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p+p collisions at LHC & ALICE

p+p physics at LHC
• Higgs, SUSY, BH, extra dims = BSM physics

p+p physics at LHC & ALICE
• Reference for HI physics ( parton energy loss, nuclear modification of 
FF in excited medium, kT broadening, ...) 
• Study of non-perturbative QCD phenomena (kT )
• Test bench for pQCD (parton showering, ISR/FSR) 
• Search for collective phenomena

Method – two high-pT particle correlations                         trigger = leading 
particle  

CMS, arXiv:1009.4122.



Medium modification of fragmentation function
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X.N. Wang, Z. Huang, and I. Sarcevic: arXiv:hep-ph/9605213 v1 :
Use medium modification of FF to study partonic dE/dx.

pT distribution of charged hadrons
in γ-tagged jets in central Au+Au.
no dE/dx (solid lines),
dE/dx = 1 GeV/fm (dashed lines)

Ratio of the the inclusive FF of γ-tagged jet
with and without energy loss in central
Au+Au for a fixed dEq/dx = 1 GeV/fm.
Sensitive window 10 < ET

γ < 20 GeV



Leading particle correlations

2-part correlation: 
•Jet properties studied on statistical bases

•Near side (intra jet) : Single jet properties 
jet transverse fragmentation momentum jT

•Away side (inter jet) : Di-jet properties 
accoplanarity + mom. imbalance due to kT
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Two-particle observables

• Relative azimuthal angle

• Transverse comp. wrt trigger 
– jet shape (jet frag. Trans. mom jT)

– di-jet acoplanarity (kT) 

• Longitudinal comp. wrt. Trigger
– related to Fragmentation Function
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However, does xE have anything to do with FF?

• Since 1970ties till 2006 (PRD 74, 

072002 (2006)) it was believed that

dN/dxE ≈ FF

• CCOR data – the slope seems to 
be constant as expected from the 
universality of the    
Fragmentation Function.
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CCOR Physics Scripta 19,
116-123 (1979)
p0 trigger not a leading particle
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Simple xE kinematics arguments
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Or Bjorken “parent-child relation” and the 
“trigger bias”

The reasons why xE=za equivalence has been  generally adopted 
follows:

–Bjorken “parent-child” rel.[Phys. Rev., 1973, D8, 4098 ] 

–Jacob “trigger bias” *Phys.Rept., 1978, 48, 28 ]

Assumptions:

1. jet-spectrum has power law shape ~ p-n
T,jet

2. Power n doesn’t vary much with pT
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pQCD and power law
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However

– Running α(Q2)

– PDF evolution

– kT smearing

– Higher-twist

phenomena
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n ~ 6 @  LH C

Courtesy of W. A. Horowitz



Or Bjorken “parent-child relation” and the 
“trigger bias”
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Dihadron ⟨zt⟩≠1; xE by PHENIX

PHENIX, Phys. Rev D 74, 072002 (2006)

fixed  pTt while varying pTa changes 
⟨za⟩ and ⟨zt⟩.

Left figure: Measured dN/dxE compared 
with dN/dxE calculated using FF of quark Dq

∝ (−8.2 z ) (solid line) and
gluon Dg ∝ (−11.4 z ) (dashed line) from 
LEP.
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Leading Particle FF 
from KKP and PYTHIA



xE distributions in ALICE
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Analysis details

Analyzed p+p runs from 2010:
√s = 0.9 TeV (10 Mevents, 110 mb-1)
√s = 7 TeV (370 Mevents, 6 nb-1)

Analysis cuts:
min. bias trigger + |vertex z| < 10 cm
 ITS + TPC tracking
 primary tracks

(tight cut on DCA to vertex)
 charged tracks with || <0.8
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dN/d distributions from p+p at √s = 0.9 and 7 TeV

√s from 0.9 to 7 TeV :      
 broadening of away side peak
 increase of pedestal

Charged tracks in pseudorapidity range ||<0.8 14



Estimate of xE and pout background

Bg. pairs = assoc. particle is uncorrelated with the trigger in azimuth

 Isotropic in  

 dNbg/dpTa |pTt = BpTt (pTa)

Bg. component of xE and pout can be estimated with a toy MC

 check that pTa,min < pTa < pTt ( or pTa,min <pTa <pTa,max)  

 absolute normalization: dN/d (xE) or directly from fit (pout)

 Where to get the function B? 15



How to assess BpTt(pTa)?

