Two particle correlations at ALICE

Filip Krizek

for the ALICE collaboration

Helsinki Institute of Physics filip.krizek@cern.ch

p+p collisions at LHC & ALICE

p+p physics at LHC

• Higgs, SUSY, BH, extra dims = BSM physics

p+p physics at LHC & ALICE

- Reference for HI physics (parton energy loss, nuclear modification of FF in excited medium, k_T broadening, ...)
- Study of non-perturbative QCD phenomena (k_T)
- Test bench for pQCD (parton showering, ISR/FSR)
- Search for collective phenomena

Method – two high- p_T particle correlations particle

CMS, arXiv:1009.4122.

Medium modification of fragmentation function

X.N. Wang, Z. Huang, and I. Sarcevic: arXiv:hep-ph/9605213 v1 : Use medium modification of FF to study partonic dE/dx.

Ratio of the the inclusive FF of γ -tagged jet with and without energy loss in central Au+Au for a fixed dE_q/dx = 1 GeV/fm. Sensitive window 10 < E_T $^{\gamma}$ < 20 GeV

Leading particle correlations

2-part correlation:

•Jet properties studied on statistical bases

•Near side (intra jet) : Single jet properties jet transverse fragmentation momentum j_T

•Away side (inter jet) : Di-jet properties accoplanarity + mom. imbalance due to k_T

Two-particle observables

• Relative azimuthal angle

- jet shape (jet frag. Trans. mom j_T)
- di-jet acoplanarity (k_T)
- Longitudinal comp. wrt. Trigger
 - related to Fragmentation Function

$$\Delta \phi = \phi_{assoc} - \phi_{trigger}$$

$$p_{out} = p_{Ta} \sin \Delta \phi$$

$$x_E = -\frac{p_{Ta}}{p_{Tt}} \cos \Delta \phi$$

However, does x_F have anything to do with FF?

Since 1970ties till 2006 (PRD 74, 072002 (2006)) it was believed that $dN/dx_{F} \approx FF$

CCOR data – the slope seems to be constant as expected from the universality of the Fragmentation Function.

Simple xE kinematics arguments

Trigger particle
Associated particle

$$x_{E} = -\frac{p_{Tt} \cdot p_{Ta}}{p_{Tt}^{2}} = -\frac{p_{Ta}}{p_{Tt}} \cos \Delta \phi ; \quad \frac{z_{a} \hat{p}_{Ta}}{z_{t} \hat{p}_{Tt}} \Big|_{\Delta \phi \to \pi} ; \quad \frac{z_{a}}{\langle z_{t} \rangle} \Big|_{\Delta \phi \to \pi \land k_{T} \to 0} = z_{a} \Big|_{\Delta \phi \to \pi \land k_{T} \to 0 \land z_{t} \to 1}$$

$$\uparrow$$
Trigger jet
1. For the back-to-back $\cos(\Delta \varphi) \to 1 \Rightarrow p_{t,a} \to z_{t,a} \hat{p}_{Tta}$ and $x_{E} = \frac{z_{a} \hat{p}_{Ta}}{z_{t} \hat{p}_{Tt}}$

AND

2. For
$$k_T \rightarrow 0$$
 (no di-jet imbalance) $x_E = \frac{z_a}{z_t}$

AND

3. For
$$\langle z_t \rangle \rightarrow 1$$
 (e.g. gamma-jet correlations) $x_E = z_a$
 x_E is then a fragmentation variable

Or Bjorken "parent-child relation" and the "trigger bias"

The reasons why $x_E = z_a$ equivalence has been generally adopted follows:

-Bjorken "parent-child" rel. [Phys. Rev., 1973, D8, 4098]

-Jacob "trigger bias" [*Phys.Rept.*, **1978**, 48, 28]

Assumptions:

- 1. jet-spectrum has power law shape ~ $p^{-n}_{T,iet}$
- 2. Power n doesn't vary much with p_T

pQCD and power law

Dimensional analysis:

$$[\sigma] = \operatorname{GeV}^{-2} \operatorname{and} \left[E \frac{d^3 \sigma}{d^3 p} \right] = \operatorname{GeV}^{-4}$$

then $pp \rightarrow a + X$ kinematics is completely fixed by the two dimensional quantities s and p_T and two angles φ and ϑ . Any combination of s and p_T preserving dime

$$E\frac{d^{3}\sigma}{d^{3}p} = \frac{p_{T}^{4}}{s^{4}}g(x_{T}, \vartheta) = \frac{p_{T}^{4}}{256}\frac{x_{T}^{8}}{p_{T}^{8}}g(x_{T}, \vartheta) = \frac{1}{p_{T}^{4}}g(x_{T}, \vartheta)$$

