

ROXIE 23 Launch Event

Conceptual Coil Design Shape Optimization Persistent Current Calculation Quench Simulation Coil-Head Optimization End-Spacer Design Inverse Field Computation Data-Driven Modeling Product-Cycle Engineering

Improved Pre-Processor CCT Coil Generator Search-Coil Design Strongly Curved Magnets Python Interface Maxwell Stresses

Aix-en-Provence, 11.09.2023, 14:00 – 16:30

ROXIE Features

Automatic generation of coil and yoke geometries

Feature-based design

Field computation especially suited for magnet design (BEM-FEM)

- No meshing of the coil, no artificial boundary conditions
- Higher order quadrilateral meshes, parametric mesh generator, morphing
- Modeling of superconductor magnetization
- Permanent magnets
- Quench simulation of long accelerator magnets (2.5 D)

Mathematical optimization techniques

• Genetic optimization, Pareto optimization, Search algorithms

Simulation of magnetic measurements

CAD/CAM interfaces

BEM-FEM Coupling

BEM

$$\{Q\} = -[G]^{-1}[H]\{A\} + [G]^{-1}\{A_s\}$$

FEM

$$[K]{A} - [T]{Q} = {F(\mathbf{M})}$$

$$([K] + [T][G]^{-1}[H]) \{A\} = \{F(\mathbf{M})\} + [T][G]^{-1}\{A_s\}$$
$$[\overline{K}]\{A\} = \{\overline{F}(A_s, \mathbf{M})\}$$

HL-LHC Model D2

New ROXIE23 Features

- ➔ Dynamic memory allocation
- ➔ Zonal harmonics for solenoid design
- → K-values of search coils
- Maxwell stress tensors
- ➔ CCT magnets
- ➔ External HMO files (HyperMesh Interface)
- ➔ Wigglers and Undulators
- ➔ Quench simulation update
- ➔ Python interface (post-processing, multiphysics, traceability)
- Material databases

Adiabatic Quench Simulation

lain Options											
_ 3D geometry	(LEND)		🔟 Endsj	acers (LWED)	i)	🔟 Time	transient (LPEF	IS)			
🔟 Quench simu	lation (LQUEN	CH)	_ Optin	nization (LALG	0)	📕 Quen	ch O-D (LQUEN	CHOD)			
Cable data path : /hc	me/russ/	testcases	/QUENCH/ro	xie.cadat	8	Browse	View file				
E 2D Options											
📕 Fields & force	s in coil (LPE/	٩K)	🔟 Margi	n to linear Jc-a	pprox. (LINMARG)	🔄 Margi	n to Jc-fit (LMA	RG)			
Self field in s	trands (LSELF)	🔟 Entha	lpy margins (L	MQE)	📕 Induc	tance and energ	y (LINDU)			
🔟 Cable eddy cu	irrents (LEDD)	Y)	∐ Axi-sy	mmetry (for s	olenoids) (LSOLE)	🔄 Flux-l	inkage in search	coil (LFLUX)			
Block Data 2D											
Block Groups											
No Symm			Type(x	y)	Blocks						
1 Dipole			▼ A11		▼ 1-6				4		
			•		•						
			•		•						
r Iron Yoke											
p Design Variables											
Transformations											
Block Restriction (peak	fields, plots)										
E Quench 0D											
Cond. in which quench	initiates	15	_	Operating	lemperature, K	1.8	_				
Quench detection dela	vy,s	0.1		Magnet len	gth, m	2	_				
Maximum slope, K/s		20		Maximum 1	ime step, s	0.01					
Stop at minimum cu rr	. factor	0.05									
r Virtual Devices											
E Graph											
No Type	Xva	alue	N/a	N/a	Y value	N/a	N/a Plot	number Axes		Weight E	
1 Device	▼ QTI	IME	0	0	THOT	0	0	1 Normal	•	1	Ζ
2 Device	▼ QT1		0		TBULK	0	0	1 Normal	•	1	-
3 Device	▼ QT1	IME	0	0	QCURR	0	0	2 Normal	•	1	7
More options :											
No String		Value ahel		G	anh		m				

