Theoretical Developments in Flavor Physics

Wolfgang Altmannshofer waltmann@ucsc.edu

🗶 UC SANTA CRUZ

5th International Joint Workshop on the Standard Model and Beyond 3rd Gordon Godfrey Workshop on Astroparticle Physics

> University of New South Wales, Sydney December 9 - 13, 2024

Flavor Physics

Promising Indirect Probes of New Physics

Test bedrock assumptions of particle physics
 Lorentz invariance; CPT invariance; ...

 $(\Lambda \gtrsim M_{\rm Planck} \sim 10^{19}~{
m GeV})$

Promising Indirect Probes of New Physics

- ► Test bedrock assumptions of particle physics Lorentz invariance; CPT invariance; ... (Λ ≳ M_{Planck} ~ 10¹⁹ GeV)
- Test (approximate) accidental symmetries of the SM

Baryon Number: e.g. proton decay ($\Lambda \sim \Lambda_{GUT} \sim 10^{16}~GeV)$

Lepton Number: e.g. neutrinoless double beta decay ($\Lambda \sim \Lambda_{see\text{-saw}} \sim 10^{12}~\text{GeV})$

Flavor: e.g. flavor changing neutral currents $(\Lambda \sim 10^3 - 10^8 \mbox{ GeV})$

CP: e.g. electric dipole moments ($\Lambda \sim 10^3 - 10^8~\text{GeV})$

Probe more generic new physics

Promising Indirect Probes of New Physics

- ► Test bedrock assumptions of particle physics Lorentz invariance; CPT invariance; ... (Λ ≳ M_{Planck} ~ 10¹⁹ GeV)
- Test (approximate) accidental symmetries of the SM

Baryon Number: e.g. proton decay ($\Lambda \sim \Lambda_{GUT} \sim 10^{16}~GeV)$

Lepton Number: e.g. neutrinoless double beta decay ($\Lambda \sim \Lambda_{see-saw} \sim 10^{12} \text{ GeV}$)

Flavor: e.g. flavor changing neutral currents $(\Lambda \sim 10^3 - 10^8 \mbox{ GeV})$

CP: e.g. electric dipole moments ($\Lambda \sim 10^3 - 10^8~\text{GeV}$)

Test "ordinary" Standard Model processes

Higgs precision program; Electroweak precision observables; muon anomalous magnetic moment; ... $(\Lambda \sim 10^3~GeV)$

Probe more generic new physics

The Standard Model and Beyond

The Standard Model and Beyond

The Standard Model and Beyond

Two Basic Flavor Questions

Q1: What is the origin of the hierarchical flavor structure of the SM?

Q2: Are there new sources of flavor violation beyond the SM?

The Standard Model Flavor Puzzle

Why are there three flavors of quarks and leptons?

What is the origin of the hierarchies in the fermion spectrum?

What is the origin of the hierarchies in the quark mixing?

Is lepton mixing anarchic?

Addressing the SM Flavor Puzzle

Addressing the SM Flavor Puzzle

WA, Greljo arXiv:2412.today (invited review for Annual Review of Nuclear and Particle Science)

	$1: X^{3}$	2:I	I^6	$3: H^4D^2$			$5: \psi^2 H^3 + h.c.$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (1	$(H^{\dagger}H)^{3}$	$Q_{H\square}$	(H^{\dagger})	$H)\Box(H^{\dagger}H)$	I)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu})$	H) [*] ($H^{\dagger}I$	$D_{\mu}H$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H}$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$									
	$4:X^2H^2$	6	$: \psi^2 X H$	+ h.c.			7	$: \psi^2 H^2$	D	
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu}$	$e_r)\tau^I H W$	$7^{I}_{\mu\nu}$	$Q_{Hl}^{(1)}$		$(H^{\dagger}i\dot{1}$	$\vec{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{H\tilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^\mu$	$\nu e_r)HB_\mu$	ιν	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A u_r) \tilde{H}$	$G^{A}_{\mu\nu}$	Q_{He}		$(H^{\dagger}i\overleftarrow{I}$	$\vec{\partial}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu \nu})$	$u_r \tau^I \tilde{H} W$	$V^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^\mu$	$\nu u_r)\tilde{H}B$	μν	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	$^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r)H$	$G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{L}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu})$	$d_r \tau^I H V$	$V^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{I}$	$\vec{p}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu}$	$\nu d_r H B_i$	μν	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^{\mu} d_r)$	
	$8:(\bar{L}L)(\bar{L}L)$		8:($\bar{R}R)(\bar{R}R$)		8:	$(\bar{L}L)(\bar{R}F)$	2)	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(ē	$_{p}\gamma_{\mu}e_{r})(\bar{e},$	$\gamma^{\mu}e_t$)	Q_{le}	($\bar{l}_p \gamma_\mu l_r)(\bar{e}$	$s\gamma^{\mu}e_t$)	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_j$	$\gamma_{\mu}u_{r})(\bar{u}$	$\gamma^{\mu}u_t$)	Q_{lu}	- ($\bar{l}_p \gamma_\mu l_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	(<i>d</i>	$_{p}\gamma_{\mu}d_{r})(\bar{d},$	$\gamma^{\mu}d_t$)	Q_{ld}	($\bar{l}_p \gamma_\mu l_r)(\bar{d}$	$s\gamma^{\mu}d_{t})$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_i$	$\gamma_{\mu}e_{r})(\bar{u},$	$\gamma^{\mu}u_t$)	Q_{qe}	($\bar{q}_p \gamma_\mu q_r)(\bar{\epsilon}$	$i_s \gamma^{\mu} e_t$)	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	(\bar{e}_i)	$_{p}\gamma_{\mu}e_{r})(\bar{d},$	$\gamma^{\mu}d_t$)	$Q_{qu}^{(1)}$	(ġ	$\bar{q}_p \gamma_\mu q_r)(\bar{u}$	$i_s \gamma^{\mu} u_t$)	
		$Q_{ud}^{(1)}$	(ū	$\gamma_{\mu}u_{r})(\bar{d}$	$\gamma^{\mu}d_{t})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_p)$	$_{i}T^{A}q_{r})(i$	$i_s \gamma^{\mu} T^A u_t$)	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu$	$T^A u_r)(\bar{d}$	$\gamma^{\mu}T^{A}d_{t})$	$Q_{qd}^{(1)}$	(ē	$\bar{q}_p \gamma_\mu q_r)(\dot{a}$	$\bar{l}_s \gamma^{\mu} d_t$)	
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_p)$	$_{x}T^{A}q_{r})(d$	$\bar{l}_s \gamma^{\mu} T^A d_t$)	
	$8 : (\bar{L}R)(\bar{I}$	$\bar{R}L$) + h.	c.	8:(.	$\bar{L}R)(\bar{L}R)$	+ h.c.				
	Q_{ledq} (\bar{l}_j)	$(\bar{d}_s q_t)$	j) ($Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_j$	$k(\bar{q}_s^k d_t)$				
			6	2 ⁽⁸⁾ . ($\bar{a}^{j}T^{A}u_{x}\epsilon_{i}$	$u(\bar{a}^kT^Ad)$	0			

