

Dihadron Correlations in pp and PbPb Collisions in CMS

6th International Workshop High-p_T Physics at LHC

Jeremy Callner
University of Illinois at Chicago
For the CMS Collaboration
April 4th, 2011

Introduction

- There are several unique and non-trivial features found in AA collisions at RHIC
 - Near side ridge
 - Broadened away side
 - Disappearance of back-to-back correlations
- Explanations include:
 - Connections to jet quenching
 - Higher order components of hydrodynamic flow $(v_n | n>2)$
- LHC and CMS provide:
 - Expanded pseudorapidity and p_T reach
 - Higher density system than before
- We see a long-range correlation (ridge) in PbPb, and for the first time (high multiplicity) pp

The Technique

- Correlate "associate" particles in ϕ and η with respect to other "trigger" particles in each event
- Measurement made on a statistical basis
- Compare heavy-ion, dAu and pp collisions

Terminology (for this talk)

- Correlations can be "triggered" (p_T cuts) or "untriggered"
- Triggered correlations can be "leading hadron" or "inclusive"

UIC UNIVERSITY OF ILLINOIS

A Feature of the $\Delta\eta-\Delta\phi$ Correlation

CMS Detector

SILICON TRACKER

Pixels (100 x 150 μm²) ~66M channels ~1m²

Microstrips (80-180µm)

~200m² ~9.6M channels

Compact Muon Solenoid

SUPERCONDUCTING SOLENOID

Niobium-titanium coil carrying ~18000 A

: 14000 tonnes

FORWARD CALORIMETER

PRESHOWER Silicon strips

~16m² ~137k channels

Steel + quartz fibres ~2k channels

Total weight Overall diameter

~13000 tonnes

: 15.0 m **Overall length** : 28.7 m Magnetic field : 3.8 T

HADRON CALORIMETER (HCAL)

Brass + plastic scintillator

~7k channels

MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

CMS All Silicon Tracking System

The largest Silicon Tracker ever built:

- Strips: 9.3M channels; Pixels: 66M channels. >98% of channels operational
- Extremely high granularity
- Coverage over $|\eta| < 2.4$

Monday 23rd November 2009

First Collisions at 7 TeV

Tuesday 30th March 2010

First Collisions at 7 TeV

Tuesday 30th March 2010

First Collisions at 7 TeV

Tuesday 30th March 2010

UNIVERSITY OF ILLINOIS AT CHICAGO

Inclusive Correlation Technique - Wei Li

Signal distribution:

$$S_{N}(\Delta \eta, \Delta \varphi) = \frac{1}{N(N-1)} \frac{d^{2} N^{signal}}{d\Delta \eta d\Delta \varphi}$$

$$\Delta \eta = \eta_1 - \eta_2$$
$$\Delta \phi = \phi_1 - \phi_2$$

CMS 7 TeV pp

Event 1

UNIVERSITY OF ILLINOIS AT CHICAGO

Inclusive Correlation Technique - Wei Li

Signal distribution:

$$S_{N}(\Delta \eta, \Delta \varphi) = \frac{1}{N(N-1)} \frac{d^{2} N^{signal}}{d\Delta \eta d\Delta \varphi}$$

$$\Delta \eta = \eta_1 - \eta_2$$
$$\Delta \phi = \phi_1 - \phi_2$$

CMS 7 TeV pp

Event 1

Event 2

Background distribution:

$$B_{N}(\Delta \eta, \Delta \varphi) = \frac{1}{N^{2}} \frac{d^{2} N^{bkg}}{d\Delta \eta d\Delta \varphi}$$

U C UNIVERSITY OF ILLINOIS AT CHICAGO

Inclusive Correlation Technique - Wei Li

Signal distribution:

$$\Delta \eta = \eta_1 - \eta_2$$

$$\Delta \phi = \phi_1 - \phi_2$$

CMS 7 TeV pp

Event 1

Background distribution:

$$B_{N}(\Delta \eta, \Delta \varphi) = \frac{1}{N^{2}} \frac{d^{2} N^{bkg}}{d\Delta \eta d\Delta \varphi}$$

p_T-inclusive two-particle angular correlations in Minimum Bias collisions

$$R(\Delta \eta, \Delta \varphi) = \left\langle (N-1) \left(\frac{S_N(\Delta \eta, \Delta \varphi)}{B_N(\Delta \eta, \Delta \varphi)} - 1 \right) \right\rangle_N$$

UNIVERSITY OF ILLINOIS AT CHICAGO

Correlations in Minimum Bias pp

High Multiplicity pp collisions

High Multiplicity pp collisions

Very high particle density regime

→ *Is there anything peculiar happening there?*

Inclusive Correlation High multiplicity pp (N>110)

Dominated by jet-like correlation

Inclusive Correlation High multiplicity pp (N>110)

No ridge, but what if we zoom in...