• BpTt(pTa ) ≈ trigger associated dN/dpTa distributions of particles

from the regions around minima of dN/d.

Region dominated by UE
 = ( 0.325, 0.475 ) + (1.525,1.675) rad/p

Fit by Kaplan in pTa < pTt,min

Tail affected by pTa < pTt
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Measured xE and pout and background

xE at away side :

xE = - ( pTa / pTt )  cos 

pout at near side 
and away side :

pout = pTa sin 

Horn structure in pout bg
results from Jacobian
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xE signal from ALICE

PHENIX arXiv:1006.1347v1 [hep-ex] :For given √s all xE distributions seem 
to
follow one universal trend
as it is suggested also by p0-h and dir-
h
data from PHENIX
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Inverse xE slope

 Fit dN/dxE by exponential in range xE = (0.4, 0.8)

 7 TeV data exhibit uniform xE slope over a wide pTt range

 similar slopes for different √s

 High-xE tail -> Inverse slope measures ⟨zt⟩

 Low-xE tail -> measures ⟨\hat{x}h⟩ see Mike’s talk earlier today
19

CCOR Physics Scripta 19,  116-123 (1979)
PHENIX, Phys. Rev D 74, 072002 (2006)



Sources of Systematic Uncertainties
• Absolute normalization of background 

(fit dN/d by Kaplan+Kaplan+const or use ZYAM ?)

• Correction on reconstruction efficiency
(motivated by simulation : per trigger normalized   reconstructed + eff. corrected /input MC  )  
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Sources of Systematic Uncertainties

• Variability of dN/dpTa|pTt with selected  range

(assess dN/dpTa|pTt from two times narrower range)

• Parameterization of dN/dpTa|pTt

(in toy MC sample pTa directly from the measured dN/dpTa|pTt )

• Parameterization of dN/dpTt
(in toy MC sample pTt directly from the measured dN/dpTt )  
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Sources of Systematic Uncertainties
 Absolute normalization of background                   (“bg. norm”) 
 Correction on reconstruction efficiency                  (“eff. corr.”)
 Variability of dN/dpTa|pTt with selected  range   (“ range”)
 Parameterization of dN/dpTa|pTt (“pTa from hist”) 
 Parameterization of dN/dpTt (“pTt from hist”)

overall upper syst. uncertainty = S positive deviations
overall lower syst. uncertainty = Snegative deviations
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Future goals

 xE from di-hadron correlation is not a direct measurement of 
fragmentation function 

 Continue the analysis in pp and HI using as a  trigger

- isolated hadron (higher twist)

- direct photons (xE should be FF modulo kT smearing )

PHENIX arXiv:1006.1347v1 [hep-ex] : correlation γdir -h
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Summary

The leading particle associated yield p+p a √s =0.9 and 7 TeV was

analyzed in order to study jet fragmentation.

  : increase of yield of associated particles uncorrelated

with trigger in azimuth when going from √s =0.9 to 7 TeV

 away side dN/dxE :

- ALICE data seem to follow one universal trend independent

of pTt for given √s

- inverse dN/dxE slopes from 0.9 and 7 TeV are compatible with

lower √s measurements (CCOR, PHENIX)
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Backup slides
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Preliminary Inverse xE slope
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Prelim. away side xE signal (0.9 TeV)
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Prelim. away side xE signal (7 TeV)
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Prelim. away side xE signal (7 TeV)
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Two particle observables
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Fragmentation function
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Dq
h(z,Q2) ≡ probability that

parton q produces a hadron h
carrying fraction z the original
parton energy.

Jet analysis in e+e−, p-anti p, pp
⇒ FF of quarks is harder than for gluons.

ALEPH collab: Phys. Lett.B384 (1996) 
353. FF for natural flavor mix quark and 
gluon jets.



Which questions does HI physics address?

• QCD phase diagram
(nature of phase transitions, critical point)

• Structure of QCD vacuum
(chiral symmetry restauration, confinement)

• Interaction of the medium with embedded partons/had.

(jet quenching, dE/dx)

• Does the medium affect vacuum properties of partons/had.?
(Γ, fragmentation function)
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Some of the questions can be addressed with the high pT probes:
jets,   γdir



Trigger associated momentum distributions

• trigger = dir, assoc = hadron : folding only over assoc FF

• trigger=hadron, assoc=hadron : folding over trigger and assoc. FF
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