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ALICE in Run 3

Targeting to record large minimum bias sample.

- Access low S/B “untriggerable” signals

- All collisions stored = no trigger

- Continuous readout - data in drift detectors overlap
- Recording time frames of continuous data, instead of events
- 100x more collisions, much more data e
- Cannot store all raw data - online compressmn

- Use GPUs to speed up online (and ofﬂine) processmg

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.
- Timeframe of 2 ms shown (will be 10 — 20 ms in production).
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LS2 ALICE Upgrades

All-pixel Inner Tracking System

GEM-based
TPC readout

* New detectors:
* Improve tracking resolution at low p+
—> thinner, more granular
* Enable continuous read-out
* New online-offline computing system Fast Interaction Trigger
New 50x faster readout system

for synchronous and asynchronous . Readout upgrade of MUON, TOF,
processing EMCAL, PHOS

...and much more;:




LS2 ALICE Upgrades

ALICE

NEW INNER TRACKING SYSTEM (ITS)
Seven layers comprising a total of 12.5 billion
monolithic active silicon pixel sensors distributed
| over a 10m? surface area, the largest pixel
detector ever built.

TIME PROJECTION
CHAMBER (TPC)
UPGRADE

New GEM (gas electron
multipliers) technology replaced
the old wire chambers to
significantly increase the readout
rate of the TPC.

NEW MUON FORWARD
TRACKER (MFT)

Five disks of monolithic active
silicon pixel sensors, installed in
front of the muon spectrometer to
extend precision measurements to
the forward rapidity region.

NEW READOUT SYSTEM
The new readout system is
designed to handle increased
data throughput by combining
all the computing functionalities
needed in the experiment.

NEW FAST INTERACTION TRIGGER (FIT) gﬁ\vxn:.féx EI:E g::)H LR

Combining three detector technologies, the FIT
detector serves as an interaction trigger, online
luminometer, indicator of the vertex position and
forward multiplicity counter.

The vacuum tube that carries protons and ions

to the collision point inside the detector has an
870-mm-long central beryllium section that has an
inner radius of 18.2 mm and measures 0.8 mm in
thickness.




ALICE Data Flow in Run 3

ALICE

O%FLP
(First Level Processors)
~200 2-socket Dell R740
up to 3 CRU per FLP

Zero suppression
in FPGA

~3.5TBJs | g4

CTP

Central Trigger Processor
Distribution of timing info, heartbeat trigger




ALICE Data Flow in Run 3

O%FLP -

(First Level Processors) K.
~200 2-socket Dell R740

up to 3 CRU per FLP \

Zero suppression
in FPGA
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Central Trigger Processor
Distribution of timing info, heartbeat trigger

’

g | = ~900GBIs

§ FLP

Continuous raw data

-

o —— GPU computing

—

Su_l:);time frames, 10-20 ms

Infiniband
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O%EPN
(Event Processing Nodes)
~2000 GPU & CPU




ALICE Data Flow in Run 3 i
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Synchronous and Asynchronous Processing <

GPU computing O%EPN
. (Event Processing Nodes)
DEVENINICR NI 3.5 TB/s - ~2000 GPU & CPU

= =

Readout nodes

Synchronous processing
- Local processing
- Event / timeframe building
- Calibration / reconstruction

=

Disk buffer
= =

Asynchronous processing
- Reprocessing with full
calibration

- Full reconstruction
e Compressed

Reconstructed Datav \ Raw Data
Permanent storage
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~130 GB/s

CTFE: Comressed time frames

Calibration data disk storage, 360GB/s
(~25% redundancy)

Run 3 farm




Synchronous and Asynchronous Processing I
ALICE

GPU computing O%EPN
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02 Processing steps
ALICE

Particle Track
from Collision
structed

* Synchronous processing (what we called online before): Needs tracking of
1% of tracks

Extract information for detector calibration:
Previously performed in 2 offline passes over the data after the data taking
Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

An intermediate step between sync. and async. processing produces the final calibration objects
The most complicated calibration is the correction for the TPC space charge distortions




02 Processing steps

Particle Track
from Collision

* Synchronous processing (what we called online before): Needs tracking of

- Extract information for detector calibration: 1% of tracks
Previously performed in 2 offline passes over the data after the data taking

Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
An intermediate step between sync. and async. processing produces the final calibration objects
The most complicated calibration is the correction for the TPC space charge distortions

+ Data compression:

TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove - Newws
A V4

hits not attached to physics tracks THIOT  Forverd-ransforggign x Rows

—  We use ANS entropy encoding for all detectors Needs 100% e — -
_— coordinates

TPC traCkI ng T ransformation -_—

Row, Pad, Time




02 Processing steps

Particle Track
from Collision

* Synchronous processing (what we called online before): Needs tracking of —

- Extract information for detector calibration: 1% of tracks
—  Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
— Anintermediate step between sync. and async. processing produces the final calibration objects
—  The most complicated calibration is the correction for the TPC space charge distortions

+ Data compression:
— TPCis the largest contributor of raw data, and we employ sophisticated algorithms like

Row, Pad, Time

storing space point coordinates as residuals to tracks to reduce the entropy and remove ~
hits not attached to physics tracks IO Foverdranstomggign > - Rows
—  We use ANS entropy encoding for all detectors Needs 100% e Track in distorted
A —— coordinates
« Event reconstruction (tracking, etc.): TPC tracking fansomaton =

— Required for calibration, compression, and online quality control
—  Need full TPC tracking for data compression

—  Need tracking in all detectors for ~1% of the tracks for calibration
- TPC tracking dominant part, rest almost negligible (< 5%)




02 Processing steps

Particle Track
from Collision

* Synchronous processing (what we called online before): Needs tracking of —

- Extract information for detector calibration: 1% of tracks
—  Previously performed in 2 offline passes over the data after the data taking
— Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing
— Anintermediate step between sync. and async. processing produces the final calibration objects
—  The most complicated calibration is the correction for the TPC space charge distortions

+ Data compression:
— TPCis the largest contributor of raw data, and we employ sophisticated algorithms like

Row, Pad, Time

storing space point coordinates as residuals to tracks to reduce the entropy and remove ~
hits not attached to physics tracks IO Foverdranstomggign > - Rows
—  We use ANS entropy encoding for all detectors Needs 100% e Track in distorted
A —— coordinates
« Event reconstruction (tracking, etc.): TPC tracking fansomaton =

— Required for calibration, compression, and online quality control
—  Need full TPC tracking for data compression

—  Need tracking in all detectors for ~1% of the tracks for calibration
- TPC tracking dominant part, rest almost negligible (< 5%)

« Asynchronous processing (what we called offline before):
. Full reconstruction, full calibration, all detectors
*  TPC part faster than in synchronous processing (less hits, no clustering, no compression)
- Different relative importance of GPU / CPU algorithms compared to synchronous processing



Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Synchronous processing
(50 kHz Pb-Pb, MC data)

TPC Processing (Tracking, Clustering, Compression) 99.37 %
EMCAL Processing 0.20 %
ITS Processing (Clustering + Tracking) 0.10 %
TPC Entropy Encoder 0.10 %
ITS-TPC Matching 0.09 %
MFT Processing 0.02 %
TOF Processing 0.01 %
TOF Global Matching 0.01 %
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 %

Only data processing steps
Quality control, calibration, event building excluded!

Asynchronous processing
(650 kHz pp, real data, calorimeters not in run)

TPC Processing (Tracking) 61.41 %
ITS TPC Matching 6.13 %
MCH Clusterization 6.13 %
TPC Entropy Decoder 4.65 %
ITS Tracking 4.16 %
TOF Matching 412 %
TRD Tracking 3.95 %
MCH Tracking 2.02 %
AOD Production 0.88 %
Quality Control 4.00 %
Rest 2.32%
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Overview of compute time of reconstruction steps
ALICE

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Totally dominated

Synchronous processing by TPC: >99% Asynchronous processing

(50 kHz Pb-Pb, MC data) (650 kHz pp, real data, calorimeters not in run)
TPC Processing (Tracking, Clustering, Compression) 99.37 % TPC Processing (Tracking) 61.41 %
EMCAL Processing 0.20 % ITS TPC Matching 6.13 %
ITS Processing (Clustering + Tracking) 0.10 % MCH Clusterization 6.13 %
TPC Entropy Encoder 0.10 % TPC Entropy Decoder 4.65 %
ITS-TPC Matching 0.09 % ITS Tracking 4.16 %
MFT Processing 0.02 % TOF Matching 412 %
TOF Processing 0.01 % TRD Tracking 3.95 %
TOF Global Matching 0.01 % MCH Tracking 2.02 %
PHOS / CPV Entropy Coder 0.01 % AOD Production 0.88 %
ITS Entropy Coder 0.01 % Quality Control 4.00 %
Rest 0.08 % Rest 2.32%

Only data processing steps
Quality control, calibration, event building excluded!




Overview of compute time of reconstruction steps <
ALICE

* Synchronous processing :

* 99% of compute time spent for TPC.

