Axion-like Particle

At the LHC and HL-LHC

International Joint Workshop on the Standard Model and Beyond 2024 & 3rd Gordon Godfrey Workshop on Astroparticle Physics

Kingman Cheung, December 2024

Contents

- Motivations for axions
- Summary of current limits on axion or axion-like particle (ALP)
- Use of the ALP to explain excess in $H \rightarrow Z\gamma$
- Probing the ALP-gauge couplings

Axion is a strong case of Physics Beyond the SM

- Solve the strong QCD problem
- A potential dark matter candidate
- Unlike SUSY, it does not solve the hierarchy problem.

Strong QCD Problem: the θ term in QCD

- QCD Lagrangian: here $-\pi \leq \bar{\theta} \leq \pi$ $\mathscr{L} = \bar{q}(i\gamma_{\mu}D^{\mu} - M_{q})q - \frac{1}{4}G^{a}_{\mu\nu}G^{a,\mu\nu} - \frac{\alpha_{s}}{8\pi}\bar{\theta}G^{a}_{\mu\nu}\tilde{G}^{a,\mu\nu}$
- This θ term violates T and P, thus CP.
- Most sensitive probe of T and P violation in flavor-conserving process: EDM of neutron

$$d_n(\bar{\theta}) = 2.4 \times 10^{-16} \,\bar{\theta} \, e \mathrm{cm}$$

• Experiment: current best limit:

$$|d_n| = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{sys}})$$

• It implies

$|\bar{\theta}| < 10^{-10}$

Strong CP problem: why $\bar{\theta}$ is so small.

$\times 10^{-26} ecm$ [Abel etal 2020]

A Dynamical solution: axion field

in QCD has minimum at $\bar{\theta} = 0$

- If $\bar{\theta}$ is a dynamical field, $\bar{\theta}(x) \stackrel{/}{=} a(x)/f_a$. Its VEV would be zero (to solve the strong CP)
- The particle excitation is called the axion.

• The mass:
$$\begin{array}{c} m & \sqrt{\sum} \\ m_a \simeq \frac{\sqrt{\sum}}{f_a} \sqrt{\frac{m_u m_d}{m_u + m_d}} \simeq \frac{m_\pi f_\pi}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} \simeq 6 \, \mathrm{meV} \left(\frac{10^9 \, \mathrm{GeV}}{f_a} \right) . \text{ Note if it is not t} \end{array}$$

QCD axion, this mass relation does not hold.

• Dynamical solution of strong CP problem based on observation that the vacuum energy

$$\simeq \Sigma \left(m_u + m_d \right) \left(1 - \frac{\sqrt{m_u^2 + m_d^2 + 2m_u m_d \cos \overline{\theta}}}{m_u + m_d} \right)$$
$$\Sigma = -\langle \bar{u}u \rangle = -\langle dd \rangle \qquad \qquad \begin{bmatrix} \text{Di Vecchia, Veneziano `80;} \\ \text{Leutwyler, Smilga 92]} \end{bmatrix}$$

1.
$$\frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

2.
$$\frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

3.
$$\frac{a}{f_a} W^i_{\mu\nu} \tilde{W}^{i\mu\nu}$$

4.
$$\frac{\partial^{\mu}a}{f_a} \bar{f}\gamma_{\mu}\gamma_5 f = \frac{a}{f_a} m_a \bar{f}\gamma_5 f$$

• Lots of constraints on $g_{a\gamma\gamma}$ from astrophysical and cosmological processes.

• There are also constraints on other ALP-gauge, ALP-top couplings from colliders for Heavier ALP.

• Because of CP-odd nature of Axion-like Particle (ALP), it can couplings to gauge bosons:

Credit: by Ciaran O'hare :: <u>https://cajohare.github.io/AxionLimits/</u>

$\sqrt{s} = 250 \text{ GeV}$ with an integrated luminosity 2 ab⁻¹,

K.C., Ouseph, 2303.16514

References

- 1. Probing charged lepton flavor violation with axion-like particles at Belle II. JHEP 11 (2021) 218.
- 3. Axionlike particle search at Higgs factories, Phys.Rev.D 108 (2023) 3, 035003
- PRD in press (discussed today).
- JHEP 05 (2024) 324. (Discussed today)
- 6. Quark flavor violation and axion-like particles from top-quark decays at the LHC, e-Print: 2404.06126 [hep-ph]
- 7. Exploring interference effects between two ALP effective operators at the LHC,

e-Print: 2404.14833 [hep-ph]..