Average magnetic flux density in condutor (T)

|B| (T)

8.65

8.211

7.769 7.328 6.886 6.444 6.003 5.561 5.119

5.119 4.678 4.236 3.795 3.353 2.911 2.470 2.028 1.587 1.145 0.703 0.262

ROXIE₂₂

Multiphysics Quench Simulation (2.5 D)

Issue: Empirical parameters: RRR, Ra/Rc, IFCC effective res., heat conductivity, heat capacity.

Multiphysics Quench Simulation (2.5 D)

User Manual for Quench Simulation

User Manual for ROXIE Quench Simulations

The latest ROXIE23 version is installed on a dedicated machine at CERN; access requests

Logging in (first confirm that the X11 display server (XQuartz, Xming, Xlunch, or

The ROXIE executables must be specified by adding the following line to \sim /.bashrc.

source /eos/project/r/roxie/distribution/roxie_23.6.0.b1/alma8

The required input files are the cable data (myfile.cadata), the BH data (mfile.bhdata),

coil geometry (myfile.data), and iron geometry (myfile.iron). Launch ROXIE by typing

Select the quench simulation module from the main options as shown in Figure 1.

¹The European Organisation for Nuclear Research, deepak.paudel@cern.ch. ²The European Organisation for Nuclear Research, stephan.russenschuck@cern.ch.

Deepak Paudel,¹ Stephan Russenschuck²

worktemsc01.cern.ch

/roxie_env

To run ROXIE in command mode, type

2 Running Quench Simulations

\$ Xroxie myfile.data

\$ runroxie model.data

1 Installing and Executing ROXIE

to be adressed to Matthias Borona (matthias.borona@cern.ch).

Xserver) is running in the local machine background):

\$ ssh -Y user@worktemsc01.cern.ch.

ench simulations.

or modify it using View file according it, strand, and cable definitions are as perties for quench simulation using the igure 2. These properties include the nductivity and Cu electrical resistivity, nds in the cable.

and winding scheme. Right aperture lower outer ıter - left aperture upper outer - upper inner - lower

Simulation Menu

nber of material-property parameters, various empirical paramtion threshold, heater delays, turn-to-turn propagation velocity e quench-simulation widget is shown in Figure 10. The meaning

or number of the incipient quench (quench origin).

rage half-length of the coil (in meters).

ic lengths (in meters). 1 voltage of the diode.

ductance in the string of magnets.

istance of the energy extraction system.

tive radius for inter-cable heat transfer. The radius determines paths between conductors. The distance must be large enough nduction to neighboring layers but small enough not to bypass coil

in voltage of the warm diode in the power converter.

thickness, area, and location (edge number and conductor numneater).

nsulation material and thickness.

time constant, power, and delay.

detection threshold.

delay. The heater delay is determined by test results or estile 1D heat diffusion problem.

utta step.

irrent for ending the simulation.

8

cation is right aperture lower inner block 6, Figure 5, conductor g preview LOPOTO" is not active.

hown in Figure 11. The parameters to be specified are the cold lump resistor and warm diode.

Figure 11: The electrical network.

quench simulation.

select CUDI, NIST, or MATPRO fit s [1] of the used materials. Select the to Jc-fit, Inductance and energy, as

ARG) 📕 Margin to Jc-fit (LMARG) Inductance and energy (LINDU)
(LSOLE) _| Flux-linkage in search ceil (LFLUX)

quench simulations.

and winding preview. Right aperture lower outer ıter - left aperture upper outer - upper inner - lower

4

Validation of the Vector-Hysteresis Model

90°

12T Robust End Optimization (winding trials)