 EPN farm build for synchronous processing!
« Asynchronous reprocessing :

. *  More detectors with significant computing contribution.
Synchronous processing

(50 kHz Pb-Pb, MC data) * To be keptin mind, as EPNS also run async. Reco.
+  GPUs well suited for TPC reco (from Run 1 and 2 experience).
rocessing racking, Clustering, Compression . (0 . .
EMCAL Processing R GPUs provide the required compute power.
ITS Processing (Clustering + Tracking) 0.10 % * Time frame concepts yields large enough GPU data chunks.
TPC Entropy Encoder 010% <+ Following up 2 scenarios for EPN GPU processing:
ITS-TPC Matching 0.09 %
MFT Processing 0.02 % Baseline solution (available today):
TOF Processing 0.01 % - Mandatory for synchronous processing
TOF Global Matching 0.01 % TPC sync. reco on GPU
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 % Optimistic solution (under development):

- Achieve best GPU usage in async phase
- Run most of tracking + X on GPU

Only data processing steps
Quality control, calibration, event building excluded!
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"% Central barrel global tracking chain

ALICE

Mandatory baseline scenario includes everythi

Central barrel tracking chosen as best candidate for optimistic scenario for asynchronous reco:

ng that must run on the GPU during synchronous reconstruction.

Optimistic scenario includes everything related to the barrel tracking.

Part of baseline
scenario

TPC Cluster
Finding

In operation
Work in progress
Under study

Finding
NN

Common GPU
Components:

At of OpNTStC..
TPC Distortion Correction

TPC Track l TPC Track .

Merging

\‘ R\®

TPC Cluster

removal

R,

NN

TPC Track Model
Compression

<4

R

SN

GPU API Framework Material Lookup

TPC
Track Fit

AR

A0k

RTINR F
N %\\‘\% N

QUNERRNNRN




Central barrel global tracking chain

ALICE

* Baseline scenario fully implemented.
*  Not mandatory to speed up the synchronous GPU code further.

Baseline scenario
(ready except for 1 optional component)

TPC Cluster
removal

Part of baseline
scenario

TPC Track Model
Compression

TPC Distortion Correction

TPC Cluster TPC Track l TPC Track . TPC
Finding

Finding Merging Track Fit

- o |

Work in progress




Central barrel global tracking chain

« TPC synchronous processing almost fully on the GPU.
« 2 optional parts still being investigated for sync. reco on GPU: TPC entropy encoding / Looper identification < 10 MeV.

Synchronous chain

Iy few % of events

all events

TPC Cluster
removal

Part of baseline
scenario

TPC Cluster
Finding

TPC Track Model

Compression
o e =
rackinb -vFit )

TPC Distortion Correction

TPC Track l TPC Track . TPC

Finding Merging Track Fit

IT
| > Tl

-,

In operation
Work in progress c GPU
ommon : :




’ ¢ Central barrel global tracking chain

ALICE

+ Several steps missing in asynchronous reconstruction:
* Matchingto ITS
* Matching to TOF
* Secondary vertexing

TPC interpolation for SCD calibration

Asynchronous chain

Part of baseline
scenario

TPC Distortion Correction

TPC Cluster TPC Track l TPC Track . TPC TRD Global

Finding Finding Merging Track Fit Tracking F't

ITS ITS
Vertexing Track Fit

In operation
Work in progress




Overview of compute time of reconstruction steps

« The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.
«  Synchronous reconstruction fully dominated by the TPC (99%), no reason to offload anything else to the GPU.
. In async reco, currently the 61.4% TPC are on the GPU, with the full optimistic scenario (full barrel tracking) it will be 79.77%.
—  Offloading 60% of the workload to GPU, should yield a speed-up of 2.5x (since async reco is CPU-bound).

Synchronous processing
(50 kHz Pb-Pb, MC data, processing only)

TPC Processing (Tracking, Clustering, Compression) 9937 %
EMCAL Processing 0.20 %
ITS Processing (Clustering + Tracking) 0.10 %
TPC Entropy Encoder 0.10 %
ITS-TPC Matching 0.09 %
MFT Processing 0.02 %
TOF Processing 0.01 %
TOF Global Matching 0.01 %
PHOS / CPV Entropy Coder 0.01 %
ITS Entropy Coder 0.01 %
Rest 0.08 %

Asynchronous processing
(650 kHz pp, real data, calorimeters not in run)

TPC Processing (Tracking) ~ 6141%
ITS TPC Matching 6.13 %
MCH Clusterization 6.13 %
TPC Entropy Decoder 4.65 %
ITS Tracking 4.16 %
TOF Matching 4.12 %
TRD Tracking 3.95 %
MCH Tracking 2.02 %
AOD Production 0.88 %
Quality Control 4.00 %
Rest 2.32%

Running on GPU in baseline scenario

15.9.2023 Stefania Beole, Christian Lippmann, David Rohr 21



GPU Processing Design principles

ALICE_

. GPU code should be modular, such that individual parts can run independently.
*  Multiple consecutive components on the GPU should operate with as little host interaction as possible.