2. Atmospheric axionlike particles at Super-Kamiokande, Phys.Rev.D 106 (2022) 9, 095029

4. Interpretation of excess in $H \rightarrow Z\gamma$ using a light axion-like particle, e-Print: 2402.05678,

5. Probing the gauge-boson couplings of axion-like particle at the LHC and high-luminosity LHC,

Interpretation of excess in $H\to Z\gamma$ by a light ALP

K.C., Ouseph 2402.05678, PRD

- Higgs decay $H \rightarrow Z\gamma$ is one of the most anticipated modes in future measurements
- The current result from CMS and ATLAS: (showing an excess of 1.9 sigma)

$$B(H \rightarrow Z\gamma)_{\text{measured}} = (3)$$

- $B(H \to Z\gamma)_{sm} = (1.5 \pm 0.1) \times 10^{-3}$ (Phys. Rev. Lett. 132 (2024) 021803, [2309.03501]. BUT
- This can be explained by putting new particles in the triangular loop, but it needs some fine-tuning so as not to overproduce $H \rightarrow \gamma \gamma$.
- We attempt to use the a very light axion-like particle ($m_a < 0.1 \text{ GeV}$), such that when it decays into a collimated photon pair, which looks like a single photon.

 $3.4 \pm 1.1) \times 10^{-3}$

• The Higgs boson is mainly produced by gluon fusion, so that Higgs does not have a high p_T \bullet Taking into account the massive Z boson, the energy of the ALP is

$$p^{0}(a) \approx \frac{m_{H}}{2} \left(1 - \frac{m_{Z}^{2}}{m_{H}^{2}} \right) \approx$$

• The opening angle of the photon pair from the ALP decay is $\Delta R \sim \frac{2m_a}{m} \approx (3-7) \times 10^{-3}$ p_{T_a}

For $m_a = 0.05 - 0.1 \,\text{GeV}$

- photon.
- It is smaller than the $\Delta\eta \times \Delta\phi$ of each cell, e.g., ATLAS ECAL: 0.025 x 0.0245.

$$\frac{m_H}{4}$$

• It is below the angular resolution of the ECAL in CMS and ATLAS. So it appears as a single

very small.

FIG. 1. Distributions of $\Delta R_{\gamma\gamma}$ between the photon pair produced for $m_a = 0.05$ GeV and 0 GeV in the decay $H \to Za \to (l^+l^-)(\gamma\gamma)$. It is clear the opening angle between the photon pair

- The possible mass range of ALP mass: $0.05 \le m_a \le 0.1 \, \text{GeV}$
- The upper mass range is due to the angular resolution of ECAL.
- The lower mass limit comes from constraints on $C_{_{_{VV}}}^{\mathrm{eff}}/\Lambda$
- Finally, $H \to Za \to (\ell^+ \ell^-)(\gamma \gamma)_{\text{collimated}}$ appears like $Z\gamma \to (\ell^+ \ell^-)\gamma$
- The excess requires:

 $B(H \rightarrow Za) = B(H \rightarrow Z\gamma)_{\text{measured}} -$

• The effective coupling

 $C_{a7H}^{\text{eff}} \approx 4.4 \times 10^{-2} \,\text{TeV}^{-1}$ can explain the data.

$$B(H \to Z\gamma)_{\rm sm} = (1.9 \pm 1.1) \times 10^{-3}$$

$$\mathcal{L} = e^2 \frac{C_{\gamma\gamma}}{\Lambda} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} \frac{C_{\gamma Z}}{\Lambda} a F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^2}{s_w^2 c_w^2} \frac{C_{ZZ}}{\Lambda} a Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

•ALP-Higgs, ALP-Z-Higgs $\mathcal{L}^{D\geq 6} = \frac{C_{ah}}{\Lambda^2} (\partial_{\mu}a)(\partial^{\mu}a) \phi^{\dagger}\phi + \frac{C_{aZ}}{\Lambda^3} (\partial_{\mu}a)(\partial^{\mu}a)(\partial^{\mu}a) \phi^{\dagger}\phi + \frac{C_{aZ}}{\Lambda^3} (\partial_{\mu}a)(\partial^{\mu}a)(\partial$

$$D_{\mu} = \partial_{\mu} + i \frac{g}{\sqrt{2}} \left(W_{\mu}^{+} \tau^{+} + W_{\mu}^{-} \tau^{-} \right) + i e Q A_{\mu} + i \frac{g}{c_{w}} (T_{3} - s_{w}^{2} Q) Z_{\mu} ,$$

$$\frac{ZH}{3}(\partial^{\mu}a) \left(\phi^{\dagger}iD_{\mu}\phi + \text{h.c.}\right) \phi^{\dagger}\phi ,$$