However

- Running $\alpha(Q^2)$
- PDF evolution
- **k**_T smearing
- Higher-twist
 phenomena

$$n^{++} \rightarrow n\left(\mathbf{x}_{T}, \sqrt{s}\right)$$
$$n \sim 8 @ \text{RHIC}$$
$$n \sim 6 @ \text{LHC}$$

Courtesy of W. A. Horowitz

Or Bjorken "parent-child relation" and the "trigger bias"

Dihadron $\langle z_t \rangle \neq 1$: x₋ bv PHENIX

PHENIX, Phys. Rev D 74, 072002 (2006)

fixed p_{Tt} while varying p_{Ta} changes $\langle z_a \rangle$ and $\langle z_t \rangle$.

Left figure: Measured dN/dx_E compared with dN/dx_E calculated using FF of quark $D_q \propto (-8.2 \text{ z})$ (solid line) and gluon $D_g \propto (-11.4 \text{ z})$ (dashed line) from LEP.

x_E distributions in ALICE

Analysis details

$dN/d\Delta\phi$ distributions from p+p at vs = 0.9 and 7 TeV

Vs from 0.9 to 7 TeV :

broadening of away side peak
 increase of pedestal

Charged tracks in pseudorapidity range $|\eta| < 0.8$

Estimate of x_E and p_{out} background

Bg. pairs = assoc. particle is uncorrelated with the trigger in azimuth

- \succ Isotropic in $\Delta \phi$
- $\geq dN_{bg}/dp_{Ta} | p_{Tt} = B_{pTt} (p_{Ta})$

 \Rightarrow Bg. component of x_E and p_{out} can be estimated with a toy MC

 $\succ \text{ check that } p_{Ta,min} < p_{Ta} < p_{Tt} (\text{ or } p_{Ta,min} < p_{Ta} < p_{Ta,max})$

- > absolute normalization: $dN/d\Delta\phi$ (x_E) or directly from fit (p_{out})
- > Where to get the function B?

How to assess B_{pTt}(p_{Ta})?

• $B_{pTt}(p_{Ta}) \approx trigger associated dN/dp_{Ta} distributions of particles from the regions around minima of dN/d∆<math>\phi$.

Measured x_E and p_{out} and background

x_E at away side :

 \textbf{x}_{E} = - (\textbf{p}_{Ta} / \textbf{p}_{Tt}) cos $\Delta \phi$

 $p_{out} = p_{Ta} \sin \Delta \phi$

$$\frac{dN_{bg}}{dp_{out}} \propto \left(p_{Ta} \cos \Delta \phi\right)^{-1}$$

for p_{Ta} fixed

x_E signal from ALICE

For given Vs all x_E distributions seem to follow one universal trend as it is suggested also by π^0 -h and γ_{dir} -h data from PHENIX

Inverse x_E slope

- Fit dN/dx_e by exponential in range $x_e = (0.4, 0.8)$
- > 7 TeV data exhibit uniform x_E slope over a wide p_{Tt} range

CCOR Physics Scripta 19, 116-123 (1979) PHENIX, Phys. Rev D 74, 072002 (2006)

- similar slopes for different Vs
- \blacktriangleright High-x_e tail -> Inverse slope measures $\langle z_t \rangle$
- > Low- x_E tail -> measures (\hat{x}_h) see Mike's talk earlier today

Sources of Systematic Uncertainties

Absolute normalization of background

(fit dN/d $\Delta \phi$ by Kaplan+Kaplan+const or use ZYAM ?)

