Charmonium measurements with the ALICE experiment

Francesco Bossù for the ALICE collaboration

University and INFN of Turin

Utrecht, 7 April 2010

Introduction

$\label{eq:charmonium on p-p collisions} \begin{array}{c} J/\psi \to \mu^+\mu^- \\ J/\psi \to e^+e^- \\ J/\psi \text{ in ALICE} \end{array}$

erspectives in PbPb

Occusion Occusion

Vector mesons composed by a $c \bar{c}$ pair

Heavy quarkonium production is usually considered a two-stage process:

- Perturbative qq̄ production
- Non-perturbative evolution when the bound state is formed

- Charmonium represent a good laboratory to test non-perturbative QCD
- Different models are available for the description of the production mechanism
- A measurement of the production cross section, integrated and y- and pt-differential, and the polarization will give new clues

Charmonium states are expected to be a successful probe for the medium formed in ultra-relativistic heavy ion collisions

- Colour Debye screening: dissociation of bound states
- Charmonium regeneration due to recombination of *cc* pairs
- Thermal production of *cc̄* pairs at LHC energies?

The ALICE experiment

Central Barrel

- $|\eta| \leq 0.9$
- Hadrons, electrons and photons
- $p_t \rightarrow 0$

Muon Spectrometer

- $-4 \le \eta \le -2.5$
- muons
- p_{muons} > 4GeV/c

Forward Detectors

- large η
- Interaction trigger
- event centrality

J/ψ in ALICE

- In the forward muon spectrometer (2.5 < y < 4) in the $\mu^+\mu^-$ channel
- In the central barrel (|y| < 0.9) in the e^+e^- channel
- Both measurements down to $p_t = 0$

Goal

• Inclusive J/ψ production cross section measurement

$$\sigma_{J/\psi} = \frac{N_{J/\psi}}{Acc_{J/\psi} \times \epsilon} \times \frac{1}{L}$$

Ingredients

- Number of detected J/ψ
- Acceptance and efficiency determination
- Luminosity normalization

2010 data taking

- Collected data in different conditions: p-p collisions at 7 Tev and 2.76 TeV; Pb-Pb collisions at 2.76 TeV/N
- · Charmonium analysis ongoing on these different sets of data
- Will be shown preliminary results on inclusive J/ψ production in p-p at 7 TeV: a paper is under preparation and will be out soon.

Muon Spectrometer

cut

- Quarkonia $(J/\psi,\,\psi'$ and $\Upsilon(1S),\,\Upsilon(2S),\,\Upsilon(3S))$ down to $p_{
 m t}=0$
- Open heavy flavours via single muons and dimuons
- Electroweak bosons (Z^0 and W^{\pm})

Expected	l mass	resol	utions
----------	--------	-------	--------

	Single muon pt
\sim 70 <i>MeV</i> / $c^2 \rightarrow J/\psi$	1GeV/c
$\sim 100 {\it MeV}/c^2 ightarrow \Upsilon$	2GeV/c

Dipole

• B = 3 T m

Tracking System

- 5 stations of 2 planes of Cathode Pad Chambers (CPC) each
- 1.1M read-out channels
- spatial resolution $< 100 \mu m$ (bending plane)

Trigger System

- 2 stations of 2 planes of Resistive Plate Chambers (RPC) each
- 21k read-out channels
- 2 programmable ptcuts.
- 5 different trigger signals sent in $\sim 800 ns$

Data sample

- Data collected between May and July 2010
- Integrated luminosity: L = 13.6 nb⁻¹

Trigger conditions

- Single muon trigger in coincidence with a minimum bias interaction trigger. A
 minimum bias trigger is delivered when at least one of the V0 scintillators or the
 silicon pixel detector has a physical signal.
- Hardware single muon trigger p_t cut: $\sim 0.5 {
 m GeV/c}$

Run selection

- Quality checks on the stability of the tracking and the trigger system
- Runs with high pile-up probability where discarded