Maxwell Stress Tensor on Circle and Line Elements

wer	' X limit	- 4	440	Upper :	× limit	440	No. points bet	ween limit	s 16		
wer	' Y limit		440	Upper '	Y limit	440	No. points bet	ween limit	s 16		
wer	· Z limit	7.	50	Upper 2	Z limit	1050	No. points bet	ween limit	s 59		
əld		a	11	•							
eld a	dong a path :										
	Туре		X start	Y start	× end	Y end	N/a	Nsteps	Field		
1	Line 2D	-	400	-400	400	400	0	100	all		
2	Line 2D	-	400	400	-400	400	0	100	all		
3	Line 2D	-	-400	400	-400	-400	0	100	all		
4	Line 2D	•	-400	-400	400	-400	0	100	all		
	options :										
	opuons : String		N/a N/a			8					
	oung	_	ind ind								
-		_				-6					
-i											
Ì		ĺ									
aph											
No	Туре		X value	N/a	N/a Y value	N/a		Plot numb			Weig
No 1	Device		PHI	1	0 MXWX		0		1 Normal		Weij
No 1		•	PHI GINT	1	0 MXWX 0 GINT		0 0		1 Normal 2 Normal	-	Wei
No 1 2	Device	•	PHI	1 1 1	0 MXWX		0 0		1 Normal 2 Normal 3 Normal		Wei
No 1 2 3	Device Other	•	PHI GINT	1 1 1 2	0 MXWX 0 GINT 0 MXW2 0 MXW1		0 0 0		1 Normal 2 Normal 3 Normal 3 Normal	-	
No 1 2 3 4	Device Other Device	•	PHI GINT ARCL	1 1 1	0 MXWX 0 GINT 0 MXW2		0 0 0		1 Normal 2 Normal 3 Normal	• •	
No 1 2 3 4 5	Device Other Device Device	•	PHI GINT ARCL ARCL	1 1 1 2	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2 0 MXW1		0 0 0 0 0		1 Normal 2 Normal 3 Normal 3 Normal	• •	
No 1 2 3 4 5 6	Device Other Device Device Device	•	PHI GINT ARCL ARCL ARCL	1 1 2 3	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2		0 0 0 0 0 0		1 Normal 2 Normal 3 Normal 3 Normal 3 Normal	• • •	
No 1 2 3 4 5 6 7	Device Other Device Device Device Device		PHI GINT ARCL ARCL ARCL ARCL ARCL	1 1 2 3 4	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2 0 MXW1		0 0 0 0 0 0 0 0 0		1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 3 Normal	• • • •	0.0
No 1 2 3 4 5 6 7 8	Device Other Device Device Device Device Other		PHI GINT ARCL ARCL ARCL ARCL GINT GINT GINT GINT GINT GINT GINT GINT	1 1 2 3 4 3	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2 0 MXW1 0 GINT				1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 3 Normal 4 Normal	▼ ▼ ▼ ▼	0.0
No 1 2 3 4 5 6 7 8 9	Device Other Device Device Device Device Other Other		PHI GINT ARCL ARCL ARCL GINT GINT	1 1 2 3 4 3 4	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2 0 MXW1 0 GINT 0 GINT				1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal	V V V V V	0.0
No 1 2 3 4 5 6 7 8 9 10	Device Other Device Device Device Other Other Other		PHI GINT ARCL ARCL ARCL GINT GINT GINT	1 1 2 3 4 3 4 5	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW1 0 GINT 0 GINT 0 GINT				1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal 6 Normal		0.0
No 1 2 3 4 5 6 7 8 9 9 10 11	Device Other Device Device Device Other Other Other Other Other		PHI GINT ARCL ARCL ARCL GINT GINT GINT GINT ARCL	1 1 2 3 4 3 4 5 6 1	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW1 0 GINT 0 GINT 0 GINT 0 GINT				1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal 6 Normal 7 Normal		0.0
No 1 2 3 4 5 6 7 8 9 10 11 12	Device Other Device Device Device Other Other Other Other Device		PHI GINT ARCL ARCL ARCL GINT GINT GINT GINT GINT GINT GINT	1 1 2 3 4 3 4 5 6 1 1	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2 0 MXW1 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT				1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal 6 Normal 8 Normal		0.0
No 1 2 3 4 5 6 7 8 9 10 11 12 13	Device Other Device Device Device Other Other Other Other Device Other Device		PHI GINT ARCL ARCL ARCL GINT GINT GINT GINT ARCL GINT BRCL GINT PHI	1 1 2 3 4 3 4 5 6 1 1 1 1	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW1 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT			1	1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal 6 Normal 7 Normal 8 Normal 9 Normal 0 Normal		0.0
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Device Other Device Device Device Other Other Other Device Other Device Device Device		PHI GINT ARCL ARCL ARCL GINT GINT GINT ARCL GINT GINT HI PHI PHI	1 1 2 3 4 3 4 5 6 1 1 11 1 1	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW2 0 MXW1 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 BPHI 0 BPHI			1	1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal 6 Normal 7 Normal 8 Normal 9 Normal 1 Normal		0.00
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Device Other Device Device Device Other Other Other Other Device Other Device		PHI GINT ARCL ARCL ARCL GINT GINT GINT GINT ARCL GINT BRCL GINT PHI	1 1 2 3 4 3 4 5 6 1 1 1 1	0 MXWX 0 GINT 0 MXW2 0 MXW1 0 MXW1 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT 0 GINT			1	1 Normal 2 Normal 3 Normal 3 Normal 3 Normal 4 Normal 5 Normal 6 Normal 7 Normal 8 Normal 9 Normal 0 Normal		Weig 0.00 0.00 0.00 0.00

