#### Charged particle distributions and correlations in p+p collisions measured with the ATLAS detector

# **Roberto Di Nardo** University & INFN Roma Tor Vergata, On behalf of the ATLAS Collaboration



6th International Workshop High-pT physics at LHC 2011 4-7 April 2011, Utrecht, Netherlands



#### Outline

#### The ATLAS experiment and the Inner Detector

- Reconstruction of known particles in Minimum Bias Events
- Charged particle multiplicity spectra
- Underlying event measurements
- Two-particle angular correlation



#### Motivations



 Soft QCD processes are unavoidable background for a lot of collider observables (in particular jet cross-section, missing energy, isolation cuts...)
Not well understood since non-perturbative physics is involved.
Phenomenological models and new tune can be tested looking at the agreement between data and Monte Carlo for various soft QCD distributions.

>Visible effect in the tuning also at high- $p_T$  (e.g. colour reconnection)



# Roberto Di Nardo – University & INFN Tor Vergata





#### The ATLAS Experiment





#### **The ATLAS Inner Detector**



High-pT 2011 – 4 April 2011

- Covers  $|\eta| < 2.5$  with 3 subdetectors
- Pixel detector (Silicon Modules)
  - 1774 modules, ~80 M channels
  - Resolutions: ~10 μm (rφ) ~115 μm (rz)

#### SCT detector (Silicon Strip)

- 4088 modules, ~6.3 M channels
- Resolutions ~ 17  $\mu$ m (r $\phi$ ) ~580  $\mu$ m (rz)
- > TRT detector (straw drift tubes,  $|\eta| < 2$ )
  - 176 modules, ~0.4 M channels
  - Intrinsic tube resolution ~130 μm (rφ)
  - • $e^{+/-}$ PID by detection of transition radiation  $\gamma$



Roberto Di Nardo – University & INFN Tor Vergata

## The MBTS trigger

Minimum Bias Trigger Scintillators used to trigger events to study soft QCD

- Plastic scintillators
- Located at 3.56 m from the interaction point on each side
- > Pseudorapidity range covered:  $2.09 < |\eta| < 3.84$
- ➢Highly efficient for charged particles
- Different trigger selection possible:
  - > 1 hit in either side in coincidence with the BPTX detectors (electrostatic beam pick-up detectors located at 175m from the interaction point)





.

## ID performances understanding



#### Silicon Hit on track

➢ Good data/MC agreement in the comparison of the average number of silicon hits on track

Excellent modelling of the detector in Monte Carlo simulation



> Uncertainty in the detector material description in simulation  $\rightarrow$  largest systematic uncertainties in the measurement

> 10 % material uncertainty reflects into 3% difference in the efficiency



#### $K^0_{s}$ and $\Lambda^0$ reconstruction

≻~190 µb<sup>-1</sup> of 7 TeV minimum-bias collision data compared with non-diffractive minimum bias simulation (Pythia ATLAS MC09 tune)

Pre-selection: tracks with opposite charge,  $p_T > 100 \text{ MeV}$ , at least 2 silicon hit (Pixel +SCT)



 $\Lambda \rightarrow p^+\pi^- + c.c.(c\tau = 7.9cm, BF \sim 64\%)$ 

≻Flight Distance > 30 mm

 $> \cos(\theta_{\nu}) > 0.9998$ 



## Not only $K^0_{\ s}$ and $\Lambda$



Roberto Di Nardo – University & INFN Tor Vergata

## Charged particle multiplicity spectra

"Charged particle multiplicities in *pp* interactions measured with the ATLAS detector at the LHC"

➤ arXiv:1012.5104v2 (accepted by New J Phys)



#### **Dataset and Event Selection**

#### The Datasets:



#### The Event Selection:

MBTS single-cell trigger in coincidence with the BPTX (beam pickup)

➤1 Vertex reconstructed

2 tracks + Beam Spot

➢No pileup (secondary vertex with >3 tracks)

Track quality cuts (hits)

cut on the impact parameters at the primary vertex to exclude non primary tracks

Phase Space considered : (see arXiv:1012.5104v2 for more than these two)

Most inclusiveLower diffractive contribution $\geq 2 \text{ good tracks}$  $\geq 2 \text{ good tracks}$  $\geq p_T > 100 \text{ MeV}$ ;  $|\eta| \le 2.5$  $\geq p_T > 500 \text{ MeV}$ ;  $|\eta| \le 2.5$ 