Requirements

- At least one vertex reconstructed by the silicon pixel detector
- At least one muon reconstructed in the tracking chambers that fired the trigger
- Cut on the position of the track at the end of the front absorber: discard small angle-muons travelling a long distance in the beam shield
- Kinematical requirement for the muon pair: 2.5 < y < 4

Dimuon sample

• Opposite sign: 1.36 · 10⁵

$J/\psi \rightarrow \mu^+ \mu^-$ - Alignment

• Offline alignment of the tracking chambers: crucial point in the identification of resonances in the $\mu^+\mu^-$ channel

Resolution achieved

 $\sigma_{J/\psi} \sim 90 MeV/c^2$

- Dedicated field-off run: 2 · 10⁵ tracks
- MILLEPEDE algorithm
- Further alignment studies with and without B field are ongoing

Number of J/ψ up to the end of June 2010

- Fit to the invariant mass spectrum: $1.5 < m_{\mu\mu} < 5 {
 m GeV/c^2}$
- Signal $(J/\psi$ and $\psi')$: Cristal Ball function
 - The functions are tuned on pure MC: simulation input from realistic differential distributions
 - Due to the small statistics ψ' parameters tied to the J/ψ ones
- Background: double exponential

Simulations

- Data sample subdivided in periods with constant detector configuration
- Realistic simulation for each period, embedded in the simulations the real conditions of the detectors
- Pure signal simulations: p_t distribution extrapolated from CDF, y distribution from CEM calculations

J/ψ polarization effects

- Polarization still unknown
- For each period samples with different polarizations have been simulated
- Different reference frames explored (Helicity and Collins-Soper)

Reference process

- Normalization to the total integrated luminosity, estimated via the measured cross section for a reference process
- Process chosen: occurrence of the minimum bias condition itself

Normalization

$$\sigma_{J/\psi} = rac{N_{J/\psi}}{Acc imes \epsilon} imes \sigma_{MB}$$

- Measured in dedicated vdM scans the coincidence of V0 scintillators on both sides of the IP
- V0 coincidence is a known fraction of minimum bias events
- $\sigma_{MB} = \sigma_{V0_{coincidence}} \times N_{MB}/N_{V0_{coincidence}}$
- The stability of the V0 data checked on a run-by-run basis
- Pile-up correction performed on a run-by-run basis

 $J/\psi
ightarrow \mu^+\mu^-$ - Cross section

Inclusive J/ψ production cross section

$$\sigma_{J/\psi} = \frac{N_{J/\psi}}{Acc_{J/\psi} \times \epsilon} \times \frac{1}{L}$$

• In the rapidity acceptance of the muon spectrometer

$$\sigma_{J/\psi}(2.5 < y < 4) = 7.25 \pm 0.26(stat) \pm 0.98(syst)^{+0.87}_{-1.50}(syst.pol.) \ \mu b$$

• Systematics due to the unknown polarization are quoted separately

$J/\psi \to \mu^+\mu^-$ - Systematics

Signal extraction

- Released left tail parameter of Cristal Ball functions
- Other fit functions tried: Gaussian with different background shapes

7.5%

Acceptance

- Varied p_t and y input distributions
- *p*_t: +2% -1.3%
- y: +1.4% -1.3%

Efficiency

- Trigger efficiency: discrepancy between N_{J/ψ} asking for 1 or 2 triggered muons. 4%
- Tracking efficiency: dead-areas embedded in MC. 2%

Luminosity and BR

 Reference cross section (preliminary, dominated by beam intensity determination during vdM scan)

10%

 The branching ratio of J/ψ decay to leptons pair uncertainty

1%

Systematics

- Errors from polarization quoted separately
- Other systematics added quadratically

13.5%

$J/\psi ightarrow \mu^+\mu^-$ - p_t distributions

 $J/\psi
ightarrow \mu^+\mu^-$ - p_t distributions

 $J/\psi
ightarrow \mu^+\mu^-$ - rapidity distributions

• Similar approach for $d\sigma_{J/\psi}/dy$

Central Barrel

Inner Tracking System

- two layers each of silicon pixel, drift and strip detectors
- between 4 and 44 cm from the interaction point
- vertexing detector (primary and secondary)
- used in minimum bias trigger