Fig. 4.14: Left: Round conductor of r = 200 mm, carrying 40000 A in a 0.1 T dipole field. The total force in the *x*-direction is 4 kN per meter length of the conductor. Right: Component f_x of the force density per meter length, along the four sides of the de-centered rectangle. Integration over the arc length *s* and summing up yields -2107 + 1176. + 4075 + 856 = 4000 N, as expected.

S_n-Value of Search Coil

	11			_									
ole data path :	/home/ru	iss/roxie_cct/	datab/roxie.cadat	a	Browse	View fi	le						
Options													
k Data 2D													
No Type	NCab		Y	α	Current Cable na		N1	N2 Imag	Turn				
1 Rect	▼ 200		2.4	0	0 NEDM1	•	2		0				
2 Rect	▼ 200		-1.616	0	0 NEDM1	-	2	2 0	0				
3 Rect	-200	2.7	0	0	0 NEDM1	•	2	2 0	0	1			
ore options :									D Paula III				
No String		N/a N/a							A Preview [/h	iome/russ/testc	ases/K-values/PCE	_coll.dataj	
1 PCAKE		10 1		A			v	iew : XY Se	ction		_		
2 PCAKE		10 2					N	umbering: N	one				
3 PCAKE		10 3		N.			C.	able: Bare					
k Groups						-							
No Symm			Type(xy)	Blocks		_							
1 Dipole			▼ One coil	• 1		_							
2 Dipole			 One coil 	▼ 2		_							
3 Dipole			▼ One coil	▼ 3									
Yoke													
ign Variables												ي الم	
sformations													
k Restriction	(peak fields, p	lots)											
al Devices													
🔄 Harmoni	ic coil (LHAR)	1)	🔄 Field vector matrix	(LMATRF)	🔄 Field alon	g a path (l							
📕 K-Value	of search coi	(LKVAL)											
						-							
Values													
No	Length 150	Angle 90	Rref Kn/Sn Bi 2.64008 Sn ▼ 1	JCK Groups									
2	150	90	2.64008 Sn • 2			-8			07	10	Cabla		
3	150	90	2.64008 Sn • 3			_		XY YZ	SZ	1,2	Cable Imag.	Layer	Edge
~	100	50	2.04000 511 • 0				_					_	-