Inclusive Correlation High multiplicity pp (N>110)

Zoomed in to see the finer structure underneath

Inclusive Correlation High multiplicity pp (N>110)

Zoomed in to see the finer structure underneath

Still no ridge, but what if trigger on a little higher p_T ...

UIC UNIVERSITY OF ILLINOIS

1-D projected $R(\Delta \phi)$ at large $\Delta \eta$

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

Quantifying the pp Ridge

Zero Yield At Minimum (ZYAM)

N>1102.0< $|\Delta\eta| < 4.8$ 1GeV/c< p_T <2GeV/c Associated yield: correlated multiplicity per particle

UNIVERSITY OF ILLINOIS AT CHICAGO

Heavy lons at the LHC

UNIVERSITY OF ILLINOIS AT CHICAGO

Heavy lons at the LHC

In November and December of 2010, the LHC delivered over 9 µb⁻¹ of 2.76 TeV PbPb data

CMS recorded over 90% of these collisions

We used 0.44 µb⁻¹ in this analysis

UNIVERSITY OF ILLINOIS AT CHICAGO

Centrality in HI

Focus on 0-5% most central events in this analysis

Trigger efficiency 100% for these events

Flow not taken into account in this analysis

177K events after cuts

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

Analysis Technique

This is a different way of normalizing the correlation than that used in the pp analysis

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

Analysis Technique

$$\frac{1}{N_{trg}} \frac{d^2 N}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

CMS Preliminary

There's a ridge

Final Results - 2D

 p_T^{trig} : 4 - 6 GeV/c p_T^{assoc} : 2 - 4 GeV/c

✓ Prominent long-range, near side ridge

Final Results - 1D $\Delta \phi$ projections

NIVERSITY OF ILLINOIS

UIC UNIVERSITY OF ILLINOIS Final Results - 1D Δφ projections

 \checkmark Enhancement seems to disappear at high p_T

jeremz@cern.ch

Integrated Associated Yield

Elliptic flow not subtracted

Δη dependence of the near-side yield

(measured in $\Delta \eta$ slices of 0.6)

- ✓ Flat near-side ridge structure in PbPb for $|\Delta \eta| > 1$
- ✓ Similar jet peak between PYTHIA8 and PbPb

Integrated Associated Yield

Associated Yield (Y) vs trigger p_T in jet and ridge region

Fourier Decomposition

An alternative way to quantify the results Relevant to the ridge-as-hydrodynamic-flow perspective

Conclusions

- Ridge-like structure now found in both pp and heavy ion collisions
- It appears constant out to large relative pseudorapidity in 2.76 TeV central PbPb collisions (out to 4)
- Measured ridge-like enhancement disappears at higher p_T trigger ~8 – 10 GeV/c

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

Trigger on High Multiplicity pp

Total integrated luminosity: 980nb⁻¹

Two HLT thresholds:

- Nonline > 70
- Nonline > 85

N^{online} > 85 trigger un-prescaled for full 980nb⁻¹ data set

~350K top multiplicity events (N>110) out of 50 Billion collisions!

Tracking in CMS HI

HI Tracking Performance from HYDJET MC

NIVERSITY OF ILLINOIS

UIC UNIVERSITY OF ILLINOIS

Tracking in HI

HI Tracking Performance from HYDJET MC

Tracking in HI

Semi data-driven tracking efficiency

Event Selection

- Online trigger: HLT_HIMinBiasHfOrBSC_Core
 - BSC OR HF tower coincidence
 - > 97% efficiency (<1Hz noise rate)
- Offline selections:
 - Veto beam halo trigger bits
 - 3 HF towers (E > 3 GeV) on each side
 - Beam-scraping events removed with pixel cluster vertex compatibility
 - Reconstructed primary vertex with at least 2 tracks, $|z_{vtx}|$ < 15cm, r < 0.02cm

Total # of MinBias events selected: 3.4 Million

HI MC models

 p_T^{trig} : 4 - 6 GeV/c p_T^{assoc} : 2 - 4 GeV/c

HYDJET shows no sign of ridge

• AMPT has ridge but misses hard processes

Relativistic Heavy Ion Collision

The Ridge at RHIC

- Seen in different correlation techniques by different experiments in 200 GeV AuAu data
- There is not yet a consensus on its origin, however it is believed to be a medium effect
- The LHC can and CMS are uniquely suited to study quantitative features of the ridge like p_T and pseudorapidity reach

Dijet Events in Heavy Ions

• Dijets are a useful probe of the medium

So how do you...

find this...

 $\sqrt{s_{nn}} = 200 \,\mathrm{GeV}$

Beam into / out-of screen

 $Au+Au \rightarrow ????$ (STAR@RHIC)

- The challenge: Jet reconstruction is difficult in heavy ions for low p_T (First RHIC measurements had p_T reach of ~ 7 GeV/c)
- A solution: Make a statistical measurement via correlations