Kinematical cuts

- $|\eta^{e^+,e^-}| < 0.88$
- $|p_t^{e^+,e^-}| > 1 \text{Gev/c}$
- $|y^{J/\psi}| < 0.88$

Quality cuts

- ITS + TPC Tracks
- Number of cluster in TPC > 90
- A hit in the ITS first layer (3.9 cm in radius), to minimise the effect of photon conversions

Particle identification

- dE/dx in TPC
- Select electrons by a 3σ inclusion around the Bethe-Bloch line
- Pions and proton rejection within 3σ of the corresponding Bethe-Bloch line

$J/\psi ightarrow e^+e^-$ - Signal Extraction

- Bin counting for yield extraction
- Background contribution obtained from like-sign pairs $(N^{++} + N^{--})$
- Like-sign spectra scaled to match the integral of unlike-sign distribution
- Scaling needed because of correlated background and misidentified electrons
- Good agreement with the MC shape both for the signal and for the bremsstrahlung tail

 $N_{J/\psi} = 123 \pm 15$

Significance =
$$9.2 \pm 0.58$$

$J/\psi \rightarrow e^+e^-$ - Acceptance and Systematics

Acceptance × efficiency

- Realistic simulations including detector status for each run of data taking
- Polarization effects taken into account in the Helicity and in the Collins-Soper frame

Systematics

Source

Kinematics	< 1%
Track quality and clusters in TPC	10%
PID cuts	10%
Signal extraction range	4%
Normalization	10%
Total	18%

 $J/\psi
ightarrow e^+e^-$ - Results

$$rac{d\sigma_{J/\psi}}{dy} = 7.36 \pm 1.22 (\textit{stat}) \pm 1.32 (\textit{syst}) \ \mu \mathrm{b}$$

Polarization syst				
CS He	lpha = -1 -19.7 -24.8	$lpha = +1 \\ 9.7 \\ 11.9$		

MNR NLO calculation scaled to match CDF

 $J/\psi \rightarrow e^+e^-$ and $J/\psi \rightarrow \mu^+\mu^-$

• Inclusive J/ψ production cross section measured in the two rapidity ranges covered by the ALICE experiment

٠

 $J/\psi \rightarrow e^+e^-$ and $J/\psi \rightarrow \mu^+\mu^-$

- Inclusive J/ψ production cross section measured in the two rapidity ranges covered by the ALICE experiment
- $p_t \rightarrow 0$

- Unique measurement at LHC for rapidity coverage and lowest p_t reach
- Good agreement between LHC experiments
- Theories have still large uncertainties

J/ψ in PbPb collisions - outlook

- November-December 2010: LHC collided ion beams at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- A first look to the invariant mass spectrum in the muonic channel
- Analysis ongoing... more news soon!

 One of the key measurements to study the hot nuclear phase is the Nuclear Modification Factor

$$R_{AA}^{J/\psi} = \frac{\text{yield}_{AA}^{J/\psi}}{\langle N_{coll} \rangle \cdot \text{yield}_{PP}^{J/\psi}}$$

- The reference measurement in pp should be carried out at the same energy of nucleon collisions
- It is possible a twofold way
- LHC provided few fills for pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
- The collected statistics will be probably enough for measuring the integrated cross section at least at forward rapidity
- An interpolation of the J/ψ cross section was also carried out starting from the available data (F.Bossù et al., arXiv:1103.2394v1 [nucl-ex])

Conclusions

- Preliminary results on charmonium production both in the dielectron and in the dimuon channel have been presented
- Inclusive J/ψ production cross section has been presented in two rapidity ranges
 - |y| < 0.88
 - 2.5 < y < 4
- First measurement of differential cross section distributions in p_t and y
- A paper on the J/ψ production at $\sqrt{s} = 7 \text{ TeV}$ is going to be

published, final discussion at the collaboration level.

Looking forward to having results in PbPb