 $Q_{lequ}^{(1)}$

 $(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$ $Q_{leau}^{(3)} = (\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

2499 baryon number conserving dim. 6 operators

Grzadkowski et al. 1008.4884,

Alonso et al 1312.2014

	$1: X^3$	2:I	I^6		3 : F	I^4D^2		$5: \psi^2 H^3 + h.c.$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (1	$(H^{\dagger}H)^{3}$	$Q_{H\Box}$	(H	$(H)\square(H^{\dagger}H)$	I)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e,H$	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HL}	$(H^{\dagger}D)$	$(H)^* (H^*)$	$D_{\mu}H)$	Q_{uH}	$(H^{+}H)(\bar{q}_{p}u_{r}\hat{E}$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} =$							Q_{dH}	$(H^\dagger H)(\bar{q}_p d_r E$	
$Q_{\tilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\nu} W^{K\mu}_{\rho}$									
	$4:X^2H^2$	6	$\psi^2 X I$	/ + h.c.				7 : $\psi^2 H^2$	D	
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu}$	$e_r \tau^I H$	$W^{I}_{\mu\nu}$	$Q_{H_{1}}^{(1)}$		$(\Pi^{\dagger}i\overleftarrow{J}$	$\vec{D}_{\mu}II)(\bar{l}_{p}\gamma^{\mu}l_{\tau})$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H {\widetilde G}^A_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^{\mu})$	$\nu e_{\tau})HI$	3,	$Q_{H1}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^I_\mu H)(\bar l_p \tau^I \gamma^\mu l_r)$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$\Gamma^A u_r) \hat{I}$	$I G^A_{\mu\nu}$	Q_{Hi}		$(H^{\dagger}i\overleftarrow{L}$	$(\bar{e}_p \gamma^{\mu} e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_{\rm F}\sigma^{\mu\nu}$	$u_r)\tau^I \tilde{H}$	$W^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overset{\leftarrow}{I}$	$\overrightarrow{\partial}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^{-}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu})$	$v u_r)\tilde{H}$	$B_{\mu\nu}$	$Q_{Hg}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{\rho}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{*}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) E$	$I G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$\dot{\bar{\theta}}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^\dagger \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu}$	$d_{\tau} \tau^{I} H$	$W^I_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$(\bar{d}_p \gamma^\mu d_r)$	
$Q_{H\widetilde{W}B}$	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{\nu}\sigma^{\nu}$	$\nu d_{\tau})H$	$B_{\mu\nu}$	Q_{iIud} +	h.c.	$i(\widetilde{H}^*L$	$(\bar{u}_{\rho}\gamma^{\mu}d_{r})$	
	8 : $(\bar{L}L)(\bar{L}L)$		8:($\bar{R}R)(\bar{R}$	R)		8 :	$(\bar{L}L)(\bar{R}F)$	0	
20	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(ē	$_{p}\gamma_{\mu}e_{r})($	$\bar{e}_s \gamma^{\mu} e_t$)	Q_{lv}	($(\bar{l}_p \gamma_\mu l_\tau)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(1	$_{p}\gamma_{\mu}u_{r})($	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{lu}	($\bar{l}_p \gamma_\mu l_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r)(\bar{q}_s \gamma^\mu \tau^j q_t)$	Q_{dd}	(d	$_{p}\gamma_{\mu}d_{r})($	$\bar{d}_s \gamma^{\mu} d_t$)	Q_{ld}	($(\bar{l}_p \gamma_\mu l_r)(d$	$_{*}\gamma^{\mu}d_{t})$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e}$	$_{p}\gamma_{\mu}e_{\tau})($	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{qe}	($\bar{q}_p \gamma_\mu q_r)(\bar{\epsilon}$	$s_{\sigma}\gamma^{\mu}v_{t})$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^J l_r)(\bar{q}_s \gamma^\mu \tau^I q_i)$	Q_{cd}	$(\bar{e}$	$_p\gamma_\mu e_r)($	$\bar{d}_o \gamma^\mu d_t$)	$Q_{q_{2}}^{(1)}$	- ($\bar{q}_p \gamma_\mu q_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$	
	$Q_{nd}^{(1)}$			$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$			$(\bar{q}_p\gamma$	$_{s}\gamma^{\mu}T^{A}u_{i})$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu$	$T^A u_r)($	$\bar{d}_s \gamma^{\mu} T^A d_i$	$Q_{qd}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\dot{a}$	$\tilde{l}_s \gamma^{\mu} d_t$)	
						$Q_{gd}^{(8)}$	$(\bar{q}_p\gamma$	$_{\mu}T^{A}q_{r})(\dot{a}$	$\tilde{l}_s \gamma^{\mu} T^A d_t)$	
	$8 : (\bar{L}R)(i$	c.	8:	$(\bar{L}R)(\bar{L}R)$	+ h.c.					
	$Q_{ledg} = (\bar{l})$	$(\bar{d}_s q_t)$	j) ($2_{gugd}^{(1)}$	$(\bar{q}_p^j u_r)$	$_{jk}(\bar{q}_{s}^{k}d_{t})$	_			
			6	2 ⁽⁸⁾ gauge	$(\bar{q}_p^j T^A u_r)$	$_{jk}(\bar{q}_{s}^{k}T^{A}d)$)			
			(2 ⁽¹⁾	$(\bar{l}_{p}^{j}e_{r})\epsilon$	$_{jk}(\bar{q}_s^k u_t)$				
				(3)	a che	. (akawa	a			