• Why this obvious dim-5 term $\frac{C_5}{\Lambda}(\partial^{\mu}a)(\phi^{\dagger}D_{\mu}\phi + h.c.)$ does not appear? Consider:

$$\mathcal{L} = -\frac{c_{ff}}{\Lambda} m_f a \, \bar{f} i \gamma_5 f + \frac{C_5}{\Lambda} (\partial^{\mu} a) (\phi^{\dagger} i D_{\mu} \phi + h.c.)$$

using the equation of motion:

$$\frac{C_5}{\Lambda}\partial^{\mu}(\phi^{\dagger}iD_{\mu}\phi + h.c.) = -\frac{c_{ff}}{\Lambda}m_f\,\bar{f}i\gamma_5f$$

• Using integration by parts and equation of motion, this dim-5 term is reduced to $(\partial^{\mu}a)(\phi^{\dagger}D_{\mu}\phi + h.c.) \longrightarrow m_{f}a\bar{f}i\gamma_{5}f$

• This dim-5 operator does not appear. In another word, there exists an equivalent

basis such that this operator do not contribute to $H \rightarrow Za$

• So far, up to now $H \rightarrow Za$ is only given by the dim-7 operator:

$$\frac{C_{aZH}}{\Lambda^3} (\partial^{\mu} a) (\phi^{\dagger} D_{\mu} \phi + \text{h.c.}) (\phi^{\dagger} \phi)$$

- acquires mass via EWSB, the non-polynomial dim-5 operator can appear: $\frac{C_{aZH}^{(5)}}{\Lambda} (\partial^{\mu}a)(\phi^{\dagger}D_{\mu}\phi + \text{h.c.}) \ln(\phi^{\dagger}\phi/v^2) \quad \text{[Bauer, Heiles, Neubert, Thamm 1808.10323]}$
- This is a dim-5 operator contributing to tree-level ALP-Z-H coupling
- Write the effective ALP-Z-H coupling as

$$C_{aZH}^{\text{eff}} = C_{aZH}^{(5)} + \frac{C_{aZH}v^2}{2\Lambda^2}$$

• And the interaction can be written as, after the EWSB:

$$\mathscr{L}_{aZH} = \frac{C_{aZH}^{\text{eff}}}{\Lambda} \frac{gv}{c_w} (\partial^{\mu} a)$$

As familiar to the Higgs Low-Energy Theorem, in theories where a heavy new particles

•We calculate the partial widths of H -

$$\Gamma(H \to Za) = \frac{m_H^3}{16\pi} \left(\frac{C_{aZH}^{\text{eff}}}{\Lambda}\right)^2 \lambda^{3/2}(x_Z, x_a)$$

$$\Gamma(H \to aa) = \frac{m_H^3 v^2}{32\pi} \left(\frac{C_{aH}}{\Lambda^2}\right)^2 (1 - 2x_a)^2 \sqrt{1 - 4x_a}$$

• The branching ratio for $H \rightarrow Za$:

$$B(H \to Za) = \frac{\Gamma(H \to Za)}{\Gamma(H \to Za) + \Gamma_{\rm sm}(m_H = 125 \,\text{GeV})}$$

where $\Gamma_{\rm sm}(m_H = 125 \,{\rm GeV}) = 4.088 \times 10^{-3} \,{\rm GeV}$

- Requiring the branching ratio to be $(1.9 \pm 1.1) \times 10^{-3}$, we found $C_{aZH}^{\text{eff}} / \Lambda = (4.4^{+1.1}_{-1.6}) \times 10^{-2} \,\text{TeV}^{-1}$
- If the $C_{aZH}^{\rm eff} \sim O(1)$, then $\Lambda \approx 22.6 \,{\rm TeV}$

$$\rightarrow Z\gamma$$
 and $H \rightarrow aa$

•

corresponding to $B(H \to Z\gamma) = (1.9 \times 1.1) \times 10^{-3}$.