 $\varphi_1 \setminus \varphi$

$$U = -\frac{d\Phi}{dt}$$

= $\sum_{n=1}^{\infty} K_n^{\tan} \frac{n\omega\ell}{r_0^{n-1}} \Big[-B_n(r_0)\cos(n\omega t + n\Theta) + A_n(r_0)\sin(n\omega t + n\Theta) \Big].$

CÉRN

New Coil Macros

Bedstead Cradl Cranked sattel Cos Flared Flex PCB Racetrack Racetrack CCT soft way hard way

Pre-Processor and Mesh Generator

- Add point and connect
- Snap to grid
- Auto save
- Undo
- Delete kp (and dependent
- lines and areas)

Improved Extrusion Modes

_		-							
T I	on Y	oke							
Ē.	xtrus	sion							
	No	Area name	z start	z end	Bias	N elem.	Material	8	
	1	AR1	-270	270	0.5	8	BHIRON2		
	2	AR1	550	1110	0.5	8	BHIRON2		
								$\overline{\mathbf{A}}$	
T (esigi	n Variables							
T T	rans	formations							
ŢΕ	llock	Restriction (pea	k fields, plots)						

GRAPH NO: 1.

2000

CCT Magnets

Transformations

	Туре		NCab		X		Y	a		Current	Cable name		N1	N2 Im	ag	Turn	Disc	Ne	1
1	Helix	-	1		123		6.38	84		16100	FUSILLO	-	1	11		60	0	1]
2	Helix	-	1	14	8.35		6.38	84		-16100	FUSILLO	•	1	11		-60	0	2	2
		•										•							1
	options :																		
No	String			N/a	N/a														
									IA.										
									_ (=)										
ock I	Data 3D																		
	Data 3D Type					A		Во	Zo		w		W	0	Hwed		Hord	ler 🖻	3
Ne				v		A 0	-1:	Bo 100			Wi			•	Hwed		Hord	ler E	9
Ne 1	Туре								Zo								Hord	er E	
Ne 1	Type Helix			V		0		100	Zo 0		0				0		Hord	1	9

No	String	N/a	N/a
1	CCTP1	20	1-9 901-909
2	CCTP1	10	9-15 909-915
3	CCTP1	10	16-22 916-922
4	CCTP2	20	1-9 901-909
5	CCTP2	10	9-15 909-915
6	CCTP2	10	16-22 916-922
7	NZDIS	3000	1-2

Frenet and Darboux frames, ID/OD alignment

Higher-order multipoles

Pitch variation at the ends

CCT Coil Types

Darboux frame

Frenet frame hard way

Frenet frame soft way

CCT Magnet Design (Issues)

Dynamic Memory Allocation

- 30 elements in straight section
- 25 elements in coil heads
- 28 blocks in $\cos \Theta$
- 304 Conductors
- 1500 elements in CCT coils

Curved Magnets

$$\begin{aligned} \mathbf{e}_{u} &= \cos\left(\frac{\sigma}{\rho}\right)\mathbf{e}_{x} + \sin\left(\frac{\sigma}{\rho}\right)\mathbf{e}_{z}, \\ \mathbf{e}_{v} &= \mathbf{e}_{y}, \\ \mathbf{e}_{w} &= -\sin\left(\frac{\sigma}{\rho}\right)\mathbf{e}_{x} + \cos\left(\frac{\sigma}{\rho}\right)\mathbf{e}_{z}. \end{aligned}$$

$$\mathbf{r}(\varphi) = \mathbf{o}(\sigma(\varphi)) + R\cos(\varphi) \,\mathbf{e}_u + R\sin(\varphi) \,\mathbf{e}_v$$
$$= \cos\left(\frac{\sigma(\varphi)}{\rho}\right) (\rho + R\cos(\varphi)) \,\mathbf{e}_x + R\sin(\varphi) \,\mathbf{e}_y$$
$$+ \sin\left(\frac{\sigma(\varphi)}{\rho}\right) (\rho + R\cos(\varphi)) \,\mathbf{e}_z \,.$$