2499 baryon number conserving dim. 6 operators

Grzadkowski et al. 1008.4884,

Alonso et al 1312.2014

4 fermion interactions

	$1 : X^3$	2 : I	I^6		$3 : H^4D^2$				$5: \psi^2 H^3 + h.c.$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (F	$(H^{\dagger}H)^{3}$	$Q_{H\square}$	(H	$(H^{\dagger}H)\Box(H^{\dagger}H)$			$(H^{\dagger}H)(\bar{l}_{p}e,H)$		
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	·		Q_{HL}	$(H^{\dagger}D$	$_{\mu}H)^{*}(H)$	$D_{\mu}H)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} =$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$										
	$4:X^2H^2$	6	$\psi^2 X H$	+ h.c.				$7: \psi^2 H^2$	D		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu})$	$e_r \tau^I H$	$W^{I}_{\mu\nu}$	$Q_{H}^{(1)}$		$(\Pi^{\dagger}i^{\dagger})$	$\vec{\mathcal{D}}_{\mu} II (\bar{l}_p \gamma^{\mu} l_{\tau})$		
$Q_{H\bar{G}}$	$H^{\dagger}H \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^\mu$	$\nu e_{\tau})HI$	$B_{\mu\nu}$	$Q_{H^{2}}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$t^A u_r) \hat{k}$	$\tilde{I} G^A_{\mu\nu}$	Q_{H_i}		$(H^{\dagger}i\overleftarrow{I}$	$\vec{J}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_F \sigma^{\mu u})$	$u_r)\tau^I \tilde{H}$	$W^{I}_{\mu\nu}$	$Q_{H_{2}}^{(1)}$		$(H^{\dagger}i\overset{\leftarrow}{I}$	$\overrightarrow{\partial}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r}) =$		
Q_{HB}	$H^*H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu})$	$\nu u_r)\tilde{H}$.	$B_{\mu\nu}$	$Q_{H_{3}}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{\rho}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^{*}H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) E$	$I G^A_{\mu\nu}$	Q_{H_2}	ı	$(H^{\dagger}i\overleftarrow{L}$	$\dot{\vec{D}}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_{\tau})$		
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu \nu} \sigma^{\mu} $	$d_{\tau} \tau^{l} H$	$W^{I}_{\mu\nu}$	Q_{H_0}	ı	$(H^{\dagger}i\overleftarrow{L}$	$\vec{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{AB}	$(\bar{q}_{\nu}\sigma^{\mu}$	$\nu d_r)H$	Β _{μν}	Q_{Hud} +	h.c.	$i(\widetilde{H}^*L$	$(\bar{u}_{\rho}\gamma^{\mu}d_{r})$		
	$8:(\bar{L}L)(\bar{L}L)$	_	8:(4	$\bar{R}R)(\bar{R}.$	R)		8:	$(\bar{L}L)(\bar{R}I)$	R)		
Q_{11}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(ē ₁	$\gamma_{\mu}e_{r})($	$\bar{e}_s \gamma^{\mu} e_t$)	Q_{lv}		$(\bar{l}_p \gamma_\mu l_\tau)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(<i>ū</i> ,	$\gamma_{\mu}u_{r})($	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{lu}	($\bar{l}_p \gamma_\mu l_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r)(\bar{q}_s \gamma^\mu \tau^J q_t)$	Q_{dd}	(\bar{d}_i)	$(\gamma_{\mu}d_{r})($	$\tilde{d}_s \gamma^{\mu} d_t$)	Q_{ld}		$(\bar{l}_p \gamma_\mu l_r)(\bar{d}$	$(_*\gamma^{\mu}d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e}_t$	$\gamma_{\mu}e_{\tau})(i$	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{qe}	($\bar{q}_p \gamma_\mu q_r)(\dot{q}$	$\bar{\epsilon}_s \gamma^{\mu} e_t$)		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau' l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{cd}	$(\bar{e}_{i}$	$\gamma_{\mu}e_{r})($	$\bar{d}_o \gamma^\mu d_t$)	$Q_{q_{2}}^{(1)}$	- ($\bar{q}_p \gamma_\mu q_r)(i$	$i_s \gamma^{\mu} u_t$)		
		$Q_{nd}^{(1)}$	$(\bar{u}_{j}$	$\gamma_{\mu}u_{r})($	$\bar{d}_s \gamma^{\mu} d_t$)	$Q_{q_{2}}^{(8)}$	$(\bar{q}_p \gamma$	$_{\mu}T^{A}q_{r})(i$	$i_s \gamma^\mu T^A u_i)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)($	$\bar{d}_s \gamma^{\mu} T^A d_i$	$Q_{qd}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\bar{c}$	$\bar{l}_s \gamma^{\mu} d_t$)		
						$Q_{qd}^{(8)}$	$(\bar{q}_P \gamma$	$_{\mu}T^{A}q_{r})(a$	$\bar{l}_s \gamma^{\mu} T^A d_t$		
	$8 : (\bar{L}R)($	$\bar{R}L$) + h.a		8:	$(\bar{L}R)(\bar{L}R)$	+ h.c.					
	Q_{ledg} (1	$(\bar{d}_{s}q_{t})(\bar{d}_{s}q_{t})$	i) 4	$q_{uqd}^{(1)}$	$(\bar{q}_p^j u_r)$	$e_{jk}(\bar{q}_s^k d_t)$					
			4	$l_{quad}^{(8)}$	$(\bar{q}_p^j T^A u_r)$	$\epsilon_{jk}(\bar{q}_s^k T^A d$	t)				
			6	$\gamma_{leqx}^{(1)}$	$(\bar{l}_p^j e_r)e$	$j_k(\bar{q}_s^k u_t)$					
			Ģ	$2^{(3)}_{iem}$	$(\bar{l}_{n}^{j}\sigma_{\mu\nu}c_{\tau})c$	$_{ik}(\bar{q}^k_s\sigma^{\mu\nu}u$	i)				

