Inference Code Generation for Deep Learning models

Data Analysis Framewark

Mentors: Lorenzo Moneta, Sanjiban Sengupta

QSOCWW
- BynzeeSM

Reach out to me at:- neelshah29042002@gmail.com

s S S

A ROOT

Data Analysis Framework

JIMVA,

ROOT:-

e ROOT is a framework for data processing, born at CERN, at the heart of the research on high-energy physics.
® Physicists use ROOT applications to analyze their data(save, access and mine data), publishing results, run
interactively or build a new application or to perform simulations.

TMVA:-

® Toolkit for Multivariate Analysis
® Provides a Machine Learning environment for training, testing and evaluation of multivariate methods.

BORN OF FAST INFERENCE ENGINE!

Focus is put on a fast machine learning inference system, which will enable analysts
to deploy their machine learning models rapidly on large scale datasets.

SOFIE

What does “SOFIE” stand for?

ystem for ptimized ast nference code mit

inference code, fast to operate, with least dependencies

Motivation

ML ecosystem mostly focuses on model training.
e Machine Learning Inference & deployment is often neglected
e Inference in Tensorflow & PyTorch

o supports only their own model

o usage of C++ environment is difficult

o heavy dependency

e Inference in ONNX (Open Neural Network Exchange)
o can use ONNXRuntime by Microsoft
o large dependency
o difficult to integrate in HEP applications

m control of libraries, threads
m not optimized for single event evaluation

@ ESOFIEE@
What is SOFIE? ONNX

System for Optimized Fast Inference code Emit

SOFIE(System for Optimized Fast Inference code Emit) is a deep learning inference engine that
» Takes ONNX files as input

* Produces a C++ script as output

TMVA SOFIE (“System for Optimized Fast Inference code Emit”) generates C++ functions easily
invokable for the fast inference of trained neural network models. It takes ONNX model files as
inputs and produces C++ header files that can be included and utilized in a “plug-and-go”

style. This is a new development in TMVA and is currently in early experimental stage.

e Intermediate representation following ONNX standards.
e Inference code generation with least latency and minimal dependency

RModelParser_ ONNX parser;

RModel model =
parser.Parse("Model.onnx");

SOFIE Keras SOFIE::RModel model =
Parsers Parser SOFIE::PyKeras::Parse("KerasModel.h5");

Pytorch SOFIE::RModel model =
Parser SOFIE::PyTorch::Parse("PyTorchModel.pt");

Description of Project

This project will focus on development of some missing deep learning operations which will allow to
build more complex networks within TMVA for parsing the Transformer based models and Graph Net
Models in SOFIE.

® The expected result is a working implementation of modular operators classes that implement the
operators as defined by the ONNX standards in the code generation format. The project requires also
to write the corresponding unit tests need to validate the written code.

Generated Code Dependencies

Generated code has minimal dependency
» only linear algebra library (BLAS)
» no dependency on ROQOT libraries

» can be easily integrated in whatever software code

.export (

Export the Pytorch model to ONNX
model or Generate the ONNX model
through ONNX directly

Code
Generation
Parse the ONNX Model through SOFIE i n S O F I E

Parser

export _params=

[06] using namespace TMVA::Experimental;
i [1] SOFIE::RModelParser_ONNX parser;
Generate the Header File [2] SOFIE::RModel model = parser.Parse("./LeakyRelu.onnx");
[3] model.Generate();
[4] model.OutputGenerated("./LeakyRelu.hxx");

Run Inference

!

Get the generated C++ code

Entire output can be found her

Transformer Based models

import torch
import torch.nn as nn
import torch.onnx as onnx

i h
import mat o

data (1000x512

class TransformerModel(nn.Module):
def __init__(self, vocab_size, d_model, nhead, num_layers, dim_feedforward, dropout=0.1):

super(TransformerModel, self).__init_ ()

self.model_type = 'Transformer

self.embed = nn.Embedding(vocab_size, d_model)

self.pos_enc = nn.Embedding(1000, d_model)

self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_layers,
num_decoder_layers=num_layers, dim_feedforward=dim_feedforward,
dropout=dropout)

self.fc = nn.Linear(d_model, vocab_size)

self.init_weights()

init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)

self.fc.bias.data.zero_()
self.fc.weight.data.uniform_(-initrange, initrange) G e n e rates

forward(self, src, tgt): indices (1
src = self.embed(src) * math.sqrt(self.embed.embedding_dim)

tgt = self.embed(tgt) * math.sqrt(self.embed.embedding_dim) Add
src_pos_enc = self.pos_enc(torch.arange(®, src.size(1), dtype=torch.long, device=src.device)) B
tgt_pos_enc = self.pos_enc(torch.arange(®, tgt.size(1), dtype=torch.long, device=tgt.device))

Src = Src + src_pos_enc.unsqueeze(0)

tgt = tgt + tgt_pos_enc.unsqueeze(0)

memory = self.transformer.encoder(src)

output = self.transformer.decoder(tgt, memory)

output = self.fc(output)

return output

Shape

Gather

model = TransformerModel(vocab_size=1000, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1) * lice

src = torch.randint(e, 1000, (16, 32), dtype=torch.long) S
tgt = torch.randint(e, 1000, (20, 32), dtype=torch.long)

output = model(src, tgt) Reshape Reshape Reshape

shape (3 shape (3] shape (3

Export the model to ONNX format
input_names = ["src", "tgt"] ! v
output_names = ["output"] Transpose Transpose Transpose
onnx_path = "transformer_model.onnx"

torch.onnx.export(model, (src, tgt), onnx_path, input_names=input_names, output_names=output_names) Div

https://drive.google.com/file/d/1XNY6doACOHAOgeOWb86Ut1q56klcY1QT/view?usp=sharing