FIG. 3. The fitted values for $C_{aZH}^{\text{eff}}/\Lambda$ versus m_a for $m_a = 0.05 - 0.1$ GeV. The red line and the band show the central value and 1σ uncertainty in $C_{aZH}^{\text{eff}}/\Lambda = (4.4 \pm 1.1) \times 10^{-5} \text{ GeV}^{-1}$

- Decay length $\gamma c\tau$ is

$$\gamma = E_a/m_a, \ \tau = 1/\Gamma_a, \ \Gamma_a$$

• Taking $E_a \approx m_H/2$, the decay length requirement leads to $\frac{C_{\gamma\gamma}^{\text{eff}}}{\Lambda} \ge 0.35 \,\text{TeV}^{-1} \left(\frac{0.1 \,\text{GeV}}{m_a}\right)^2$

• We require the ALP's decay length < 1.5 m, making sure that it decays before leaving the ECAL.

$$=4\pi\alpha^2 m_a^3 \left(\frac{C_{\gamma\gamma}^{\rm eff}}{\Lambda}\right)^2$$

FIG. 4. Decay length $\gamma c\tau$ versus the mass m_a of the ALP. Values of $C_{\gamma\gamma}^{\text{eff}}/\Lambda = 0.35, 0.7, 1.4 \text{ TeV}^{-1}$ are used. A dashed horizontal line of 1.5 m is also shown.

FIG. 5. Parameter space (shaded in red) in $C_{\gamma\gamma}^{\text{eff}}/\Lambda$ versus m_a that can allow the ALP to decay before reaching the ECAL (i.e. $\gamma c\tau \leq 1.5$ m) and consistent with all existing constraints in the mass range of $10^{-3} - 5$ GeV, including beam dump [40–44], OPAL [45], LEP [46], Belle II [47], BES III [48], and PrimEx [49] (data extracted from the GitHub page [50]). Note that the mass range of the fitted parameter space is $0.05 \,\text{GeV} \le m_a \le 0.1 \,\text{GeV}$.

For $m_a < 0.05 \text{ GeV}, C_{\gamma\gamma}^{\text{eff}}/\Lambda$ is restricted by current constraints.

For $m_a > 0.1 \text{ GeV}$, the ECAL may be able to resolve the photon pair.

may give a few events at Tera-Z.

- 1. $Z \rightarrow aH^* \rightarrow a(b\bar{b})$ via off-shell Higgs. The final state will be a collimated photon pair and a b quark pair. But the branching ratio is only 10^{-12} , which
- 2. $pp \rightarrow Z^* \rightarrow aH$ via the same C_{aZH}^{eff}/Λ coupling, but the cross section is 10^{-6} fb, which corresponds to far less than 1 event for entire HL run.

• $H \rightarrow Za$, $a \rightarrow \gamma\gamma$, where the ALP is very light 50 – 100 MeV, is a viable solution to the excess, without increasing $H \rightarrow \gamma \gamma$. • It required a dim-5 vertex:

$$\frac{C_{aZH}^{(5)}}{\Lambda} (\partial^{\mu} a) (\phi^{\dagger} D_{\mu} \phi + \text{h.c.}) \ln(\theta^{\dagger} D_{\mu} \phi + \text{h.c.}) \ln(\theta^{\dagger} D_{\mu} \phi + \text{h.c.}) \ln(\theta^{\dagger} D_{\mu} \phi + \text{h.c.})$$

which can arise in theories where a heavy new particles acquires mass via EWSB. • It also requires the ALP to decay within the ECAL:

$$\frac{C_{\gamma\gamma}^{\text{eff}}}{\Lambda} \ge 0.35 \,\text{TeV}^{-1} \left(\frac{0.1 \,\text{G}}{m_a}\right)$$

Summary

 $(\phi^{\dagger}\phi/v^2)$

Thank you (if time is limited)

Probing the ALP-gauge couplings at the LHC

K.C, Hsiao, Ouseph, Wang 2402.10550, JHEP 05 (2024) 324

ALP-Gauge Interactions

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_g + \mathcal{L}_{BB} + \mathcal{L}_{WW}$$

$$\mathcal{L}_{f} = -\frac{ia}{f_{a}} \sum_{f} g_{af} \ m_{f}^{\text{diag}} \bar{f} \gamma_{5} f$$
$$\mathcal{L}_{g} = -C_{g} \frac{a}{f_{a}} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A}$$
$$\mathcal{L}_{BB} = -C_{BB} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu}$$
$$\mathcal{L}_{WW} = -C_{WW} \frac{a}{f_{a}} W_{\mu\nu}^{i} \tilde{W}^{\mu\nu,i},$$