2499 baryon number conserving dim. 6 operators

Grzadkowski et al. 1008.4884, Alonso et al 1312.2014

4 fermion interactions

dipole transitions

	$1: X^3$	2 : I	1 ⁶		$3 : H^4 D^2$				$5: \psi^2 H^3 + \text{h.c.}$		
Q_G	$\int^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_H (1	$(I^{\dagger}H)^{3}$	$Q_{H\Box}$	(H^{\dagger})	$H)\Box(H^{\dagger}H)$	()	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{\mu}e, H)$)	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HL}	$(H^{\dagger}D_{\mu})$	$H)^* (H^*I)$	$D_{\mu}H)$	Q_{uH}	$(H^{+}H)(\bar{q}_{p}u_{r}\widetilde{H})$)	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$)	
$Q_{\tilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$										
	$4:X^2H^2$	6	$\psi^2 X H$	+ h.c.				$7 : \psi^2 H^2$	0		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu \nu} e$	$e_r)\tau^I H$	$W^{I}_{\mu\nu}$	$Q_{H!}^{(1)}$		(∏†i∱	$\vec{D}_{\mu}II)(\bar{l}_{p}\gamma^{\mu}l_{\tau})$		
$Q_{H\widetilde{G}}$	$H^{\dagger}H {\widetilde G}^A_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^{\mu}$	$\nu e_{\tau})HI$	$g_{\mu\nu}$	$Q_{R!}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^I_\mu H)(\bar l_p \tau^I \gamma^\mu l_r)$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$({}^{A}u_{r})\hat{I}$	$\tilde{I} G^A_{\mu\nu}$	Q_{He}		$(H^{\dagger}i\dot{L})$	$\vec{P}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	$Q_{\pi W}$	$(\bar{q}_F \sigma^{\mu u} v$	$u_r)\tau^I \tilde{H}$	$W^{I}_{\mu\nu}$	$= Q_{Hq}^{(1)}$		$(H^{\dagger}i\overset{\leftarrow}{I}$	$\overrightarrow{\partial}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$		
Q_{HB}	$H^{*}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu i}$	$v u_r) \tilde{H}$	$B_{\mu\nu}$	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{\rho}\tau^{I}\gamma^{\mu}q_{\nu})$		
$Q_{H\widetilde{B}}$	$H^{*}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r) E$	$I G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$\dot{\bar{b}}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$		
Q_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} e$	$(l_r)\tau^I H$	$W^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}iL$	$\vec{b}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^{ l} H {\widetilde W}^{ l}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{\nu}\sigma^{\mu\nu}$	$\nu d_r)H$	$B_{\mu\nu}$	$Q_{Hud} +$	h.c.	$i(\widetilde{H}^*L$	$(\bar{v}_{\rho}\gamma^{\mu}d_{r})$		
	$8: (\bar{L}L)(\bar{L}L)$		8:(1	$\bar{R}R)(\bar{R}$	R)	\sim	8:	$(\bar{L}L)(\bar{R}F)$	1)		
$Q_{!1}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p$	$\gamma_{\mu}e_{r})($	$\bar{e}_s \gamma^{\mu} e_t$)	Q_{lv}	($\bar{l}_p \gamma_\mu l_\tau)(\bar{e}$	$_{s}\gamma^{\mu}e_{i})$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p$	$\gamma_{\mu}u_{r})($	$\bar{u}_s \gamma^{\mu} u_l$)	Q_{lu}	($\bar{l}_{\mu}\gamma_{\mu}i_{\tau})(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r)(\bar{q}_s \gamma^\mu \tau^J q_t)$	Q_{dd}	(\tilde{d}_p)	$(\gamma_{\mu}d_{r})($	$\bar{d}_s \gamma^{\mu} d_t$)	Q_{ld}	($\bar{l}_p \gamma_\mu l_r)(d$	$_{*}\gamma^{\mu}d_{t})$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e}_p$	$\gamma_{\mu}e_{\tau})($	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{qe}	($\bar{q}_p \gamma_\mu q_r)(\bar{\epsilon}$	$s\gamma^{\mu}v_t$)		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^J l_r)(\bar{q}_s \gamma^\mu \tau^J q_i)$	Q_{cd}	$(\bar{e}_p$	$\gamma_{\mu}e_{r})($	$\bar{d}_o \gamma^{\mu} d_t$)	$Q_{q_2}^{(1)}$	- ($\bar{q}_p \gamma_\mu q_r)(\bar{u}$	$_{a}\gamma^{\mu}u_{t})$		
		$Q_{nd}^{(1)}$	$(\bar{u}_p$	$\gamma_{\mu}u_{r})($	$\bar{d}_s \gamma^{\mu} d_t$)	$Q_{q_{S}}^{(8)}$	$(\bar{q}_p\gamma$	$_{\mu}T^{A}q_{r})(\bar{u}$	$_{s}\gamma^{\mu}T^{A}u_{i})$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)($	$\bar{d}_s \gamma^{\mu} T^A d_i)$	$Q_{qd}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\dot{a}$	$\bar{l}_s \gamma^{\mu} d_t$)		
						$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma$	$_{\mu}T^{A}q_{r})(\dot{a}$	$\bar{l}_s \gamma^{\mu} T^A d_t$		
	$8 : (\bar{L}R)($	$\bar{R}L$) + h.		8 :	$(\bar{L}R)(\bar{L}R)$ -	+ h.c.					
	Q_{ledq} (\bar{l}	$(\bar{d}_s q_t)(\bar{d}_s q_t)$	() Q	(1) quqd	$(\bar{q}_p^j u_r) \epsilon_j$	$_{k}(\bar{q}_{s}^{k}d_{t})$	_				
			\bar{Q}	(8) gugd	$(\bar{q}_p^j T^A u_r) \epsilon_j$	$_{k}(\bar{q}_{s}^{k}T^{A}d_{t}$)				
			G	$2_{leqx}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\epsilon_{j}$	$k(\bar{q}_s^k u_t)$					
			Ģ	$2_{legu}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{\tau})\epsilon_{ji}$	$_{k}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u)$)				

