p yields at 5 GeV/c < p_T < 25 GeV/c
 - Proton/pion anomaly (~ RHIC)
 - Particle production mechanisms (thermal,coalescence,pQCD)
 - Modified fragmentation function in the QGP
 - Jet-energy loss, flavour dependence
 - High p_T D- and B-meson and Λ_c , Λ_b -baryon reconstruction
- Near-side hadron-hadron correlations
 - B-M (π -p) and B-aB (p-p) correlation (~ RHIC)
 - Di- and Multihadron FF ($D_{BM} = ?= D_B*D_M; D_B*D_{aB} ...)$
- Cooperation with other special detectors at ALICE
 - Near-side γ -hadron correlations : PHOS
 - Away-side jet-photon correalations : **EMCAL**
 - Away-side jet-jet correalations : HMPID

Schematic View of the VHMPID

- Event by event PID in the region: 5 GeV/c < p_T < 25 GeV/c
- Cherenkov radiation: only gas can be used: C_4F_{10} Radiator length: ~ 80 cm
- Mirror generates circles
- Photon detection: CsI coated MWPC (+HMPID FEE)
- Need for triggering!
- Free space in ALICE:
 ~ 12% of TPC acceptance opposite side to HMPID

R&D and Design

• Photon detector:

- CsI-MWPC / CsI-TGEM / PTC options
- Window material (SiO₂/CaF₂)
- Window electrode implementation
- Granularity (pixel size and associated FEE)

• Mirror:

- Substrate technology (glass vs composite C-fiber)
- Segmentation and orientation
- Alignment procedure and monitoring
- HPTD
 - Geometry and number of layers (L0, L1, tracking)

Outline

• VHMPID

- ALICE and PID
- Physics motivation
- Detector outline
- HPTD

- Triggering and tracking

- Test Beam Measurements
 - TGEM study at PS
 - HPTD at PS
 - VHMPID at PS and SPS
- Summary

High-P_T Trigger Detector

- L1 trigger at PbPb collisions with p_T>10 GeV/c threshold (see: L.Boldizsár's talk) gains a factor 40 at high p_T data!
- **L0 trigger** at pp collisions with $p_T > 5$ GeV/c threshold
- **Tracking** before and after the RICH module
- CCC technology: low material budget, good resolution, digital readout, fast for triggering, cheap! (REGARD Bp group, submitted to NIMA)

Outline

• VHMPID

- ALICE and PID
- Physics motivation
- Detector outline
- HPTD
 - Triggering and tracking
- Test Beam Measurements
 - TGEM study at PS
 - HPTD at PS
 - VHMPID at PS and SPS
- Summary

TGEM Photo Detector Study

- CsI coated triple TGEM chamber
- Solid radiator (CaF₂ window)
- Standard HMPID FEE (Glassiplex)
- Beam test at CERN PS
- First time that Cherenkov light have been seen with TGEM based detector! 13

Outline

• VHMPID

- ALICE and PID
- Physics motivation
- Detector outline
- HPTD
 - Triggering and tracking
- Test Beam Measurements
 - TGEM study at PS
 - HPTD at PS
 - VHMPID at PS and SPS
- Summary

2010 August HPTD Beam Test at PS

50em x 50em CCC

7 layers of 20cm x 20cm CCC

Efficiency

17

Dependencies on Angle of Incidence

- Angular resolution: ~1.4 deg remains the same up to 15 deg
- Efficiency is still above 99% (up to 10 deg)
- Average number of hits : slightly increases 1.1 -> 1.5 (feature of the CCC design)

HPTD Test: Main Results

- 7 layers of CCC:
 - Efficiency above 98-99%
 - Spatial and angular resolution are as desired
 - Two dimensional CCC's are good candidates for MIP detection for VHMPID
- New readout electronics : ok
- 50 cm x 50 cm CCC
 - Works reliably
 - Dead zone of spacers : ~ 4 mm (~ 2 % loss)
 - Technology is expandable to large surfaces
- FPGA:
 - Readout : ok
 - Trigger pattern recognition : ok
 - Operation speed still to be increased

2010 October VHMPID Test Beam HPTD's CCC chambers are located before and behind the RICH module

Outline

• VHMPID

- ALICE and PID
- Physics motivation
- Detector outline
- HPTD
 - Triggering and tracking
- Test Beam Measurements
 - TGEM study at PS
 - HPTD at PS
 - VHMPID at PS and SPS
- Summary

VHMPID Prototype

- Two spherical mirrors
- Radiator length: 100 cm / 80 cm
- Mirror orientation: straight / tilted
- Cathode: on windows: Strip / Mesh
- HMPID FEE
- Detector: CsI + MWPC

Assemby of VHMPID Proto-3

Mirror fixation

Radiator vessel ready

Mirror adjustment

Fixation of Proto-3

2010 November VHMPID Beam Test at SPS

DEST

RING: Hit Map

Photon Studies

Gas Purity

Really sensitive to gas purity:

HV on Q1 (Left Window) [V]

28

Nice Events

Multi-ring at 3.0 GeV

Summary

- PID extension of **ALICE** in the high pT region:
- VHMPID: track by track PID in the 5-25 GeV/c region
- Gaseous Cherenkov detector
- State-of-the-art technology
- Still uder R&D
- Test beam sresults are promising
- HPTD : Triggering and tracking for VHMPID pp:L0, PbPb: L1, Tracking

Backup slides

- Mirror study VHMPID test 2010SPS
- CCC schematic and analog signals
- HPTD digital readout example
- VHMPID signal simulation
- HPTD idea: angle of incidence vs pT

Mirror studies

- Reflectivity measured before tests
- Focusing: ok
- Tilted vs straight mirror both were ok
- Track position vs ring position: movement < 1mm
- "Back shoot study": still 1-2 detected photons / event

Close Cathode Chamber

Development of the REGARD Collaboration (Rmki-Elte Gaseous detector R&D Collab.) (proposed by D.Varga)

CCC - measurements II.

- The relative gain as a function of lower cathode and wire plane distance (d). The calculations are consistent with the measurements.
- Measurements with a chamber where the wires were fixed at different heights on the two side

03/12/2010

Gábor KISS, Zimányi 2010 Winter School on Heavy Ion Physics

Analog signals of the MIPs from the sense wires

Sense wire signal in the Camac ADC [a.u.]

Oscilloscope screenshot

• Charge distribution (2 channels in all the 4 chambers)

Screenshot example of digital hit patterns

Distance between layers: 50 mm Pad width: 4 mm

In this example the particles incident at 15 degrees (2 GeV at ALICE)

Signals in the VHMPID

Usage of a spherical mirror -> Circle shape signals ->

- Easier to measure diameter
- Which gives better resolution
- HMPID reconstruction method could be used

simulation and picture by G. Volpe

HPTD in **ALICE**

High P_T Trigger Detector

- Simple pattern recognition with FPGAs

- Measure particle inclination
- Good resolution along the direction of bending
- Pad size optimization through simulations (2-5 mm wide)
- Detector requirement
 - high granularity (pads<2cm²)
 - high multitrack resolution
 - no amplitude meas. needed
 - narrow response function (1 pad/hit)