'_\

N

GPU code should be generic C++ and not depend on one particular vendor or API. (O? supports CUDA, HIP, OpenCL)
* No usage of special features that are not portable.

3. GPU usage should be optional and transparent: running O? should not require any vendor libraries installed.

All GPU cgde is cqntalned in plugins, with a common interface. For details on GPU implementation see CERN
*  Even multiple plugins (GPU backends) can run on the same node. compute accelerator talk:
https://indico.cern.ch/event/1264298/

4. Minimize time spent for memory management.
We allocate one large memory segment, and then distribute memory chunks internally.

5. Processing on GPU and data transfer should overlap, such that the GPU does not idle while waiting for data.
« This is implemented via a pipelined processing within time frames, and we also overlap consecutive time frames.

6. Datachunks processed by the GPU must be large enough to exploit the full parallelism.
Fulfilled by design with TFs containing > 100 collisions.

7. GPU and CPU output should be as close as possible.
« But small differences due to concurrency or non-associative floating point arithmetic cannot be avoided.

15.9.2023 Stefania Beole, Christian Lippmann, David Rohr 22



Usage of EPNs for sync/async reconstruction

ALICE

For asynchronous reconstruction, EPN nodes are used as GRID nodes.
Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
EPN farm split in 2 scheduling pools: synchronous and asynchronous.

Unused nodes in the synchronous pool are moved to the asynchronous pool.
As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.

If needed immediately, GRID jobs are killed and nodes moved immediately.




Usage of EPNs for sync/async reconstruction

* For asynchronous reconstruction, EPN nodes are used as GRID nodes.
« ldentical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.
* EPN farm splitin 2 scheduling pools: synchronous and asynchronous.
— Unused nodes in the synchronous pool are moved to the asynchronous pool.
— As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.
— If needed immediately, GRID jobs are killed and nodes moved immediately.

A new common software framework was developed for O? processing. Framework &
+ Same software for synchronous and asynchronous reconstruction. Data Processing Layer (DPL)
«  Same framework runs on the online computing farm, in the GRID, and on the laptop.
* Layered approach developed jointly with GSI.

* Reconstruction steps in the processing graph are independent operating
system processes called devices. DI el e

Transport Layer: ALFA / FairMQ!




\ O? Data Processing Layer - Declarative approach

ALICE

User provides a description in
terms of tasks and physics

~
-~ ::
— Task2 gl Task3 - quantities.

02 Data Processing Layer (DPL)
translates the implicit workflow(s)
defined by physicists to an actual

FairMQ topology of devices, injecting o —
readers and merger devices,
completing the topology and taking
care of parallelism & rate limiting.

device




02 Data Processing Layer - Generating workflows

/IHHIIIIHHIII \
1]
[

I

s/ |

L0 0
gy

Data Processing Lagcr

' Topology is defined implicitly.
Topological sort ensures a viable dataflow is constructed (no cycles!).
Laptop users gets immediate feedback through the debug GUI.
Service APl allows integration with non data flow components (e.g. Control)
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EPN Server Architecture

ALICE

*  Multiple GPUs in a server minimize the cost.
* Less servers, less network.
* Synergies of using the same CPU components for multiple GPUs, same for memory.

Splitting the node into 2 NUMA domains minimizes inter-socket communication
- 2virtual EPNs.
« Still only 1 HCA for the input = writing to shared memory segment in interleaved memory.

GPUs are processing individual time frames - no inter-GPU communication.
* Host processes can drive 1 GPU each, or run CPU only tasks.

* GPUs can be shared between algorithms.
*  With memory reuse if within the same process.
*  With separate memory in case of multiple processes (Not done at the moment).




EPN Server Architecture

*  Multiple GPUs in a server minimize the cost.
* Less servers, less network.
* Synergies of using the same CPU components for multiple GPUs, same for memory.

Splitting the node into 2 NUMA domains minimizes inter-socket communication
- 2virtual EPNs.
« Still only 1 HCA for the input - writing to shared memory segment in interleaved memory.

 GPUs are processing individual time frames - no inter-GPU communication.
* Host processes can drive 1 GPU each, or run CPU only tasks.

* GPUs can be shared between algorithms.
*  With memory reuse if within the same process.
*  With separate memory in case of multiple processes (Not done at the moment).