#### **Correction procedure**

Fraction of tracks out of

kinematic range

Event-wise correction for trigger and vertex efficiencies

$$w_{ev}\left(n_{sel}^{BS}\right) = \frac{1}{\varepsilon_{trig}\left(n_{sel}^{BS}\right)} \cdot \frac{1}{\varepsilon_{vertex}\left(n_{sel}^{BS}\right)}$$

Track-wise correction (e.g. tracking efficiency)

$$w_{ev}(p_T,\eta) = \frac{1}{\varepsilon_{trk}(p_T,\eta)} \cdot (1 - f_{sec}(p_T,\eta)) \cdot (1 - f_{okr}(p_T,\eta))$$
  
Fraction of secondaries

Takes in to account secondary contamination and tracks out of kinematic range

- e.g. Track p<sub>T</sub><100 MeV but particle p<sub>T</sub>>100 MeV
- $> N_{ch}$  and  $p_T$  both corrected using a Bayesian unfolding

> <p<sub>T</sub>> vs n<sub>ch</sub>  $\rightarrow$  bin-by-bin correction of average p<sub>T</sub> and the n<sub>ch</sub> migration

Roberto Di Nardo – University & INFN Tor Vergata

#### Efficiencies

Trigger and Vertex efficiencies both measured from data



## $1/N_{ev}dN_{ch}/$

Different models differ in normalization but the shape are almost similar

Phojet gives the best description of 900 GeV data

- $\blacktriangleright$  At 7 TeV Track multiplicity underestimated for all the models.
- The variation of the shape between models is little

 $> n_{ch} \ge 6$ ,  $p_T > 500 \text{ MeV}$  measurement used in AMBT1 tune



## $1/(2\pi p_T)1/N_{ev}d^2N_{ch}/d\eta dp_T$



 $1/N_{ev}dN_{ev}/dN_{ch}$ 

 $\blacktriangleright$  The low n<sub>ch</sub> region not well modeled by any MC

- Iarge contribution from diffractive component
- > The peak at 10 particles well described by the new AMBT1 tune



 $< p_T > vs N_{ch}$ 

Predictions differ significantly between the different models in particular at high n<sub>ch</sub>
Best description from AMBT1 and Pythia8

 $\blacktriangleright$  Shape at high  $p_T$  well modelled

High sensitivity of the low n<sub>ch</sub> shape linked to the different ND,SD,DD fractions



## **Underlying Events**

> "Measurement of underlying event characteristics using charged particles in pp collisions at  $\sqrt{s}$  = 900 GeV and 7 TeV with the ATLAS detector"

arXiv:1012.0791v2 (accepted by Phys Rev D)

➤ "Measurements of underlying event properties using neutral and charged particles in p-p collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC"

arXiv:1103.1816v2 (submitted to EPJC)

## **Underlying Events**

>"Underlying Event": everything except the hard scattering process

- MPI, ISR-FSR contributions, beam-beam remnants
- > Transverse region: perpendicular to the hard scattering and sensitive to the underlying event
  - > Used the leading track to identify the leading jet  $60^{\circ} < |\Delta \varphi| < 120^{\circ}$



same correction for trigger, vertex and tracking efficiency as in the Charged Multiplicities distribution analysis

## Angular distributions vs p<sub>T</sub><sup>lead</sup>

Charged particle number density for tracks other than the leading track

- plot reflected wrt  $\Delta \varphi = 0$
- Jet-like shape (higher tracks population in the toward and the away region) is



different densities and different angular distributions between data and MC

## Multiplicity

>Density of charged particle ( $p_T$ >500MeV  $|\eta| < 2.5$ ) as function of the leading track  $p_T$  in the transverse region increase of a factor 2 form 900 GeV to 7 TeV.



Plateau value is a factor 2 larger as seen in the Minimum Bias events (due to the high  $p_T$  track selection effect: more momentum exchange and lack of diffractive contributions in events with  $p_T^{lead}$  in plateau region)



## Scalar $\Sigma p_T$ density



>None of the tune describe the data well

- DW is the closest to data
- > Other tunes underestimate the density.