$$\mathcal{L} = -\frac{ia}{f_a} \sum_{f} g_{af} m_f^{\text{diag}} \bar{f} \gamma_5 f - C_g \frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{\mu\nu A} - \frac{a}{f_a} \left[(C_{BB} c_w^2 + C_{WW} s_w^2) F_{\mu\nu} \tilde{F}_{\mu\nu} + (C_{BB} s_w^2 + C_{WW} c_w^2) Z_{\mu\nu} \tilde{Z}_{\mu\nu} + 2(C_{WW} - C_{BB}) c_w s_w F_{\mu\nu} \tilde{Z}_{\mu\nu} + C_{WW} W^+_{\mu\nu} \tilde{W}^{-\mu\nu} \right].$$

 $g_{a\gamma\gamma} =$

 $g_{aWW} =$

 $g_{aZZ} =$

 $g_{aZ\gamma} =$

$$\begin{pmatrix} W^3_{\mu} \\ B_{\mu} \end{pmatrix} = \begin{pmatrix} c_w & s_w \\ -s_w & c_w \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix},$$

$$\frac{4}{f_a} (C_{BB} c_w^2 + C_{WW} s_w^2),
\frac{4}{f_a} C_{WW},
\frac{4}{f_a} (C_{BB} s_w^2 + C_{WW} c_w^2),
\frac{8}{f_a} s_w c_w (C_{WW} - C_{BB}).$$

- Associated production of the ALP with a Z / W boson: $pp \to \gamma^*, Z^* \to Za \to (\ell^+ \ell^-)(\gamma \gamma)$ $pp \to W^* \to Wa \to (\ell \nu)(\gamma \gamma)$
- The first process can probe $g_{a\gamma\gamma}$, $g_{aZ\gamma}$.
- The second process probes g_{aWW} .
- In this work, we probe $m_a = 1 100 \,\text{GeV}$, divided into two regions:
 - $m_a \leq 25 \,\text{GeV}$ and $25 < m_a \leq 100 \,\text{GeV}$
- Below 25 GeV the photon pair is close to each other. It appears as photon-jet.

 $m_a \le 25 \,\text{GeV}$ and $25 < m_a \le 100 \,\text{GeV}$

• The backgrounds processes are also different for these 2 regions:

Figure 2. Production cross section for $pp \to Za \ (Z \to l^+ l^-)(a \to \gamma\gamma)$ with $l = e, \mu$ versus M_a , including the branching ratios at $\sqrt{s} = 14$ TeV. Here we also show the backgrounds $ll\gamma\gamma$ BG and *llj*BG.

Figure 3. Cross sections for $pp \to Za \ (Z \to l^+ l^-)(a \to \gamma\gamma)$ by varying the parameters C_{WW} and C_{BB} with $\sqrt{s} = 14$ TeV, $f_a = 1$ TeV and $M_a = 10$ or 100 GeV. The cross point of the two red lines represents the benchmark in our study, $C_{WW} = 2$ and $C_{BB} = 1$.

• $m_a > 25 \, \text{GeV}$ 1. $pp \rightarrow \ell^+ \ell^- \gamma \gamma (ll \gamma \gamma BG)$ 2. $pp \to \ell^+ \ell^- \gamma j$, with $f_{j\to\gamma} \simeq 5 \times 10^{-4} (ll\gamma jBG)$

Signal-Background Analysis

- two photon selection
- two lepton selection
- 80 GeV $< M_{ll} < 100$ GeV
- $p_{T_{\gamma\gamma}} > 80 \text{ GeV}$
- $0.9M_a < M_{\gamma\gamma} < 1.1M_a$

Selection	Signal	$ll\gamma\gamma {f BG}$	$ll\gamma j{f BG}$
Before cuts	151948	29728	1048
$N(\gamma) = 2$	69243	12387	61.30
N(l) = 2	32152	5488	2.83
$80~\mathrm{GeV} < M_{ll} < 100~\mathrm{GeV}$	29584	739	0.60
$pT_{\gamma\gamma} > \text{GeV}$	24965	90	0.05
$90 \text{ GeV} < M_{\gamma\gamma} < 110 \text{ GeV}$	24707	13	0.02

 $m_a = 100 {
m GeV}$

Table 1. Cut flow for the signal $(pp \to Za)$ with $Z \to l^+l^-$ and $a \to \gamma\gamma$ and the background process $(pp \to l^+l^-\gamma \gamma)$ and $(pp \to l^+l^-\gamma j)$ with $M_a = 100$ GeV, with $f_a = 1$ TeV, $C_{WW} = 2$, $C_{BB} = 1$, and $C_g = g_{af} = 0$. "Before cuts" in the first row denotes the total number of events with only the parton-level cuts with the integrated luminosity of 300 fb^{-1} calculated by eq. (4.1). In $ll\gamma jBG$, we have applied the jet-fake rate $f_{j\to\gamma} = 5 \times 10^{-4}$.