(motivated by simulation : per trigger normalized reconstructed + eff. corrected /input MC)

Sources of Systematic Uncertainties

- Variability of dN/dp_Ta|_pTt with selected $\Delta \varphi$ range

(assess $dN/dp_{Ta}|_{pTt}$ from two times narrower range)

• Parameterization of $dN/dp_{Ta}|p_{Tt}$

(in toy MC sample p_{Ta} directly from the measured dN/dp_{Ta}| p_{Tt})

• Parameterization of dN/dp_{Tt} (in toy MC sample p_{Tt} directly from the measured dN/dp_{Tt})

Sources of Systematic Uncertainties

- Absolute normalization of background
- Correction on reconstruction efficiency
- > Variability of dN/dp_{Ta}|_{pTt} with selected $\Delta \phi$ range (" $\Delta \phi$ range")
- > Parameterization of $dN/dp_{Ta}|p_{Tt}$
- Parameterization of dN/dp_{Tt}

```
("bg. norm")
("eff. corr.")
("∆ ornge")
("pTa from hist")
("pTt from hist")
```

22

overall upper syst. uncertainty = Σ positive deviations overall lower syst. uncertainty = Σ negative deviations

Future goals

- x_E from di-hadron correlation is not a direct measurement of fragmentation function
- Continue the analysis in pp and HI using as a trigger
 - isolated hadron (higher twist)
 - direct photons (x_E should be FF modulo k_T smearing)

PHENIX arXiv:1006.1347v1 [hep-ex] : correlation γ_{dir} -h

Summary

The leading particle associated yield p+p a Vs =0.9 and 7 TeV was analyzed in order to study jet fragmentation.

> $\Delta \phi$: increase of yield of associated particles uncorrelated with trigger in azimuth when going from $\sqrt{s} = 0.9$ to 7 TeV

> away side dN/dxE :

- ALICE data seem to follow one universal trend independent of p_{Tt} for given $\ensuremath{\mbox{vs}}$
- inverse dN/dx_E slopes from 0.9 and 7 TeV are compatible with lower Vs measurements (CCOR, PHENIX)

Backup slides

Preliminary Inverse x_E slope

Table 16: Inverse x_E slopes extracted from the ALICE measurement of p+p at $\sqrt{s} = 7$ TeV. Range of the fit was $x_E \in (0.4, 0.8)$. ALICE preliminary.

$p_{ m Tt,min}$	$p_{ m Tt,max}$	Mean p_{Tt}	inverse $x_{\rm E}$ slope	Stat. err.	Syst. err.	Syst. err.
[GeV/c]	[GeV/c]	[GeV/c]			high	low
4	5	4.41	5.17	0.049	0.075	0.17
5	6	5.43	5.26	0.061	0.057	0.19
6	7	6.44	5.34	0.079	0.059	0.082
7	8	7.44	5.25	0.099	0.069	0.097
8	10	8.82	5.09	0.10	0.055	0.059
10	12	10.85	5.25	0.16	0.074	0.12
12	15	13.22	5.14	0.21	0.059	0.11
15	20	16.91	5.05	0.31	0.068	0.051
20	25	22.06	5.48	0.57	0.072	0.11
25	30	27.16	6.5	1.1	0.15	0.12

Table 17: Inverse $x_{\rm E}$ slopes extracted from the ALICE measurement of p+p at $\sqrt{s} = 0.9$ TeV. Range of the fit was $x_{\rm E} \in (0.4, 0.8)$. ALICE preliminary.

$p_{ m Tt,min}$	$p_{ m Tt,max}$	Mean p_{Tt}	inverse $x_{\rm E}$ slope	Stat. err.	Syst. err.	Syst. err.
[GeV/c]	[GeV/c]	[GeV/c]			high	low
3	4	3.38	5.03	0.29	0.36	0.36
4	5	4.39	5.72	0.49	0.59	0.59
5	6	5.41	6.3	1.0	0.84	0.84

Prelim. away side x_E signal (0.9 TeV)

Table 14: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (4, 5)$ GeV/c where the mean $p_{\rm Tt}$ is 4.39 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=0.9$ TeV. ALICE preliminary.