### Lower p<sub>T</sub> threshold

900 GeV 7 TeV <d²N<sub>ch</sub>/dŋdφ> ATLAS Transverse Region cd<sup>2</sup>N<sub>ch</sub>/dηdφ Transverse Region ATLAS √s = 900 GeV √s = 7 TeV > 0.1 GeV and |n| < 2.5 p\_> 0.1 GeV and |η| < 2.5 multiplicity Data 2009 - - PYTHIA DW 0.4 - - - PYTHIA DW Data 2010 PYTHIA ATLAS MC09 PYTHIA Perugia0 0.5 PYTHIA Perugia0 PYTHIA ATLAS MC09 0.2F HERWIG+JIMMY ATLAS MC09 ERWIG+JIMMY ATLAS MC09 MC/Data MC/Data 0.6 10 10 12 14 16 18 20 p<sup>lead</sup> [GeV]  $p_{_{T}}^{lead}$  [GeV] d<sup>2</sup>Σp\_/dηdφ> [GeV] GeV ATLAS 0.9 Transverse Region ATLAS Transverse Region density √s = 900 GeV 2.5 √s = 7 TeV p\_> 0.1 GeV and m < 2.5 <d<sup>2</sup>D<sub>7</sub>/dnd4>  $p_{>} > 0.1 \text{ GeV and } |\eta| < 2.5$ 0.3 Data 2009 PYTHIA DW 0.5 - Data 2010 - - · PYTHIA DW 0. PYTHIA ATLAS MC09 PYTHIA Perugia0 PYTHIA Perugia0 PYTHIA ATLAS MC09 HERWIG+JIMMY ATLAS MC09 - - PHOJET HERWIG+JIMMY ATLAS MC09 - - PHOJET Scalar MC/Data MC/Data 10 10 12 14 16 18 20 p<sup>lead</sup> [GeV]  $p_{T}^{lead}$  [GeV]

> UE measurements performed also with a lower  $p_T$  threshold

> p<sub>T</sub>>100 MeV, |η|<2.5

Poorly reproduced by models which have a better agreement for  $p_T > 500 \text{ MeV}$ 



High-pT 2011 – 4 April 2011

#### UE with charged and neutral particles

#### Calorimeter based UE measurements

Sensitive to the neutral component  $\rightarrow$  integrate the result of the track based





#### **Angular distributions**



## Multiplicity

- > Particle multiplicities in the transverse region
- Lower particles densities for the various MC tunes wrt data
  - ≻PYTHIA DW is the closest to the data
  - ➢PHOJET underestimate the multiplicities







High-pT 2011 – 4 April 2011

#### **Two-particle angular correlation**



### **Two-particle angular correlations**

> The study of correlations between final state particles is a powerful method for investigating the underlying mechanisms of particle production



> Different region can be distinguished for the correlation function in  $\Delta \eta \Delta \varphi$  plane

- $\rightarrow \Delta \varphi \sim \pi \rightarrow$  back to back jets (away side correlations)
- $\rightarrow \Delta \varphi \sim 0 \rightarrow$  particles in a single jet (near side correlations)
- $\vdash$  |Δη| <2 → resonances, string fragmentation, clusters (short range correlations)

Roberto Di Nardo – University & INFN Tor Vergata

#### **Two-particle angular correlations**



After correction procedure

The correlation function in Pythia tune MC09 shows similar structure

Strength of the correlation different between data and MC

R( $\Delta\eta$ , $\Delta\phi$ ) projections



Roberto Di l

Away-side: good agreement between data and Pythia8 in the full range

Near-side: none of the tunes have the right shape. Pythia8 closest to data in the tails
Short-range: different tunes agree with data only in localized regions



#### Conclusions

Performances of the ATLAS Inner Detector well understood

Reconstruction of numerous resonances demonstrates accurate momentum scale and modeling of tracking in the multiple-scattering regime
Minimum bias data taken by the ATLAS detector for √s = 0.9, 2.36, 7 TeV have been analyzed

> good description of data for  $p_T$ >500 MeV with the AMBT1, worst agreement for a lower  $p_T$  threshold ( $p_T$ >100 MeV)

> Results for Underlying Events in pp collisions at  $\sqrt{s} = 900$  GeV and  $\sqrt{s} = 7$  TeV at ATLAS have been presented

Two-particle angular correlation function has been measured at 900 GeV and 7 TeV.
None of the MC models reproduce the strength of the correlation (Pythia8 closest to the data)

Roberto Di Nardo – University & INFN Tor Vergata

Roberto Di Nardo – University & INFN Tor Vergata



High-pT 2011 – 4 April 2011

#### Backup



The basic components of Pythia that require tuning are the descriptions of:

- Final state radiation and hadronisation,
- Initial state radiation and primordial kT ,
- > Underlying event, beam remnants, colour reconnection, and
- Energy scaling.