• At least one jet • $m_a \leq 25 \,\mathrm{GeV}$ • $min(\frac{E_{had}}{E_{EM}}) <$ 1. $pp \rightarrow \ell^+ \ell^- \gamma \gamma (ll \gamma \gamma BG)$ • two lepton s 2. $pp \rightarrow \ell^+ \ell^- j$, (lljBG)

- 80 GeV < M
- $\frac{\tau_2}{\tau_1} < 0.05$
- M_{jet} mass window
- ECAL.
- $\min(E_{\rm had}/E_{\rm em}) < 0.02$
- Nsubjettiness au_N defined by

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k} \right\}, \quad \Delta R_{j,k} = \sqrt{(\Delta \eta)^{2} + (\Delta \phi)^{2}}, \quad d_{0} = \sum_{k} p_{T,k} R_{0}$$

 $\cdot \frac{\tau_N}{\tau}$ is a useful parameter to determine if a jet consists of N substructure. τ_{N-1}

< 0.02	$M_a \; (\text{GeV})$	M_{jet} selection
	$\overline{25}$	$22.5 < M_{\rm jet} < 30$
selection	20	$18 < M_{\rm jet} < 24$
	10	$9 < M_{\rm jet} < 12$
$I_{ll} < 100 \mathrm{GeV}$	5	$4.5 < M_{\rm jet} < 6$
	1	$0.5 < M_{ m jet} < 2$

Table 2. M_{jet} mass window for the low ALP mass region.

• The photon pair from ALP decay forms a photon-jet, the majority of energy is deposited in

• There are multi-jet background. A quantity $E_{\rm had}/E_{\rm em}$ is defined for each jet. We require

- The ideal ALP jet consists of 2 photons w/o any initial radiation, which gives $\tau_2 = 0, \ \tau_1 \neq 0$. So we require $\tau_2 / \tau_1 < 0.05$.
- The asymmetric jet-mass window is motivated by the acceptance of initial radiation.

 $m_a = 10 \text{ GeV}$

Selection	Signal	$ll\gamma\gamma~{f BG}$	llj BG
Before cuts	426413	29728	164921970
$N(jet) \ge 1$	356610	17327	139649327
$min(\frac{E_{had}}{E_{\rm EM}}) < 0.02$	267532	8150	26141121
N(l) = 2	88523	1169	649627
$80~{\rm GeV} < M_{ll} < 100~{\rm GeV}$	81957	181	460297
$\frac{\tau_2}{\tau_1} < 0.05$	62811	46	36613
$9 \text{ GeV} < M_{jet} < 12 \text{ GeV}$	48995	0	0

Explanation of N-subjettiness

Boosted W Jet, R = 0.6

(c)

(d)

Jets with $\tau_N \approx 0$ have all their radiation aligned with the candidate subjet directions and therefore have N (or fewer) subjets. Jets with $\tau_N \gg 0$ have a large fraction of their energy distributed away from the candidate subjet directions and therefore have at least N + 1 subjets.

 $\tau_2/\tau_1 \ll 1$ is a measure of 2-jet substructure.

Figure 5. Production cross sections for $pp \to W^{\pm}a (W^{\pm} \to l^{\pm}\nu_l), (a \to \gamma\gamma)$ with $l = e, \mu$ versus M_a at $\sqrt{s} = 14$ TeV, including branching ratios. Here we also show $l\nu_l\gamma\gamma$ BG and $l\nu_lj$ BG.