« Benchmarked with MC data: For 100% utilization of 8 GPUs (AMD MI50), we need:
« ~50 CPU cores, ~400 GB of memory, 30 GB/s network input speed, GPU PCle negligible.

Selected server:
*  Supermicro AS-4124GS-TNR, 8 * MI50 GPU, 2 * 32 core AMD Rome 7452 CPU (2.35 GHz), 512 GB RAM (16 * 32GB)
* Infiniband HDR / HDR100 network.
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.- Synchronous processing DPL workflow
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® Performance of EPN servers

ALICE

+ Performance of EPN servers in synchronous reconstruction mostly evaluated processing 50 kHz Pb-Pb MC data.
*  GPU-bound, CPU resource usage is ~44 cores (out of 64 cores available).
+ Evaluated several GPU models, current farm has 280 EPN servers with MI50 GPUs and 70 newer servers with MI100 GPUs.

* 1 MI50 GPU replaces ~80 CPU cores in synchronous reconstruction and ~55 cores in asynchronous reconstruction.
(measured against the AMD Rome 7452 cores in the EPN server).

* Current EPN farm has the capacity to process the estimated

. . 350 T . T
50 kHz Pb-Pb rate with a 30% margin.
H 2 . 8'g) ) A
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Performance of EPN servers

+ Performance of EPN servers in synchronous reconstruction mostly evaluated processing 50 kHz Pb-Pb MC data.
*  GPU-bound, CPU resource usage is ~44 cores (out of 64 cores available).
+ Evaluated several GPU models, current farm has 280 EPN servers with MI50 GPUs and 70 newer servers with MI100 GPUs.

* 1 MI50 GPU replaces ~80 CPU cores in synchronous reconstruction and ~55 cores in asynchronous reconstruction.
(measured against the AMD Rome 7452 cores in the EPN server).

* Current EPN farm has the capacity to process the estimated
50 kHz Pb-Pb rate with a 30% margin.

*  Without GPUs, would need >2000 64-core servers.

« Asynchronous Performance benchmarks cover multiple cases (In all cases server fully loaded with identical jobs):
« EPN splitinto 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.
* EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUSs) or 1 GPU.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) | Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s
CPU 16 core 34.18s 4.27s
1 GPU + 16 CPU cores 14.60s 1.83s
1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

T~

Factor 2.51
Matches expected factor 2.5

Configuration used for production
15.9.2023 Stefania Beole, Christian Lippmann, David Rohr 32



ALICE

ITS2
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ITS2 design objectives

Improve impact parameter resolution
by a factor ~3(5) In rp(z) at p+ = 500 MeV/c

- get closerto IP:
9 mm - 23 mm (innermost layer)

- reduce material budget:
~1.14% X, : — 0.36% X, per layer (for the
Inner layers)

- reduce pixel size:
50 um X 425 ym - O(30 X 30 pm?)

Improve tracking efficiency and p-
resolution at low p+

- Increase granularity: 6 layers = 7 pixel
layers

Fast readout

- Readout of Pb-Pb at up to 100 kHz
(previously 1 kHz) and 400 kHz for pp

15/09/2023
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Detector performance in Run 3 — simulations

ALICE
— 400¢ s
2 R 100}
= 350} ~
S 300/ & 80
=R s il
% 250E = 60
T 200} el
Z AR < |
£ 150} @ 40
50} s " rf
of e I
10" »

P, (GeV/c)

* Improved tracking efficiency (95% instead of 60% at 200 MeV/c)
* Pointing resolution 3x better in transverse plane (6x along beam axis) at 200 MeV/c
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ITS2 layout

* 7 layers (inner/middle/outer): 3/2/2 from R = 23 mm
to R =400 mm

* 192 staves (IL/ML/OL): 48/54/90
* Ultra-lightweight support structure and cooling

10 m? active silicon area, 12.5x10° pixels

OUTER BARREL

more details on construction, installation and
commissioning in Felix Reidt’s seminar
https://indico.cern.ch/event/1210704/

N - MIDDLE LAYERS OUTER LAYERS

Beam pipe

INNER BARREL
A

.
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The ALPIDE chip: A Monolithic Active Pixel Sensor (MAP
developed within the ITS2 project ALICE

~28 um collection electrode
3 2 B *} : \

2 x 2 pixel
volume

Artistic view of a AW ’
SEM picture of —im \ il
ALPIDE cross section Q,, (MIP) = 1300 e = V = 40mV