 $\sigma(\varphi) = R \tan(\alpha) \sin(n\varphi) + q\varphi$

Curved Magnets II

Extracting the Legendre Polynomials

$$\begin{aligned} \mathbf{B}_{\tau} &= \sum_{m=0,n=0}^{\infty} \mathcal{A}_{n,m} \left(-\frac{\mu_{0} \cos(n\sigma) \cos(m\phi)\kappa_{\tau,\sigma}}{aQ_{n-\frac{1}{2}}^{m}(\cosh(\tau))} \left[\frac{\sinh(\tau)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) + \kappa_{\tau,\sigma}^{\frac{1}{2}} \frac{\partial}{\partial\tau} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) \right] \right) \\ &+ \mathcal{B}_{n,m} \left(-\frac{\mu_{0} \sin(n\sigma) \cos(m\phi)\kappa_{\tau,\sigma}}{aQ_{n-\frac{1}{2}}^{m}(\cosh(\tau))} \left[\frac{\sinh(\tau)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) + \kappa_{\tau,\sigma}^{\frac{1}{2}} \frac{\partial}{\partial\tau} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) \right] \right) \\ &+ \mathcal{C}_{n,m} \left(-\frac{\mu_{0} \cos(n\sigma) \sin(m\phi)\kappa_{\tau,\sigma}}{aQ_{n-\frac{1}{2}}^{m}(\cosh(\tau))} \left[\frac{\sinh(\tau)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) + \kappa_{\tau,\sigma}^{\frac{1}{2}} \frac{\partial}{\partial\tau} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) \right] \right) \\ &+ \mathcal{D}_{n,m} \left(-\frac{\mu_{0} \sin(n\sigma) \sin(m\phi)\kappa_{\tau,\sigma}}{aQ_{n-\frac{1}{2}}^{m}(\cosh(\tau))} \left[\frac{\sinh(\tau)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) + \kappa_{\tau,\sigma}^{\frac{1}{2}} \frac{\partial}{\partial\tau} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau)) \right] \right) \\ &=: \sum_{m=0,n=0}^{\infty} \left[\mathcal{A}_{n,m} \cdot c_{\tau,n,m}^{\mathcal{A}}(\tau,\sigma,\phi) + \mathcal{B}_{n,m} \cdot c_{\tau,n,m}^{\mathcal{B}}(\tau,\sigma,\phi) \\ &+ \mathcal{C}_{n,m} \cdot c_{\tau,n,m}^{\mathcal{C}}(\tau,\sigma,\phi) + \mathcal{D}_{n,m} \cdot c_{\tau,n,m}^{\mathcal{D}}(\tau,\sigma,\phi) \right] \end{aligned}$$

$$\begin{aligned} \mathbf{B}_{\sigma} &= \sum_{m=0,n=0}^{\infty} \mathcal{A}_{n,m} \left(-\frac{\mu_{0} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau))\cos(m\phi)\kappa_{\tau,\sigma}}{a Q_{n-\frac{1}{2}}^{m}(\cosh(\tau_{0}))} \left[\frac{\sin(\sigma)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}}\cos(n\sigma) - \kappa_{\tau,\sigma}^{\frac{1}{2}}n\sin(n\sigma) \right] \right) \\ &+ \mathcal{B}_{n,m} \left(-\frac{\mu_{0} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau))\cos(m\phi)\kappa_{\tau,\sigma}}{a Q_{n-\frac{1}{2}}^{m}(\cosh(\tau_{0}))} \left[\frac{\sin(\sigma)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}}\sin(n\sigma) + \kappa_{\tau,\sigma}^{\frac{1}{2}}n\cos(n\sigma) \right] \right) \\ &+ \mathcal{C}_{n,m} \left(-\frac{\mu_{0} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau))\sin(m\phi)\kappa_{\tau,\sigma}}{a Q_{n-\frac{1}{2}}^{m}(\cosh(\tau_{0}))} \left[\frac{\sin(\sigma)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}}\cos(n\sigma) - \kappa_{\tau,\sigma}^{\frac{1}{2}}n\sin(n\sigma) \right] \right) \\ &+ \mathcal{D}_{n,m} \left(-\frac{\mu_{0} Q_{n-\frac{1}{2}}^{m}(\cosh(\tau))\sin(m\phi)\kappa_{\tau,\sigma}}{a Q_{n-\frac{1}{2}}^{m}(\cosh(\tau_{0}))} \left[\frac{\sin(\sigma)}{2\kappa_{\tau,\sigma}^{\frac{1}{2}}}\sin(n\sigma) + \kappa_{\tau,\sigma}^{\frac{1}{2}}n\cos(n\sigma) \right] \right) \\ &=: \sum_{m=0,n=0}^{\infty} \left[\mathcal{A}_{n,m} \cdot c_{\sigma,n,m}^{\mathcal{A}}(\tau,\sigma,\phi) + \mathcal{B}_{n,m} \cdot c_{\sigma,n,m}^{\mathcal{B}}(\tau,\sigma,\phi) \right] \end{aligned}$$