Signal-Background Analysis

• $m_a > 25 \, \text{GeV}$ 1. $pp \rightarrow \ell \nu \gamma \gamma (l \nu \gamma \gamma BG)$ **2**. $pp \rightarrow \ell \nu \gamma j$, with $f_{j \rightarrow \gamma} \simeq 5 \times 10^{-4} (l \nu \gamma j BG)$

- two photon selection
- one lepton selection
- $p_{T_{\gamma\gamma}} > 50 \text{ GeV}$
- $M_T > 58 \,\,{\rm GeV}$
- $0.9M_a < M_{\gamma\gamma} < 1.1M_a$

m_a	=	1	00	GeV
\mathcal{A}				

Selection	Signal	$l u_l\gamma\gamma ~{f BG}$	$l u_l\gamma j {f BG}$
Before cuts	1375200	28311	5268
$N(\gamma) = 2$	617190	11435	152.2
N(l) = 1	402521	6954	12.3
$pT_{\gamma\gamma} > 50 \text{ GeV}$	372542	906	3.5
$M_T > 58 \text{ GeV}$	232821	441	1.8
$90 < M_{\gamma\gamma} < 110$	230208	48	0.16

Table 4. Cut flow for the signal $pp \to W^{\pm}a$ and the background $(pp \to l\nu_l\gamma\gamma)$ and $(pp \to l\nu_l\gamma j)$ with $M_a = 100$ GeV, with couplings $f_a = 1$ TeV, $C_{WW} = 2$, $C_{BB} = 1$, and $C_g = g_{af} = 0$. "Before cuts" in the first row denotes the total number of events with only the parton-level cuts computed using eq. (4.1), with the signal and background cross sections given in figure 5 and the luminosity set at $\mathcal{L} = 300$ fb⁻¹. In $l\nu_l\gamma j$ BG, we have applied the jet-fake rate $f_{j\to\gamma} = 5 \times 10^{-4}$.

• $m_a \leq 25 \text{ GeV}$ 1. $pp \rightarrow \ell \nu \gamma \gamma (l \nu \gamma \gamma BG)$ 2. $pp \rightarrow \ell \nu j \ (l \nu j BG)$ • At least one jet

•
$$min(\frac{E_{had}}{E_{\rm EM}}) < 0.02$$

- one lepton selection
- $M_T > 58 \text{ GeV}$

•
$$\frac{\tau_2}{\tau_1} < 0.05$$

• $M_{\rm jet}$ mass window

Selection	Signal	$l u_l\gamma\gamma ~{f BG}$	$l\nu_l j \mathbf{BG}$
Before cuts	4218000	28311	1766100000
$N(jet) \ge 1$	3289618	13415	1468625180
$min(\frac{E_{had}}{E_{\rm EM}}) < 0.02$	2782193	6824	250477133
N(l) = 1	1412608	2235	26117087
$M_T > 58 \text{ GeV}$	888733	765	16493608
$\frac{\tau_2}{\tau_1} < 0.05$	595160	200	665820
$9 \text{ GeV} < M_{\text{jet}} < 12 \text{ GeV}$	461449	2	1766

Table 5. Cut flow for the signal $pp \to W^{\pm} a$ and backgrounds $pp \to l\nu_l\gamma\gamma$ and $pp \to l\nu_lj$ with $M_a = 10$ GeV, featuring couplings $f_a = 1$ TeV, $C_{WW} = 2$, $C_{BB} = 1$, and $C_g = g_{af} = 0$. "Before cuts" in the first row denotes the total number of events with only the parton-level cuts computed using eq. (4.1), with the signal and background cross sections given in figure 5 and the luminosity set at $\mathcal{L} = 300$ fb⁻¹.

Signal and Background events of $pp \rightarrow Za$ for $m_a = 1 - 100 \text{ GeV}$

$M_a (\text{GeV})$	Signal		$I_a (\text{GeV})$ Signal $ll\gamma\gamma\mathbf{BG}+ll$		$-ll\gamma j\mathbf{BG}$	llj B C	r T
	before	after	before	after	before	after	
100	151947	24707		12.80			
80	184160	25211		12.78			
65	214813	23522		7.13			
50	253073	23207	30775	4.16	_		
40	284456	19286		3.87			
30	321176	12205		2.97			
25	342005	25206		0		0	
20	366568	34311		0		0	
10	426413	48995	29728	0	164950770	0	
5	457138	48914		0.59		165	
1	472141	46175		29.43		18474	

the integrated luminosity is set at $\mathcal{L} = 300 \text{ fb}^{-1}$.