AMP COMP

~Oorooroong e Y

T T "T°°T

Buffering and Interface l

H 0
DgDDgDDSEDgD
O[O0 00k 00 10

(HEHOOHEJ HEHJ [ HE ]  continuous
O R0 D0 L0 O extern:Irtrigger
LR DR DR O O ]

|
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Technology
* Towerlazz 180 nm CMOQOS Imaging Process
* High-resistivity (> 1kQ cm) p-type epitaxial layer (25 um) on p-type substrate

* Small n-well diode (2 um diameter), ~100 times smaller than pixel (~¥30 um)
=> low capacitance (~fF)

* Reverse bias voltage (-6 V < V5 < 0 V) to substrate to increase depletion zone
around NWELL collection diode

Deep PWELL shields NWELL of PMOS transistors

Key features ALICE MFT, sPHENIX

* In-pixel amplification and shaping, discrimination  p\gyTX, €tC--
and Multiple-Event Buffers (MEB)

* In-matrix data sparsification
* On-chip high-speed link (1.2 Gbps)
* Low total power consumption < 47 mW/cm?

CERN Detector Seminar - S. Beolé



ALPIDE performance — detection efficiency and fake-
hit rate o
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Threshold (e’)

Availability and excellent support from test-beam facilities all over the world have been key for the development of this chip:
BTF Frascati, CERN, DESY, LBNL, UC Louvain la Neuve, Pohang (Korea), Rez (Czech Republic), SLRI (Thailand&o
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Data readout architecture and quality control (QC)

ALICE

E=m =
d 2

"™ -
& 2

ﬁ » CIF
>

Event Compressed
Processing Time Frames
Nodes on Disk Buffer

— | (N0 COMpPression)

~35 GB/s (Pb-Pb 50 kHz)

Raw data -
IEI:=| Sub-Time Frames
~22 GBIs (pp 500 kHz) @
" " |

/

ALICE-wide readout
and data reconstruction

13 ITS First Level Processors (FLPs)
- Online quality control tasks: hit occupancy and front-end electronics diagnostics.

350 Event Processing Nodes (total EPN from ALICE farm)
- Online quality control tasks: reconstructed ITS2 tracks, clusters and decoding errors.

Synchronous reconstruction, calibration and data compression (- GPUs)
Asynchronous stage: reconstruction with final calibration = final Analysis Object Data (AOD)
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Detector Control System (DCS) - a quick view

e User Interface developed in WinCC —
detector logic implemented in a Finite
State Machine

* Detector operation, monitoring and
archiving of detector data

e Deal with ~110000 data points
(ITS only)

— typical monitoring frequency of 1 Hz

 Built as a hierarchical system
(partitioned with system of locks) -
ITS occupies a big slice of the ALICE
hierarchy

* An indeEendent safety system (ITS2S)
interlocks power channels based on

stave temperatures and cooling status

15/09/2023

DCS_SERVICES

TRD_HV

TRD_SM_LV

MID

TRD_FED
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ITS2 calibration (1)

Main ITS calibration features:
- Masking of noisy pixels

- Tuning of in-pixel discriminating
thresholds

- Optimise power supply voltage
- Measure on-chip temperatures

Threshold calibration of 24120
chips is challenging:

- Online on 40 EPNs in parallel

- ~1% pixels pulsed: ~252Ghits

- Threshold target: 100e"
(chip-to-chip RMS <be;
on-chip RMS ~20 e")

Non-working pixels: ~0.2 %

15/09/2023

Average chip threshold

Del. Lumi. (1/pb)

100

THRESHOLDS ALICE
ITS2, Threshold tuned to 100 e~
¢+ L ALICE Performance
1 ?w Soere
¢ L2 * ' F Y
i a N .M S Y .—Q.w% .Q
:;\\\,\ e ~-fﬁ:k§f‘~ b N ':;. -~ :: . ::::‘ ": -4 "
L i T W Fv ’ oo
*\\,.v»ru»—-"‘“”’" 4 “_.\tfw W\M"‘.‘_

Thresholds stable during 2023 without retuning
Fluctuations of 2-3 e due to optimizations of the voltage to chips

CERN Detector Seminar - S. Beolé
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ITS2 calibration (2)

Percentage of noisy pixels per stave in ITS2 - Cosmic run 525947 - ITS2 framing rate 202 kHz - Recorded readout frames (ROF): 27.5 x 10° - Stave average thresholds: 100 &’
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Noisy pixel definition:
- IB: occupancy > 107 hits/event
- OB: occupancy > 10® hits/event

Percentage of noisy pixels masked
extremely small: ~0.02-0.03 %o

15/09/2023

Fake-hit rate trend during cosmic runs (tuned thresholds +
noise masks): stable and < 10 hits/event/pixel (des