2499 baryon number conserving dim. 6 operators

Grzadkowski et al. 1008.4884, Alonso et al 1312.2014

4 fermion interactions

dipole transitions

W and Z penguins

	$1 : X^3$	2 :	H^6		3 : H	I^4D^2	$5: \psi^2 H^3 + h.c.$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($H^{\dagger}H)^{3}$	$Q_{H\square}$	$(H^{\dagger}$	$H)\Box(H^{\dagger}H)$	()	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e,H)$
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{i}$	$(H)^* (H^*)$	$D_{\mu}H)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} =$				•			Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
	$4:X^2H^2$	6	$: \psi^2 X D$	+ h.c.			7	$: \psi^2 H^2$	0
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu}$	e_{τ}) τ^{I} II	$W^{I}_{\mu\nu}$	$Q_{H!}^{(1)}$		(∏†i∱	$\vec{D}_{\mu}II)(\bar{l}_{p}\gamma^{\mu}l_{\tau})$
$Q_{H\bar{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^\mu)$	$\nu e_{\tau})HE$	31.0	$Q_{R!}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^I_\mu H)(\bar l_p \tau^I \gamma^\mu l_r) =$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_{\rho}\sigma^{\mu\nu})$	$l^{A}u_{r})\tilde{H}$	$G^A_{\mu\nu}$	Q_{He}		$(H^{\dagger}i\overleftarrow{L}$	$\dot{f}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_F \sigma^{\mu\nu})$	$u_r)\tau^I \tilde{H}$	$W^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overset{\leftarrow}{I}$	$\overrightarrow{\partial}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^*H B_{\mu\nu}B^{\mu\nu}$	Q_{nB}	$(\bar{q}_p \sigma^{\mu}$	$v u_r) \tilde{H}$	$B_{\mu\nu}$	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^*H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$T^A d_r)H$	$G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$(\bar{u}_p \gamma^{\mu} u_r)$
Q_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu})$	$d_{\tau} \tau^{I} H$	$W^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$(\bar{d}_p \gamma^{\mu} d_r)$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{\nu}\sigma^{\mu}$	$\nu d_{\tau})H$	B _{μν}	Q_{Hud} +	h.c.	$i(\widetilde{H}^*L$	$(\bar{u}_{\rho}\gamma^{\mu}d_{r})$
	$8:(\bar{L}L)(\bar{L}L)$		8:($\bar{R}R)(\bar{R})$	R)		8:($\bar{L}L)(\bar{R}F$	1)
Q_{1l}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(ē	$_{p}\gamma_{\mu}e_{r})($	$\bar{e}_s \gamma^{\mu} e_t$)	Q_{lv}	(1	$(\bar{e}\gamma_{\mu}l_{\tau})(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(<i>ū</i> ,	$\gamma_{\mu}u_{r})(i$	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{lu}	(\bar{l}_{j})	$_{\mu}\gamma_{\mu}i_{\tau})(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_l)$	Q_{dd}	(\vec{d})	$\gamma_{\mu}d_{r})($	$\bar{d}_s \gamma^{\mu} d_t$)	Q_{ld}	(\bar{l}_{j})	$_{\nu}\gamma_{\mu}l_{\tau})(d$	$_{*}\gamma^{\mu}d_{t})$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e},$	$\gamma_{\mu}e_{\tau})(i$	$i_s \gamma^{\mu} u_t$)	Q_{qe}	$(\bar{q}$	$(_{\rho}\gamma_{\mu}q_{r})(i$	$s_s \gamma^{\mu} v_t$)
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_i)$	Q_{cd}	$(\bar{e}_i$	$\gamma_{\mu}e_{r})(e$	$\bar{l}_o \gamma^\mu d_t$)	$Q_{q_2}^{(1)}$	$(\bar{q}_l$	$_{p}\gamma_{\mu}q_{r})(\bar{u}$	$_{a}\gamma^{\mu}u_{t})$
		$Q_{nd}^{(1)}$	(<i>ū</i>	$_{p}\gamma_{\mu}u_{r})($	$\bar{d}_s \gamma^{\mu} d_t$)	$Q_{q_{S}}^{(8)}$	$(\bar{q}_p \gamma_\mu$	$T^A q_r)(\bar{u}$	$_{s}\gamma^{\mu}T^{A}u_{i})$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu$	$T^A u_r)($	$\bar{d}_s \gamma^{\mu} T^A d_i$)	$Q_{qd}^{(1)}$	(\bar{q}_i)	$p\gamma_{\mu}q_{r})(\dot{a}$	$\bar{l}_s \gamma^{\mu} d_t$)
						$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma_p$	$T^A q_r)(\dot{a}$	$\bar{l}_s \gamma^{\mu} T^A d_t$)
	$8 : (\bar{L}R)($	$\bar{R}L$) + h	.c.	8:	$(\bar{L}R)(\bar{L}R)$	+ h.c.			
	$Q_{ledg} = (\bar{l}$	$(\bar{d}_{s}q)(\bar{d}_{s}q)$	₆) 4	$p_{gugd}^{(1)}$	$(\bar{q}_p^j u_r)e$	$_{jk}(\bar{q}_{s}^{k}d_{t})$			
			4	$l_{qugd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon$	$_{jk}(\bar{q}_s^kT^Ad_t$)		
			ć	$2_{leqx}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_j$	$_{jk}(\bar{q}_s^k u_1)$			
			6	$Q_{lequ}^{(3)}$	$(\tilde{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_j$	$_{jk}(\bar{q}^k_s\sigma^{;\mu\nu}u_i$)		