Curved Magnet Study (Rotational Symmetric)

Btot (T)

MAIN FIELD (T) MAGNET STRENGTH (T/(m^(n-1))	0.924326 0.9243
NORMAL RELATIVE MULTIPOLES (1.D-4 b 1: 10000.0000 b 2: -0.13 b 4: 0.00002 b 5: 0.03 b 7: 0.00846 b 8: 0.00 b 10: -0.017 b 11: -0.01 b 13: -0.00337 b 14: -0.00 b 16: 0.00471 b 17: 0.00 b 19: -0.00058 b 20: -0.00	x532 b -0.15851 1623 b 6: 0.00443 3396 b 9: 0.01173 1437 b12: -0.00483 1051 b15: 0.00277 1473 b18: 0.00262
SKEW RELATIVE MULTIPOLES (1.D-4): a 1: 0.00000 a 2: 0.00 a 4: -0.000000 a 5: -0.00 a 7: -0.000000 a 8: -0.00 a 10: -0.000000 a 11: 0.00 a 13: -0.00000 a 14: 0.00 a 16: -0.000000 a 17: 0.00 a 19: -0.000000 a 20: 0.00	0000 a 3: 0.0000 0000 a 6: -0.0000 0000 a 9: 0.0000 0000 a12: -0.0000 0000 a12: -0.0000 0000 a18: -0.0000 0000 a18: -0.00000 0000 a
SURFACE OF ALL FEM-ELEMENTS (MM**	2) 460541.9852

. . . .

TURNING ANGLE OF F MEASUREMENT TYPE . ERROR OF HARMONIC SUM (Br(p) - SUM (ANALYSIS	OF Br	ALL	FIELD CONT	RIBUTIONS
MAIN FIELD (T) MAGNET STRENGTH (T	C∕(m^(n-1))			0.972557 0.9726
NORMAL RELATIVE MU	LTIPOLES	(1.D-4):			
b 1: 10000.00000			ь З:	-0.10184	
b 4: 0.02140					
ь 7: 0.00804	b 8:	0.00366	b 9:	0.00201	
b10: -0.00176	b11:	-0.00436	b12:	-0.00459	
b13: -0.00321 b16: 0.00455	b14 :	-0.00052	b15 :	0.00268	
b16: 0.00455	b17:	0.00454	b18:	0.00251	
b19: -0.00055	b20:	-0.00337	Ъ		
SKEW RELATIVE MULT	TPOLES (1	D-4):			
a 1: -0.00000	a 2:	0. 00000	a 3:	-0.00000	
a 4: 0.00000					

1 meter

Btot (T)

2.

0.