ALICE

ign
requirement) by masking only ~0.03%o. of the pixels (g15 pixels)

per stave is

CERN Detector Seminar - S. Beolé
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° ° o = 102 8
Preliminary performance :
Run 526532, Avg. interaction rate: 500 kHz E Zg) ALICE
_ ITS2, framing rate: 202 kHz W e
* ITS tracking: excellent performance E
with current detector alignment g0 8
- Cellular automaton algorithm
- Online tracking for quick QA of the data i
- Angular distribution of tracks of good i
quality = good detector acceptance :
ALICE performance
o o et e e s S 107

(L el Ko 1 |
1.0 = =05 © 05 1 1.5

‘.(2 T T T lil L ra T | J e (O [ T EELT l LI 1—|' Trrr i T o o0 -.(Q [= l I I T I T T T I T T T I T ]
g . ALICE Performance ] g 0 ALICE Performance |
o 10°E Run3pp, (s=136TeV § © Run 3 pp, Vs = 13.6 TeV
8 E 0 Online QC, ITS2only 1 © | Online QC, ITS2 only -
= K2 _ A
. . B Mass: 0.497 GeV/c? il 10°— Mass: 1.115 GeV/c? —
* Online physics performance from g wanoolaGeve | Width: 0,005 GeV/ct -
C th h A and KO, invari . A
QC through A an s invariant : A o e e
i it | * * _
L. 4 ¥
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10? E_ §§§ + = *% !
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Performance: impact parameter

Impact parameter resolution measured
with Run3 pp data - excellent
performance

- About 2.5x improvement at p; = 500 MeV/c

- Detector alignment, space charge
corrections and calibrations still
continuously improving

impact parameter resolution (um)

Global tracks with at least 1 hit in Inner Barrel (Run 3)
or in the two innermost pixel layers (Run 2)

15/09/2023 CERN Detector Seminar - S. Beolé
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Performance: impact parameter

Impact parameter resolution measured

with Run3 pp data - excellent
performance

- About 2.5x improvement at p; = 500 MeV/c
- Detector alignment, space charge

corrections and calibrations still
continuously improving

180
160

80
60
40

impact parameter resolution (um)

remaining ~20% discrepancy with MC

15/09/2023

CERN Detector Seminar - S. Beolé
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ALICE \
Pb-Pb 5.36 TeV

LHC22s period
18th November 2022
16:52:47 893
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ALICE

e Alarge tracking and PID device in the central barrel of
ALICE

— Cylindrical drift volume, 5 m long, 5 m diameter

— Two sides, split by central drift electrode

— 18 azimuthal sectors with readout chambers per side
— ~100 us electron drift time for max. drift distance

* The past: MWPC readout until 2018
— < 2 kHz event readout rate with Pb—Pb collisions

* The present: Continuous readout

— 50 kHz collision rate with the requirement to read out ALL

min. bias Pb—Pb collisions
— No dead time allowed, no triggering, no gating

=» need to minimise ion backflow

The ALICE TPC

central electrode

outer field cage

inner field cage

[ALICE TPC Collaboration — JINST 16 — 2021]
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The past: Example heavy-ion collision. One triggered event

Run:280235

Timestamp:2017-10-12 20:57:22(UTC)
Colliding system:Xe-Xe

Energy: 5.44 TeV




The present: Continuous stream of overlapping heavy-ion collisions (simulation)




Readout chambers

IROC

GEM = Gas Electron Multiplier

Stacks of 4 GEM foils

3 stacks for the large Outer ReadOut Chambers (OROC)
1 stack for the smaller Inner ReadOut Chambers (IROC)
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pad plane

Schematic view of pad plane and 4-GEM stack
GEMs 1 and 4: Standard large-area single-mask GEM foils
GEMs 2 and 3: Large-pitch GEM foils

Highly optimized HV settings

o (%)

4-GEM stacks
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Performance with optimised HV configuration

IBF = lon BackFlow
o = energy resolution for >>Fe

2.5 3.0
IBF (%)
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3d central drift electrodebefore installation of last IRO
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ALICE

* SAMPA ASIC

130 nm TSMC CMOS

32 channels with preamplifier, shaper,
10 bit ADC

Continuous (or triggered) readout

* Front-End Cards (FECs)

5 SAMPA chips per FEC
Continuous sampling at 5 MHz
All ADC values read out

Readout link: CERN GBT / Versatile link
system

3276 FECs in total, 3.3 TB/s total data rate

TPC readout electronics

Noise on one side of TPC

G g |
| SR
. T
-100 ‘v &' :::
200 | %ﬂ;ﬁgﬂ

1
-200 100 0 100 200

Noise (A-Side)
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Excellent mean noise: 670 e~ @18 pF
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Data processing chain