Table 15: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (5,6)$ GeV/c where the mean $p_{\rm Tt}$ is 5.41 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at \sqrt{s} =0.9 TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{ m E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.259	3.02	0.38	0.21	0.10
0.299	2.86	0.28	0.10	0.16
0.339	2.20	0.21	0.10	0.15
0.379	1.43	0.16	0.032	0.14
0.419	1.12	0.13	0.022	0.20
0.459	0.96	0.11	0.015	0.18
0.499	0.703	0.096	0.010	0.13
0.539	0.586	0.084	0.0074	0.11
0.579	0.407	0.070	0.0055	0.079
0.619	0.356	0.063	0.0038	0.061
0.659	0.235	0.052	0.0066	0.051
0.699	0.293	0.054	0.012	0.047
0.739	0.200	0.045	0.010	0.037
0.779	0.127	0.037	0.0013	0.031

$x_{ m E}$	$dN/dx_{ m E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.219	6.5	0.92	0.095	2.2
0.259	4.77	0.61	0.0012	1.4
0.299	2.60	0.42	0.00054	0.86
0.339	2.13	0.32	0.00044	0.59
0.379	1.56	0.26	0.00055	0.47
0.419	1.42	0.23	0.00033	0.32
0.459	1.04	0.19	0.042	0.23
0.499	0.59	0.15	0.048	0.16
0.539	0.48	0.13	0.046	0.13
0.579	0.28	0.10	0.044	0.096
0.619	0.54	0.13	0.042	0.089
0.659	0.273	0.094	0.040	0.064
0.700	0.210	0.083	0.033	0.052
0.740	0.168	0.074	0.034	0.041
0.780	0.228	0.082	0.029	0.038
0.820	0.054	0.045	0.023	0.023

Table 13: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (3, 4)$ GeV/c where the mean $p_{\rm Tt}$ is 3.38 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=0.9$ TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{ m E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.339	1.65	0.11	0.029	0.12
0.379	1.276	0.093	0.0065	0.10
0.419	1.104	0.079	0.0049	0.080
0.459	0.796	0.065	0.018	0.057
0.499	0.748	0.058	0.033	0.048
0.539	0.586	0.049	0.039	0.051
0.579	0.557	0.045	0.037	0.038
0.619	0.444	0.039	0.041	0.026
0.659	0.294	0.033	0.036	0.019
0.699	0.288	0.031	0.036	0.018
0.739	0.182	0.025	0.024	0.014

Prelim. away side x_E signal (7 TeV)

Table 5: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (6,7)$ GeV/c where the mean $p_{\rm Tt}$ is 6.44 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=7$ TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{\rm E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.179	5.72	0.11	0.0023	0.64
0.219	4.231	0.071	0.018	0.40
0.259	3.126	0.051	0.036	0.27
0.299	2.308	0.038	0.039	0.19
0.339	1.824	0.030	0.023	0.14
0.379	1.361	0.024	0.023	0.11
0.419	1.082	0.020	0.019	0.095
0.459	0.856	0.017	0.012	0.067
0.499	0.661	0.015	0.014	0.048
0.539	0.532	0.013	0.0087	0.038
0.579	0.438	0.011	0.0070	0.034
0.619	0.3353	0.0098	0.0055	0.029
0.659	0.2852	0.0088	0.0036	0.022
0.699	0.2415	0.0079	0.0033	0.017
0.739	0.19599	0.0070	0.0068	0.014
0.779	0.1662	0.0063	0.0020	0.012
0.819	0.1239	0.0055	0.0029	0.0094

Table 7: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (8, 10)$ GeV/c where the mean $p_{\rm Tt}$ is 8.82 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=$ 7 TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{ m E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.139	10.38	0.21	0.057	1.57
0.179	6.90	0.12	0.0008	0.89
0.219	4.702	0.080	0.024	0.50
0.259	3.290	0.058	0.038	0.31
0.299	2.478	0.045	0.033	0.21
0.339	1.879	0.037	0.023	0.14
0.379	1.397	0.030	0.025	0.11
0.419	1.100	0.026	0.020	0.089
0.459	0.851	0.022	0.014	0.077
0.499	0.663	0.019	0.012	0.057
0.539	0.533	0.017	0.011	0.040
0.579	0.439	0.015	0.0098	0.031
0.619	0.366	0.014	0.0063	0.028
0.659	0.329	0.013	0.0028	0.025
0.699	0.252	0.011	0.0048	0.021
0.739	0.225	0.010	0.0032	0.018
0.779	0.1648	0.009	0.0028	0.014