2499 baryon number conserving dim. 6 operators

Grzadkowski et al. 1008.4884, Alonso et al 1312.2014

4 fermion interactions

dipole transitions

W and Z penguins

Higgs penguins

	$1 : X^3$	$2: H^{6}$			3:H	$^{4}D^{2}$		$5: \psi^2 H^3 + h.c.$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H (i	$H^{\dagger}H)^{3}$	$Q_{H\square}$	$(H^{\dagger}$	$H)\Box(H^{\dagger}H)$	ł)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e,H)$		
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}$	$H)^*(H^{-1}$	$D_{\mu}H)$	Q_{uff}	$(H^{+}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}=$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$							\sim			
	$4:X^2H^2$	6	$: \psi^2 X H$	+ h.c.			7	$: \psi^2 H^2$	D		
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu})$	$e_r)\tau^I HW$	$V^{I}_{\mu\nu}$	$Q_{H_{1}}^{(1)}$		$(\Pi^{\dagger}i^{\dagger})$	$\vec{\mathcal{D}}_{\mu} II (\bar{l}_{p} \gamma^{\mu} l_{\tau})$		
$Q_{H\bar{G}}$	$H^{\dagger}H {\widetilde G}^A_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^\mu$	$\nu e_{\tau})HB_{\mu}$	ar.	$Q_{H1}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	$^{I}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r}) =$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$({}^{A}u_{r})\tilde{H}$	$G^A_{\mu\nu}$	Q_{He}		$(H^{\dagger}i\dot{I}$	$\vec{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_{\rm F}\sigma^{\mu\nu})$	$u_r)\tau^I \hat{H} V$	$V^{I}_{\mu\nu}$	$Q_{Hg}^{(1)}$		$(H^{\dagger}i\overset{\leftarrow}{I}$	$\vec{\partial}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
Q_{HB}	$H^*H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu})$	$(u_r)\tilde{H}B$	μer	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^*H \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$\Gamma^A d_r)H$	$G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{L}$	$\dot{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$		
Q_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} e$	$(l_r)\tau^l H V$	$V^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$\vec{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{AB}	$(\bar{q}_{\nu}\sigma^{\mu}$	$^{\nu}d_{\tau})HB$	μν	Q_{Hud} +	h.c.	$i(\widetilde{H}^*L$	$(\bar{u}_{\rho}\gamma^{\mu}d_{r})$		
	$8:(\bar{L}L)(\bar{L}L)$		8:(4	$\bar{R}R)(\bar{R}R$)		8:	$(\bar{L}L)(\bar{R}I)$	3)		
Q_{1l}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(ē ₁	$\gamma_{\mu}e_{r})(\bar{e}_{i}$	$\gamma^{\mu}e_t$)	Q_{lv}	- 6	$(\bar{e}\gamma_{\mu}l_{\tau})(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_j$	$\gamma_{\mu}u_{r})(\bar{u}$	$s\gamma^{\mu}u_{t})$	Q_{lu}	(1	$_{p}\gamma_{\mu}l_{\tau})(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^i q_t)$	Q_{dd}	(\bar{d}_i)	$(\gamma_{\mu}d_r)(\bar{d}_{\mu})$	$\gamma^{\mu}d_{t}$	Q_{ld}	()	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e}_{i}$	$\gamma_{\mu}e_{\tau})(\bar{u}_{z})$	$\bar{u}_s \gamma^{\mu} u_t$) Q_{qe} ($(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau' l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{cd}	$(\bar{e}_i$	$\gamma_{\mu}e_{r})(\bar{d}_{i}$	$\gamma^{\mu}d_{t})$	$Q_{q_{2}}^{(1)}$	$(\bar{q}$	$_{p}\gamma_{\mu}q_{r})(i$	$i_s \gamma^{\mu} u_t$)		
		$Q_{nd}^{(1)}$	$(\bar{u}_{j}$	$\gamma_{\mu}u_r)(d$	$_{s}\gamma^{\mu}d_{t})$	$Q_{q_{2}}^{(8)}$	$(\bar{q}_p \gamma_p$	$T^A q_r)(i$	$i_s \gamma^\mu T^A u_i$)		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)(\bar{d}$	$\gamma^{\mu}T^{A}d_{i})$	$Q_{qd}^{(1)}$	(ĝ	$(q_p \gamma_\mu q_r)(q_r)$	$\bar{l}_s \gamma^{\mu} d_t$)		
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_b$	$T^A q_r)(a$	$\bar{l}_s \gamma^{\mu} T^A d_t$		
	$8 : (\bar{L}R)(i$	$\overline{R}L$) + h.	с.	8:($\bar{L}R)(\bar{L}R)$	+ h.c.					
	$Q_{ledg} = (\bar{l})$	$(\bar{d}_s q_t)$	i) ζ	$q_{uqd}^{(1)}$	$(\bar{q}_p^j u_r)e$	$_{jk}(\bar{q}_{s}^{k}d_{t})$					
			4	$g_{quqd}^{(8)}$ ($\bar{q}_p^j T^A u_r) \epsilon$	$_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$)				
			6	$2_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\epsilon_{j}$	$\bar{q}_{s}^{k}(\bar{q}_{s}^{k}u_{1})$					
			Ģ	$\mathcal{D}_{env}^{(3)}$ ($\bar{l}_{n}^{i}\sigma_{\mu\nu}c_{r})\epsilon$	$_{k}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u$	ð				

2499 baryon number conserving dim. 6 operators

Grzadkowski et al. 1008.4884, Alonso et al 1312.2014

4 fermion interactions

dipole transitions

W and Z penguins

Higgs penguins

"Leave no stone unturned" = probe as many operators as possible

Guidance from Flavor Symmetries

Flavor blind SMEFT

Flavor anarchic SMEFT

Guidance from Flavor Symmetries

Flavor blind SMEFT SMEFT with Minimal Flavor Violation ↓ SMEFT with U(3) or U(2) flavor symmetries SMEFT with U(1) Froggatt-Nielsen

Flavor anarchic SMEFT

Classifiy the flavor symmetries of the SMEFT

Use the flavor symmetries and their breaking pattern to effectively structure SMEFT studies

e.g. Faroughy, Isidori, Wilsch, Yamamoto 2005.05366; Greljo, Palavric, Thomsen 2203.09561;

Greljo, Palavric 2305.08898; ...

Guidance from Anomalies?

Lepton Flavor Universality Tests in $b \rightarrow s\ell\ell$

$$R_{K} = \frac{\mathsf{BR}(B \to K\mu^{+}\mu^{-})}{\mathsf{BR}(B \to Ke^{+}e^{-})}, \quad R_{K^{*}} = \frac{\mathsf{BR}(B \to K^{*}\mu^{+}\mu^{-})}{\mathsf{BR}(B \to K^{*}e^{+}e^{-})}, \quad R_{\phi} = \frac{\mathsf{BR}(B_{s} \to \phi\mu^{+}\mu^{-})}{\mathsf{BR}(B_{s} \to \phie^{+}e^{-})}$$

LHCb 2212.09152, 2212.09153, 2410.13748; CMS 2401.07090

Everything consistent with SM expectations.

Wolfgang Altmannshofer (UCSC)

Theoretical Developments in Flavor Physics

New Physics in $b \rightarrow s \mu \mu$?

Many other experimental results on $b \rightarrow s\mu\mu$ don't agree well with SM predictions. "Anomalies" both in branching ratios and angular distributions (P'_5).