ALICE

Online farm Tape

3.3TB/s <900 GB/s 130 GB/s

| |
On-detector Off-detector

e Continuous readout

* CRU (FPGA-based readout cards) installed in the FLPs
— Receive the data through 6552 optical links
— Data processing (see next 3 slides) and reduction (zero suppression)

*  Further data reduction in online farm
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Common mode (CM) effect

Zoom to averaged signal on 40 pads including signals from laser track

—1003
8 T D 9( . CapaCitors WV distribution
PR BN T Ui S 7 orton uad to reduce M
% E .................................................... g’ effect
Q_) 60__ ................................................................ —60 f
= T T T TP s g
T T B B .
=3 U I — —40 ug; *  But such capacitors would
(d)] ORI [ |ead to pOtentiaI prOblems

i cac 20 with discharges

* At high occupancy the CM
signals from many tracks will
superimpose and lead to a
baseline shift

30 35
time (200 ns)

Bottom side
of GEM4

Pad plane \/
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G lon tail!

Zoom to averaged signal on 40 pads including signals from laser track
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* Anion tail is visible. Two contributions:
— Exponential contribution from ions created just below GEM 4
— Linear component due to marginal amplification in the induction gap (specific to our HV settings)
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E Online data processing in FPGAs

Building blocks of the data processing implemented in firmware in the

) ) CRU FPGAs
* The (negative) baseline
shift due to the EA
dommon mode effect
is measured and [ o7 core f{ Decoder |+ Deiay Ofset i S
: Unit inks E
removed ! 8
: Common o
_ N %20 prises Mode |l raeton > "Creck [~ Fier [*| "Creck
e Theion tail is removed A
! 5
as We” ! oM Pedestal Threshold Scaling Threshold §
GBT Core H Decoder |-> Parameters Values Values Factors Values l
Pattern
Generators

* Additional tasks: data alignment, pedestal subtraction, zero suppression, efficient packing of the data
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*  With remaining ion back flow still
considerable space charge distortions up
to few cm

dr (cm) for Ne-COZ-Nz (90-10-5), 50 kHz, ¢ =10

200
180

160

140

120

L]
RN EEEE.
Example: -

100

250 -200 150 -100 -50 O 50 100 150 200 250
z (cm)

Distortions

L 1
/P 1
4

Correction using track interpolation (experience\TOF
from Runs 1 and 2) A

Calculate average distortion map which
is slowly changing with collision rate

In addition, fluctuations around the average
distortions are important to
reach intrinsic TPC resolution

Fluctuations can be extracted by

— integrating the ADC values over the ion drift time
(Integrated Digital Currents) or by

— measuring the analog currents at the GEM 4 top
electrodes of all GEM stacks
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TPC A side

TPC C side

& Work in progress: Dist. calibrations

* Calibration of the space-charge distortions started using an analytical map

*  With the envisaged interpolation method (here only ITS) the performance improves
* DCA, = Distance of Closest Approach to beam line for reconstructed tracks

e Also time variations important

Analytical map Analytical map with sector adjustments ITS-TPC map

i 2 4 6 8 0. 12 e 98 18

TPC sector TPC sector TPC sector
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dE/dx (arb. units)

© —— ALEPH Bethe-Bloch fit

ALICE Performance

Run3pp, {s=13.6 TeV

10
p/lZ] (GeV/c)

TPC performance

TPC GEM upgrade successfully
concluded. System behaving
according to expectations

The performance is according to
expectations

Remaining: Calibration of space-
charge distortions (electrostatic
deflection of drifting electrons by
ions present in the drift volume)
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Summary

ALICE

* The construction, commissioning, installation, and start of operation of the upgraded ALICE
detector and data processing chain were successfully achieved
* ALICE employs GPUs heavily to speed up online and offline processing
— 99% of synchronous reconstruction on GPUs
— 60% of asynchronous processing on GPUs (2.5x speedup), will be ~80% in future (optimistic scenario)

* ITS2 shows an excellent performance in RUN 3
— Based on ALPIDE pixel chip
— Closer to beam pipe, reduced material budget, reduced pixel size

* The upgraded TPC is ready for Pb-Pb collisions in October!
— Continuous readout
— lon backflow suppression built into GEM chambers
— Extensive data processing and reduction in FPGAs
— Distortions due to remaining space charge under control

*  We're looking forward to the starting of the Pb-Pb collisions
64



back up

15/09/2023
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Impact parameter
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