#### ➢Perugia0

≻PYTHIA Tune based on Minimum bias results from CDF and UA5. No UE data used

CTEQ5L parton distribution functions used

≻ DW

>PYTHIA Tune that use CDF UE and Drell-Yan data (no Min Bias Data)

≻ATLAS MC09

➢PYTHIA Tune based on CDF Minnimum Bias and UE Measurements (RUN I and II) plus the D0 results on dijet angular correlations



#### **ATLAS data in AMBT1**

| Analysis                                    | Observable                                                                                                 | Tuning range           |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------|
| ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}$                                                             | -2.5 - 2.5             |
| ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_T} \cdot \frac{d^2 N_{ch}}{d\eta dp_T}$                            | ≥ 5.0                  |
| ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$                                                           | $\geq 20$              |
| ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\langle p_{\rm T} \rangle$ vs. $n_{\rm ch}$                                                               | ≥ 10                   |
| ATLAS 0.9 TeV, UE in minimum bias           | $\left< \frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi} \right>$ (towards)             | $\geq 5.5 \text{ GeV}$ |
| ATLAS 0.9 TeV, UE in minimum bias           | $\left< \frac{d^2 N_{\rm chg}}{d\eta d\phi} \right>$ (transverse)                                          | $\geq 5.5 \text{ GeV}$ |
| ATLAS 0.9 TeV, UE in minimum bias           | $\left< \frac{d^2 N_{chg}}{d\eta d\phi} \right> (away)$                                                    | $\geq 5.5 \text{ GeV}$ |
| ATLAS 0.9 TeV, UE in minimum bias           | $\left\langle \frac{d^2 \sum p_T}{d\eta d\phi} \right\rangle$ (towards)                                    | $\geq 5.5 \text{ GeV}$ |
| ATLAS 0.9 TeV, UE in minimum bias           | $\left\langle \frac{d^2 \sum p_T}{d\eta d\phi} \right\rangle$ (transverse)                                 | $\geq 5.5 \text{ GeV}$ |
| ATLAS 0.9 TeV, UE in minimum bias           | $\left\langle \frac{\mathrm{d}^2 \sum p_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} \right\rangle$ (away) | $\geq 5.5 \text{ GeV}$ |
| ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$   | $\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}$                                                             | -2.5 – 2.5             |
| ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$   | $\frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_T} \cdot \frac{d^2 N_{ch}}{dn dp_T}$                               | ≥ 5.0                  |
| ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$   | $\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$                                                           | ≥ 40                   |
| ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$   | $\langle p_{\rm T} \rangle$ vs. $n_{\rm ch}$                                                               | ≥ 10                   |
| ATLAS 7 TeV, UE in minimum bias             | $\left<\frac{\mathrm{d}^2 N_{\mathrm{chg}}}{\mathrm{d}\eta \mathrm{d}\phi}\right>$ (towards)               | $\geq 10 \text{ GeV}$  |
| ATLAS 7 TeV, UE in minimum bias             | $\left< \frac{d^2 N_{chg}}{d\eta d\phi} \right>$ (transverse)                                              | $\geq 10 \text{ GeV}$  |
| ATLAS 7 TeV, UE in minimum bias             | $\left< \frac{d^2 N_{chg}}{d\eta d\phi} \right>$ (away)                                                    | $\geq 10 \text{ GeV}$  |
| ATLAS 7 TeV, UE in minimum bias             | $\left\langle \frac{d^2 \sum p_T}{d\eta d\phi} \right\rangle$ (towards)                                    | $\geq 10 \text{ GeV}$  |
| ATLAS 7 TeV, UE in minimum bias             | $\left\langle \frac{d^2 \sum p_T}{d\eta d\phi} \right\rangle$ (transverse)                                 | $\geq 10 \text{ GeV}$  |
| ATLAS 7 TeV, UE in minimum bias             | $\left\langle \frac{d^2 \sum p_T}{d\eta d\phi} \right\rangle$ (away)                                       | $\geq 10 \text{ GeV}$  |



#### **Tevatron data in AMBT1**

CDF Run I underlying event in dijet events[13] (leading jet analysis) $N_{ch}$  density vs leading jet  $p_T$  (transverse), JET20D0 I $N_{ch}$  density vs leading jet  $p_T$  (toward), JET20D0 I $\sum p_T$  density vs leading jet  $p_T$  (transverse), JET20D0 I $\sum p_T$  density vs leading jet  $p_T$  (transverse), JET20D0 I $\sum p_T$  density vs leading jet  $p_T$  (toward), JET20Dije $\sum p_T$  density vs leading jet  $p_T$  (away), JET20Dije $N_{ch}$  density vs leading jet  $p_T$  (transverse), min biasCDI $N_{ch}$  density vs leading jet  $p_T$  (toward), min biasCDI $N_{ch}$  density vs leading jet  $p_T$  (away), min biasCDI $\sum p_T$  density vs leading jet  $p_T$  (transverse), min biasCDI $\sum p_T$  density vs leading jet  $p_T$  (toward), min biasCDI $\sum p_T$  density vs leading jet  $p_T$  (toward), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (toward), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  density vs leading jet  $p_T$  (away), min bias $DI_T$  $\sum p_T$  densit