Fits of $b \rightarrow s \ell \ell$ Data to Lepton Universal New Physics

(also Greljo et al. 2212.10497; Ciuchini et al. 2212.10516; Alguero et al. 2304.07330; Guadagnoli et al. 2308.00034; Hurth et al. 2310.05585; Bordone et al. 2401.18007; ...) $\Delta C_{9}^{\text{univ.}}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\ell}\gamma^{\alpha}\ell)$ $\Delta C_{10}^{\text{univ.}}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\ell}\gamma^{\alpha}\gamma_{5}\ell)$

- LFU ratios don't give constraints (by construction)
- ► $B_s \rightarrow \mu^+ \mu^-$ branching ratio in agreement with SM
- b → sµµ observables (P'₅ and semileptonic BRs) prefer non-standard C₉
- our fit finds a ~ 3σ preference for new physics in C₉

 $\Delta C_9^{ ext{univ.}}\simeq -0.80\pm 0.22$

 $\Delta C_{10}^{ ext{univ.}} \simeq +0.12 \pm 0.20$

New Physics or Underestimated Hadronic Effects?

It is very difficult to distinguish lepton flavor universal new physics in C_9 from a long distance hadronic effect ("charm loops")

 $\Delta C_9^{\text{univ.}}(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\ell}\gamma^{\alpha}\ell)$

Lot's of activity to better understand the "charm loops": lattice QCD, QCD factorization, dispersion relations, unitarity bounds, data driven methods, generic parameterizations, models, ...

Ciuchini et al. 2212.10516; Gubernari, Reboud, van Dyk, Virto 2206.03797, 2305.06301;

LHCb 2312.09102, 2405.17347; Isidori, Polonski, Tinari 2405.17551 ... many others

Probing Hints of New Physics From All Directions

Sensitivity of a Muon Collider

▶ If there is new physics in $b \rightarrow s\mu\mu$, a 10 TeV muon collider would clearly see it, and one does not need to worry about long distance QCD.

...but hopefully things get sorted out earlier...

(see also Huang et al. 2103.01617; Asadi et al. 2104.05720; Azatov et al. 2205.13552)

Beyond Anomalies

- ▶ "Bread and Butter": continue to improve well established probes: e.g. mass differences in meson mixing; $B \to X_s \gamma$; $B_s \to \mu^+ \mu^-$; ...
- requires high precision hadronic matrix elements from the lattice
- requires high precision CKM input (\rightarrow need to sort out V_{cb} and V_{ub} !)

Beyond Anomalies

- ► "Bread and Butter": continue to improve well established probes: e.g. mass differences in meson mixing; $B \to X_s \gamma$; $B_s \to \mu^+ \mu^-$; ...
- requires high precision hadronic matrix elements from the lattice
- requires high precision CKM input (\rightarrow need to sort out V_{cb} and V_{ub} !)
- Explore new processes where O(1) NP effects are still possible.
- ightarrow obtain qualitatively new information on a new types of processes

Examples for the near future / now:

- $B \to K^{(*)} \nu \bar{\nu}$ (new intriguing results from Belle II)
- CP violation in $D^0 \overline{D}^0$ oscillations
- rare kaon decays (observation of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ by NA62)
- $b \rightarrow d\ell\ell$ decays

Evidence for $B \to K \nu \bar{\nu}$

Belle II 2311.14647

- ► Evidence for $B \rightarrow K \nu \bar{\nu}$ at 3.5 σ above background and 2.7 σ above the SM prediction.
- Excess of events is particularly pronounced around $q^2 \simeq 4 \text{ GeV}^2$.

A Hint for Light New Physics?

► Instead of fitting the excess with a continuous 3-body spectrum from $B \rightarrow K \nu \bar{\nu}$ one gets a better fit with a new resonance $B \rightarrow K X$

WA, Crivellin, Haigh, Inguglia, Martin Camalich 2311.14629

A Hint for Light New Physics?

► Instead of fitting the excess with a continuous 3-body spectrum from $B \rightarrow K \nu \bar{\nu}$ one gets a better fit with a new resonance $B \rightarrow K X$

- ▶ Could be for example a Z' or ALP with mass around 2 GeV
- Constraints from $B \to K^* \nu \bar{\nu}$ narrow down couplings

see also He, Ma, Schmidt, Valencia, Volkas 2403.12485; Felkl, Giri, Mohanta, Schmidt 2309.02940; Ovchynnikov, Schmidt, Schwetz 2306.09508 ...

$B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow \pi K$

WA, Roy 2411.06592

- ▶ There rare long-standing puzzles in $B \rightarrow \pi K$ decays
- ► ALP with mass around the pion mass that decays to $\gamma\gamma$ can mimic a neutral pion and contribute to $B \rightarrow \pi^0 K$ decays
- If the ALP lifetime is ~ 1m, an order 1 fraction of ALPs decay inside the detector (helping with B → πK) and an order 1 fraction of ALPs decays outside the detector (giving a B → Kννν signal)

The Future of Flavor

[Karl Jacobs @ 2nd ECFA meeting on e^+e^- Higgs, electroweak, and top factories Oct 11-13, 2023, Paestum, Italy]

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

In addition one gets very large samples of all *b* hadrons, *c* hadrons, τ 's with large boost in a clean environment.

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

In addition one gets very large samples of all *b* hadrons, *c* hadrons, τ 's with large boost in a clean environment.

Running at higher \sqrt{s} can probe e.g. FCNC single top production or lepton flavor violating 4-fermion contact interactions

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

In addition one gets very large samples of all *b* hadrons, *c* hadrons, τ 's with large boost in a clean environment.

Running at higher \sqrt{s} can probe e.g. FCNC single top production or lepton flavor violating 4-fermion contact interactions

Can measure V_{cb} from W decays!

(Marzocca et al. 2405.08880, Liang et al. 2406.01675)

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

In addition one gets very large samples of all *b* hadrons, *c* hadrons, τ 's with large boost in a clean environment.

Running at higher \sqrt{s} can probe e.g. FCNC single top production or lepton flavor violating 4-fermion contact interactions

Can measure V_{cb} from W decays!