Table 6: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (7,8)$ GeV/c where the mean $p_{\rm Tt}$ is 7.44 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=$ 7 TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{\rm E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.179	6.43	0.15	0.034	1.1
0.219	4.656	0.093	0.038	0.65
0.259	3.280	0.065	0.025	0.45
0.299	2.436	0.048	0.021	0.30
0.339	1.814	0.038	0.023	0.19
0.379	1.319	0.031	0.016	0.14
0.419	1.084	0.026	0.0080	0.11
0.459	0.854	0.022	0.012	0.080
0.499	0.719	0.019	0.0075	0.057
0.539	0.506	0.016	0.0053	0.042
0.579	0.466	0.015	0.0051	0.039
0.619	0.364	0.013	0.0051	0.028
0.659	0.309	0.012	0.0042	0.024
0.699	0.259	0.011	0.0021	0.025
0.739	0.1842	0.0091	0.0032	0.018
0.779	0.1695	0.0085	0.0014	0.017
0.819	0.1417	0.0077	0.0010	0.013
0.859	0.1235	0.0071	0.0022	0.0091

Table	8:	Awa	y side	dN	$/dx_{\rm E}$	sig	nal	for	$p_{ m Tt}$	∈	(10	, 12)	GeV	/c	where	e the	mear	p_{T}	t is
10.85	GeV	$\frac{1}{c}$	Associa	ted	parti	cle	was	in	\mathbf{the}	ran	ge 1	GeV	//c <	< p	$T_{\rm a} < p$	$p_{\rm Tt}$.	Data	for p	p+p
at \sqrt{s}	=7]	ΓeV.	ALICE	pre	elimin	ary.													

$x_{ m E}$	$dN/dx_{ m E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.138	11.22	0.28	0.050	1.8
0.179	7.19	0.16	0.045	0.91
0.219	4.92	0.11	0.076	0.54
0.259	3.440	0.082	0.062	0.33
0.299	2.409	0.065	0.042	0.20
0.339	1.932	0.055	0.033	0.17
0.379	1.338	0.045	0.019	0.14
0.419	1.063	0.039	0.014	0.11
0.459	0.888	0.035	0.0074	0.078
0.499	0.723	0.031	0.0064	0.058
0.539	0.579	0.028	0.0045	0.047
0.579	0.479	0.025	0.0029	0.042
0.619	0.358	0.022	0.0018	0.030
0.659	0.315	0.020	0.0012	0.025
0.699	0.232	0.017	0.0008	0.016
0.739	0.211	0.016	0.00040	0.014
0.779	0.165	0.014	0.00049	0.012
0.819	0.179	0.015	0.00025	0.012

Prelim. away side x_E signal (7 TeV)

Table 9: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (12, 15)$ GeV/c where the mean $p_{\rm Tt}$ is 13.22 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=7$ TeV. ALICE preliminary.

Table 10: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (15, 20) \,{\rm GeV}/c$ where the mean $p_{\rm Tt}$ is 16.91 GeV/c. Associated particle was in the range 1 GeV/c $< p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at \sqrt{s} =7 TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{\rm E}$	Stat. err.	Syst. err.	Syst. err.
_	, -		high	low
0.008	21.15	0.71	0.10	4.6
0.030	21.10	0.11	0.13	4.0
0.138	12.08	0.32	0	2.0
0.179	7.58	0.19	0.021	0.99
0.219	5.01	0.13	0.014	0.59
0 259	3 40	0.10	0.013	0.31
0.200	2 660	0.10	0.010	0.01
0.299	2.009	0.064	0.0001	0.20
0.339	1.797	0.068	0.00047	0.15
0.379	1.549	0.061	0	0.12
0.419	1.176	0.053	0	0.10
0.459	0.880	0.045	0.0001	0.082
0.499	0.633	0.038	0	0.056
0.539	0.565	0.036	0.00002	0.044
0.579	0.512	0.034	0.00004	0.037
0.619	0.399	0.030	0	0.031
0.659	0.328	0.027	0	0.022
0.699	0.249	0.024	0.00004	0.020
0.739	0.222	0.022	0	0.018
0.779	0.173	0.019	0	0.014

Table 11: Away side $dN/dx_{\rm E}$ signal for $p_{\rm Tt} \in (20, 25) \text{ GeV}/c$ where the mean $p_{\rm Tt}$ is 22.1 GeV/c. Associated particle was in the range 1 GeV/c < $p_{\rm Ta} < p_{\rm Tt}$. Data for p+p at $\sqrt{s}=7$ TeV. ALICE preliminary.