 $p_T$  distribution (transverse), leading  $p_T > 30$  GeV

D0 Run II dijet angular correlations[15] Dijet azimuthal angle,  $p_T^{\max} \in [75, 100]$  GeV Dijet azimuthal angle,  $p_T^{\max} \in [100, 130]$  GeV Dijet azimuthal angle,  $p_T^{\max} \in [130, 180]$  GeV Dijet azimuthal angle,  $p_T^{\max} > 180$  GeV CDF Run II minimum bias[16]  $\langle p_T \rangle$  of charged particles vs.  $N_{ch}$ ,  $\sqrt{s} = 1960$  GeV

CDF Run I Z  $p_{\rm T}[17]$  $\frac{d\sigma}{dp_{\rm T}^2}$ ,  $\sqrt{s} = 1800 \,{\rm GeV}$ 

CDF Run I underlying event in MIN/MAX-cones[14] ("MIN-MAX" analysis)

 $\begin{array}{l} \langle p_T^{\max} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 1800 \text{ GeV} \\ \langle p_T^{\min} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 1800 \text{ GeV} \\ \langle p_T^{\text{diff}} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 1800 \text{ GeV} \\ \langle N_{\max} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 1800 \text{ GeV} \\ \langle N_{\min} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 1800 \text{ GeV} \\ \text{Swiss Cheese } p_T^{\text{sum}} \text{ vs. } E_T^{\text{lead}} (2 \text{ jets}), \sqrt{s} = 1800 \text{ GeV} \\ \langle p_T^{\min} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 630 \text{ GeV} \\ \langle p_T^{\min} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 630 \text{ GeV} \\ \langle p_T^{\min} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 630 \text{ GeV} \\ \langle p_T^{\text{diff}} \rangle \text{ vs. } E_T^{\text{lead}}, \sqrt{s} = 630 \text{ GeV} \\ \text{Swiss Cheese } p_T^{\text{sum}} \text{ vs. } E_T^{\text{lead}} (2 \text{ jets}), \sqrt{s} = 630 \text{ GeV} \\ \end{array}$ 



#### **Parameters in AMBT1**

| Parameter | Related model                         | MC09c value | scanning range | AMBT1 value |
|-----------|---------------------------------------|-------------|----------------|-------------|
| PARP(90)  | MPI (energy extrapolation)            | 0.2487      | 0.18 - 0.28    | 0.250       |
| PARP(82)  | MPI $(p_T^{\min})$                    | 2.31        | 2.1 - 2.5      | 2.292       |
| PARP(84)  | MPI matter overlap (core size)        | 0.7         | 0.0 - 1.0      | 0.651       |
| PARP(83)  | MPI matter overlap (fraction in core) | 0.8         | fixed          | 0.356       |
| PARP(78)  | CR strength                           | 0.224       | 0.2 - 0.6      | 0.538       |
| PARP(77)  | CR suppression                        | 0.0         | 0.25 - 1.15    | 1.016       |
| PARP(93)  | Primordial $k_{\perp}$                | 5.0         | fixed          | 10.0        |
| PARP(62)  | ISR cut-off                           | 1.0         | fixed          | 1.025       |



## $\eta$ for $K^0{}_{_{S}}$ , $\Lambda\,$ and $\overline{\Lambda}\,$ candidates

➢No Correction for detector effect applied

#### **Candidates definitions**

- > | M(K<sub>s</sub>)-M(K<sub>PDG</sub>) | <20 MeV
- > | M( $\Lambda$ )-M( $\Lambda_{PDG}$ ) | <7 MeV

#### ► MC consistent with data within 10%





## Proper decay time for $K^0_s$ , $\Lambda$ and $\Lambda$



1600

1600

Multiplicity vs  $\sqrt{s}$ 

Data at different c.m.e. (@ 0.9, 2.36 and 7 TeV) have been used



≽p<sub>T</sub>>100 MeV

Models underestimate the

particle multiplicity

≽p<sub>T</sub>>500 MeV

Better Agreement for AMBT1

no model dependent correction applied (well-defined phase-space and no correction back to a particular component (e.g. NSD))