The Avatar and Twin (classical black-box measurement)

The Avatar and Twin (tracing of manufacturing tolerances and errors)

The Avatar and Twin (generalized field description)

Data-Driven Systems and Product-Cycle Engineering

Prerequisites for Model-Based Systems Engineering

Collaborative efforts are required to establish MBSE

Ownership Co-authorship of a paper is not enough Released and traceable data

Accessibly

Files and software exec is not enough MBSE with extended interfaces Virtual machines via Docker

Gitlab repositories

Sustainability

A ppt presentation or paper is not enough Product cycle engineering Jupiter notebooks

MBSE Database of ROXIE files

ystem C	Overview		
Systems			
List with all reg	istered systems.		
Туре	Name	Created at	
	Building 311 calibration dipole	June 22, 2023, 2:59 p.m.	View
SAMPLE			

SIGRUM Quench Test

Model Information Details, description and linked files.			Model Updates All changes made to the model over time.	
Туре	ROXIE		Model created by Stephan Russenschu 3 hours, 23 minutes ago	JC
Part of	SIGRUM		Jens Kaeske added tags • 3D • Dig Objects	olo
Description	Initial quench test for SIGRUM		6h ago Stephan Russenschuck	
Inputs		Download	Commented th ago Adiabatic quench simulation of revised cross section (computation with iron yo PLot of average and peak temperature Graphs.	oke
	Proxie.cadata 34.5 KB	Download		
	Ø Sig.iron 767 bytes	Download		
	Sig-2D-iron-quench.data 4.9 KB	Download		

Home Systems					TOLO
RUM					ng 311.
em Information ils, ownership and linked	files.				Download
ect owner	Stephan Russen	schuck		AN PAR	
ription	Sigrum design s the coil heads fo	tudy (straight version). Including v or winding tests.	variants for		
	Dipole Nb-Ti				new model
tem models	e SIGRUM system.	Create n	ew model		View
• Name	Design step	Created on	Latest version		View
IE SIGRUM Quench Te	est quench	Sept. 5, 2023, 12:47 p.m.	View		
IE 2D iron yoke	2D	Sept. 4, 2023, 3:17 p.m.	View		

Home Systems

System Information

Building 311 calibration dipole

DJDT

ROXIE Python API

- Structured access To Roxie data files
 - Modify blocks, flags, plots, etc
 - Combine files
- Structured output
 - XML output of run information, results and plots
 - Associated parser for data access
- Interface to execute Roxie from code
 - On local machine
 - Via Docker

Eddy current solver

- Eddy current computation in yoke and endplates (2D and 3D)
- Skin effect in conductors in 2D
- Skin effect in pancake coils in 3D
- Post processing
- Visualization
 - Python (2D)
 - Vtk (3D)

Field Computation for Accelerator Magnets

- Linear algebra
- Vector analysis
- Harmonic fields
- Green's functions and the method of images
- Complex analysis
- Differential geometry
- Numerical field computation
- Hysteresis modeling
- Coupled (thermo, magnetic, electric) systems
- Mathematical optimization

Stephan Russenschuck

Wiley-VCH

Field Computation for Accelerator Magnets

Analytical and Numerical Methods for Electromagnetic Design and Optimization

New Edition, Autumn 2024

- Field harmonics
 - Toroidal harmonics
 - Pseudo-multipoles
- Coil Magnetometers
- Stretched-Wire Measurements
- Synchrotron Radiation
- Faraday Paradoxes
- Iron-dominated magnets
 - Wigglers and Undulators
- Coil-dominated magnets
 - CCT Magnets
 - Strongly curved magnets

Stephan Russenschuck

Field Simulation for Accelerator Magnets

WILEY-VCH

Theory of Fields and Magnetic Measurements

Volume 1

Stephan Russenschuck

Field Simulation for Accelerator Magnets

Methods for Design and Optimization Volume 2

Things for/from the Wishlist

- Hypermesh (External mesh generator)
- Quench computation (validation and user documentation)
- Curved coils & iron & harmonics
- Fast transient analysis with eddy currents
- Iron remanence calculation for very low field magnets (FCC-ee collider and booster)
- Simple optics to ROXIE, "beam-based magnet optimization".
- Anisotropic BH (packing factor possibly in pre-defined direction, and grain-oriented steel).