$x_{ m E}$	$dN/dx_{ m E}$	Stat. err.	Syst. err.	Syst. err.
			high	low
0.058	47.8	2.7	0.085	9.9
0.098	23.45	0.95	0.60	3.5
0.138	12.50	0.54	0.19	1.2
0.178	8.02	0.40	0.24	0.54
0.219	5.28	0.32	0.14	0.33
0.259	4.10	0.27	0.072	0.24
0.299	2.37	0.21	0.087	0.16
0.339	1.61	0.17	0.064	0.11
0.379	1.36	0.16	0.035	0.093
0.419	1.33	0.15	0.034	0.085
0.459	0.80	0.12	0.043	0.060
0.499	0.80	0.12	0.039	0.056
0.539	0.60	0.10	0.033	0.045
0.579	0.565	0.099	0.023	0.040
0.619	0.378	0.081	0.020	0.030
0.659	0.253	0.067	0.018	0.023
0.699	0.337	0.076	0.017	0.024
0.739	0.277	0.069	0.014	0.022
0.779	0.133	0.049	0.012	0.014

Two particle observables

$$\Delta \phi = \phi_{assoc} - \phi_{trigger}$$

$$p_{out} = p_{Ta} \sin \Delta \phi$$

$$x_{E} = -\frac{p_{Ta}}{p_{Tt}} \cos \Delta \phi$$

 $\begin{array}{ll} p_{Tt} & trigger \ particle \ p_T \\ p_{Ta} & associated \ particle \ p_T \\ \epsilon(p_T) & efficiency \ correction \\ R_{\Delta\eta} & acceptance \ correction \end{array}$

Near side pout related to $j_{\rm T}$ Away side pout related to $k_{\rm T}$ folded with $j_{\rm T}$

 $\frac{d^{2}N}{dp_{Ta}d\Delta\phi}\bigg|_{pTt} = \frac{R_{\Delta\eta}}{\varepsilon(p_{Tt})N_{\text{trigg}}} \frac{d^{2}N_{\text{raw}}\varepsilon(p_{Tt})\varepsilon(p_{Ta})}{dp_{Ta}d\Delta\phi}$

Fragmentation function

 $D_q^h(z,Q^2) \equiv$ probability that parton q produces a hadron h carrying fraction z the original parton energy.

Jet analysis in e+e–, p-anti p, pp \Rightarrow FF of quarks is harder than for gluons.

ALEPH collab: Phys. Lett.B384 (1996) 353. FF for natural flavor mix quark and gluon jets.

Which questions does HI physics address?

QCD phase diagram

(nature of phase transitions, critical point)

Structure of QCD vacuum

(chiral symmetry restauration, confinement)

- Interaction of the medium with embedded partons/had.
 (jet quenching, dE/dx)
- Does the medium affect vacuum properties of partons/had.? (Γ, fragmentation function)

Some of the questions can be addressed with the high p_{T} probes: jets, γ_{dir}

Trigger associated momentum distributions

• trigger = γ_{dir} , assoc = hadron : folding only over assoc FF

$$\frac{dN}{dp_{Ta}}\bigg|_{pT\gamma} = \int_{pTa}^{\sqrt{s}/2} d\hat{p}_{Ta} \Sigma'(\hat{p}_{Ta} | p_{T\gamma}) \frac{1}{\hat{p}_{Ta}} D\bigg(\frac{p_{Ta}}{\hat{p}_{Ta}}\bigg)$$

trigger=hadron, assoc=hadron : folding over trigger and assoc. FF

$$\frac{dN}{dp_{Ta}}\bigg|_{pTt} = \int_{pTt}^{\sqrt{s/2}} d\hat{p}_{Tt} \int_{pTa}^{\sqrt{s/2}} d\hat{p}_{Ta} \Sigma' \left(\hat{p}_{Ta} \left| p_{Tt} \right.\right) \frac{1}{\hat{p}_{Ta}} D\left(\frac{p_{Ta}}{\hat{p}_{Ta}}\right) D\left(\frac{p_{Tt}}{\hat{p}_{Tt}}\right)$$

 Σ' = distribution of \hat{p}_{Ta} of assoc. partons when the trigger p_{Tt} is fixed