(Marzocca et al. 2405.08880, Liang et al. 2406.01675)

 \Rightarrow unique sensitivity to a large number of flavor processes that are not accessible at LHC(b) or Belle II

b Hadrons from 10^{13} *Z* bosons

FCC-ee Snowmass Whitepaper 2203.06520

Particle production (10^9)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+\tau^-$
Belle II	27.5	27.5	n/a	n/a	n/a	65	45
FCC-ee	620	620	150	4	130	600	170

► FCC-ee/CEPC vs. Belle II:

- order of magnitude more B⁺ and B⁰, unique opportunities for B_s, B_c, and Λ_b.
- *bb* from Z decays are highly boosted.
- ► FCC-ee/CEPC vs. LHCb:
 - lower yields at e^+e^- colliders, but cleaner environment.
 - much easier access to final states with neutrals (π^0 , γ , neutrinos).

$$B_s \to \tau \tau$$
, $B \to K^* \tau \tau$, $\Lambda_b \to \Lambda \nu \bar{\nu}$, $B_c \to \tau \nu$,...

$\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ with Polarized Λ_b 's

WA, Gadam, Toner 2412.????, in preparation

Λ_b baryons from Z decays are longitudinally polarized
 → polarization leaves an imprint on the angular distribution

$\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ with Polarized Λ_b 's

WA, Gadam, Toner 2412.????, in preparation

Λ_b baryons from Z decays are longitudinally polarized
 → polarization leaves an imprint on the angular distribution

$$\frac{d\mathsf{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{dE_{\Lambda} d\cos \theta_{\Lambda}} = \frac{d\mathsf{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{dE_{\Lambda}} \left(\frac{1}{2} + \mathcal{A}_{\mathsf{FB}}^{\uparrow} \cos \theta_{\Lambda}\right)$$

 angular distribution is characterized by a new observable:

the forward-backward asymmetry with respect to the angle between the Λ_b spin and the Λ momentum.

$\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ as Probe of New Physics

WA, Gadam, Toner 2412.????, in preparation

 Branching ratio and forward backward asymmetry are complementary in probing new physics

$$\mathcal{H}_{\mathsf{eff}} = -rac{4G_F}{\sqrt{2}}rac{lpha}{4\pi}V_{ts}^*V_{tb}\Big(C_LO_L + C_RO_R\Big) + \mathsf{h.c.}$$

Probing Lepton Flavor Violation at FCC-ee/CEPC

Characteristic Dependence on \sqrt{s}

WA, Munbodh, Oh 2305.03869 (in the plot $\Lambda_{NP} = 3$ TeV. $C_i = 1$)

- τµ production increases linearly with s for 4-fermion operators
- *τ* μ production is flat in
 s for dipole operators
- τμ production falls like 1/s for Higgs current operators
- resonance at $s = m_Z^2$ if *Z*-mediated

Sensitivity Projections for FCC-ee/CEPC

WA, Munbodh, Oh 2305.03869

• The *Z*-pole searches and the high- \sqrt{s} searches are complementary.

Sensitivity Projections for FCC-ee/CEPC

WA, Munbodh, Oh 2305.03869

- The *Z*-pole searches and the high- \sqrt{s} searches are complementary.
- ► Expected FCC-ee/CEPC sensitivity rivals the one from current and future searches for LFV *τ* decays.

▶ In the era of precision, flavor takes center stage.

- ► Anomalies need to be followed up in every way possible.
- Beyond anomalies, one can expect qualitatively new insights into flavored new physics from a number of processes in the near future.
- ► In the far future, circular e⁺e⁻ colliders could enable a very impactful flavor program.

Tight Lines!

Back Up

$b \rightarrow s \ell \ell$ Amplitudes

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^{\mathsf{T}}(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\} + \mathcal{O}(\alpha^2)$$

► Local (Form Factors): $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

► Non-Local : $\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T\{j^{\mu}_{em}(x), \mathcal{C}_i \mathcal{O}_i(0)\} | \bar{B}(q+k) \rangle$

(talk by Javier Virto at Flavour@TH workshop, CERN May 11, 2023)

Parameterization of the Local Form Factors

The form factors can be parameterized by a power series in z with bounded coefficients.

Boyd, Grinstein, Lebed hep-ph/9412324; Caprini, Lellouch, Neubert hep-ph/9712417; Bourrely, Caprini, Lellouch 0807.2722; ...

Flynn, Juttner, Tsang 2303.11285; Gubernari, Reboud, van Dyk, Virto 2305.06301

$$\mathcal{F}(q^2) = \frac{1}{\mathcal{B}_{\mathcal{F}}(z)\phi_{\mathcal{F}}(z)} \sum_{k} \alpha_k^{\mathcal{F}} p_k^{\mathcal{F}}(z) \quad , \quad \sum_{\mathcal{F},k} |\alpha_k^{\mathcal{F}}|^2 < 1$$

Parameterization of the Charm Loop

- Proposed parameterization analogous to the local form factors.
- Works for q^2 below the $D\overline{D}$ branch cut.

Bobeth, Chrzaszcz, van Dyk, Virto 1707.07305; Gubernari, van Dyk, Virto 2011.09813; Gubernari, Reboud, van Dyk, Virto 2206.03797

$$\mathcal{H}(q^2) = rac{1}{\mathcal{B}_{\mathcal{H}}(z)\phi_{\mathcal{H}}(z)}\sum_k eta_k^{\mathcal{H}} p_k^{\mathcal{H}}(z) \ , \quad \sum_{\mathcal{H},k} |eta_k^{\mathcal{H}}|^2 < 1$$

Additional Charm Loop Effects?

► The charm loop also gives "triangle diagrams" involving e.g. intermediate D_sD̄ states

Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli 2212.10516

▶ E.g. decay $B \rightarrow D_s D^*$ followed by rescattering $D_s D^* \rightarrow K^{(*)} \gamma^*$

► How disruptive are they to the proposed parameterization?

[Note: This is highly oversimplified]

Fit the charm loop parameterization to data and/or theory calculations

[Note: This is highly oversimplified]

Fit the charm loop parameterization to data and/or theory calculations

How reliable are the theory calculations?

[Note: This is highly oversimplified]

Fit the charm loop parameterization to data and/or theory calculations

How reliable are the theory calculations?

[Note: This is highly oversimplified]

Fit the charm loop parameterization to data and/or theory calculations

How reliable are the theory calculations?

Is the parameterization robust / sufficiently generic?