Operators to be implemented for parsing Transformer based
models in SOFIE

|
v }

Operatoré Already
implemented

1. MatMul

2. Add Operator that needs to be
3. Layer Normalization implemented

4. Softmax

5. Reshape 1 Mat'mul Transpose

6. Concat 2. Split

7. ReduceMean 3. Log

8. ReduceSum 4. Split

9. Slice 5. Matmul Integer

10. Flatten

i1 1. Gather

adjacency_matix

import torch

import torch.nn.functional as F
torch_geometric.nn import GCNConv
torch_geometric.data import Data
torch_geometric.utils import to_undirected
torch.onnx import export

Define the GNN model

class GNNModel(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim)
super(GNNModel, self).__init_ ()

self.convl = GCNConv(input_dim, hidden_dim) d Gather Gathe

self.conv2 = GCNConv(hidden_dim, output_dim)

def forward(self, x, edge_index):

edge_index = to_undirected(edge_index) # convert to undirected graph Generates
X F.relu(self.convi(x, edge_index))
X F.relu(self.conv2(x, edge_index))
return x

Reshape

SaatterNd

Define input data
x = torch.randn(5, 3) # feature matrix with 5 nodes and 3 features per node
edge_index = torch.tensor([[0, 1, 1, 2, 3, 4], [1, O, 2, 1, 4, 3]]) # edge index tensor

Create PyTorch Geometric Data object
data = Data(x=x, edge_index=edge_index)

Create GNN model instance

model = GNNModel(input_dim=3, hidden_dim=16, output_dim=2)
Export model to ONNX format

input_names = ["input_x", "input_edge_index"]

output_names = ["output"]
torch.onnx.export(model, (data.x, data.edge_index), "gnn_model.onnx", input_names=input_names, output_names=output_names)

and

Reshape

Graph Net Based models Entire output can be found here

Reshape

Gather

https://drive.google.com/file/d/1g6Z5GJZAttZ3bSLf8bMJ16KVFdiYnAXF/view?usp=sharing

Operators to be implemented for parsing Graph Net based
models in SOFIE

! , v

Opgrator s Already "bperator that needs to be'
implemented implemented

1. Constant 1. Scatter

2. Gather 2. ScatterND

3. ReduceMean 3. GatherND

4. Squeeze 4. Split

5. Unsqueeze 5. Log

6. Concat 6. Where

7. Reshape 7. If

8. Matmul 8. TopK

9. Add 9. Greater

10. Sub 10. ConstantofShape

1 fi M_ul 11. Range

12. Div 12. Non-zero

13. Exp 13. Tile

14. Transpose 14. Erf

Work done till now.....

Description Pull Request
Added support for standalone MatMul operator to be accepted by Merged
Gemm Operator

Swish Activation function implemented in the Keras Parser Merged

Implemented the Range ONNX Operator with unit tests

Under Review

Implemented the TopK ONNX Operator with unit tests

Under Review

Implemented the Log ONNX Operator with unit tests

Approved

https://github.com/root-project/root/pull/12894
https://github.com/root-project/root/pull/12918
https://github.com/root-project/root/pull/12941
https://github.com/root-project/root/pull/12942
https://github.com/root-project/root/pull/12945

Work done till now.....

Description

Pull request

Implemented the Erf ONNX Operator with unit tests

Approved

Implemented the Where ONNX Operator with unit tests

Under Review

Feature: Add an option of saving both .dat and .root files

Under Review

Implemented the Equal ONNX Operator with unit tests

Under Review

Implemented the ConstantOfShape ONNX Operator with unit tests

Under Review

Implemented the Elu ONNX operator

Under Review

https://github.com/root-project/root/pull/12945
https://github.com/root-project/root/pull/12945
https://github.com/root-project/root/pull/12945
https://github.com/root-project/root/pull/13171
https://github.com/Neel-Shah-29/root-1/tree/ConstantOfShape
https://github.com/root-project/root/pull/13544

Important Links:

Python Tutorials for various C files of Tutorials/TMVA

Documentation on RModelParser ONNX.cxx

All about Community Bonding Period

Implementing the Operators in Sofie

GSOC 2022 Report
Final Project Presentation - GSOC 2022

GSOC 2023 Project Page

N o oA D=

https://gist.github.com/Neel-Shah-29/7e46bee55f7c09a18e94696a0a3e5ccf
https://gist.github.com/Neel-Shah-29/5c1399ccd23903928128822c6f3e0957
https://gist.github.com/Neel-Shah-29/b2c887adaa118ba68b42e324d3b2a47a
https://gist.github.com/Neel-Shah-29/f0371566ca1e24a6b3a9b4097cdd44db
https://gist.github.com/Neel-Shah-29/d51a9038dd07ef096127a62a92113fa0
https://docs.google.com/presentation/d/1VdOEkNsFcaBAo15kjVDRtJ_BWvVh9E6KgKzzrmkr1NQ/edit?usp=sharing
https://summerofcode.withgoogle.com/programs/2023/projects/xoPLgxys

Thankyou for providing this opportunity!!

Clny Questions?