•the signal events wit

Table 6. Total number of signal events for $pp \to Za$, followed by $Z \to l^+l^-$, $a \to \gamma\gamma$ and background events of $ll\gamma\gamma BG$ and lljBG for the mass range $M_a = 1 - 100$ GeV. The number of events are calculated by eq. (4.1), where the cross sections of signal and backgrounds are shown in figure 2 and

th
$$f_a = 1$$
 TeV, $C_{WW} = 2$, $C_{BB} = 1$

Signal and Background events of $pp \rightarrow W^{\pm}a$ for $m_a = 1 - 100 \text{ GeV}$

$M_a \; (\text{GeV})$	Signal		$l\nu_l\gamma\gamma\mathbf{BG} + l\nu_l\gamma j\mathbf{BG}$		$l\nu_l j \mathbf{BG}$	
	before	after	before	after	before	after
100	1375200	230208		48.01		
80	1674900	244870		52.87		
65	1992000	261151		57.09		
50	2357400	245170	33579	36.57		
40	2690700	220906		26.43		
30	3066000	193771		21.05		
25	3267000	224443		0		0
20	3555000	290799		0.57		0
10	4218000	461449	28311	1.98	1766100000	1766
5	4575000	522007		6.79		17661
1	4797000	469147		110		326729

figure 5 and the integrated luminosity is set at $\mathcal{L} = 300 \text{ fb}^{-1}$.

Table 7. Total number of signal events for $pp \to W^{\pm}a$, followed by $W^{\pm} \to l^{\pm}\nu_l, a \to \gamma\gamma$ and background events of $l\nu_l\gamma\gamma BG$ and $l\nu_l jBG$ for the mass range $M_a = 1 - 100$ GeV. The number of events are calculated by eq. (4.1), where the cross sections of signal and backgrounds are shown in

• the signal events with $f_a = 1 \text{ TeV}, C_{WW} = 2, C_{BB} = 1$

- So far we illustrated the signal event
- We use simple scaling: $s \propto 1/f_a^2 \propto g_{aZZ}^2, g_{aZ\gamma}^2, g_{aWW}^2$
- The significance of the signal is

$$Z = \sqrt{2\left[(s+b)\ln\left(\frac{(s+b)(b+\sigma_{b}^{2})}{b^{2}+(s+b)\sigma_{b}^{2}}\right) - \frac{b^{2}}{\sigma_{b}^{2}}\ln\left(1 + \frac{\sigma_{b}^{2}s}{b(b+\sigma_{b}^{2})}\right)\right]}$$

ts with
$$f_a = 1$$
 TeV, $C_{WW} = 2$, $C_{BB} = 1$.

where s, b are signal and background events, $\sigma_b = 0\%$ and 10% of b

$$s, b = \sigma_{s,b}$$

Z > 2. Note that the signal cross section scales as $1/f_a^2$.

Figure 8. Sensitivity plot in the plane of (C_{WW}, C_{BB}) for $M_a = 10 \,\text{GeV}$ (left panel) and for $M_a = 100 \,\text{GeV}$ (right panel). We fix $f_a = 1 \,\text{TeV}$. The bright region on the left panel is for the number of signal events > 3 in case with zero background, while that on the right panel is for significance

Explanations for Existing Constraints

- Various collider constraints on ALP-photon coupling $g_{a\gamma\gamma}$ can be converted into g_{aZZ} , $g_{aZ\gamma}$, g_{aWW} using the SU(2) relations. They are labeled as "photon (various)".
- FCNC interactions of the ALP are constrained by invisible and visible decay of Kaon and B mesons. Invisible ALP contributes to $K \to \pi \nu \bar{\nu}$, visible ALP contributes to DV in $B \to K^* \mu^+ \mu^-$.
- "Triboson (LHC)" :: cross sections of $pp \rightarrow WZ\gamma, Z\gamma\gamma, WZZ, Z\gamma\gamma, ZZZ, \dots$ It constrains all g's.
- Constraints on $g_{aZ\gamma}$ by non-SM Z decay $\Gamma(Z \to BSM) \leq 2 \text{ MeV}$, by $Z \to \gamma + \text{hadron}$, by $Z \to \gamma \gamma$.
- Non-resonant ggF production of ALP via $gg \rightarrow a^* \rightarrow ZZ, Z\gamma, W^+W^-$

- Substantial improvements in sensitivity reach of g_{aZZ} , $g_{aZ\gamma}$, g_{aWW} .
- We divide the mass range into 2 parts, less or more than 25 GeV up to 100 GeV. • For less than 25 GeV, we treat the collimated photons as a photon-jet.

Backup slides

Interference effects between ALP-gauge, ALP-top couplings

K.C., Chih-Ting, Priyanka, Ouseph 2404.14833

$$\mathcal{L}_{\rm EW} \supset -\frac{a}{f_a} \left(C_{WW} W^i_{\mu\nu} \tilde{W}^{i\mu\nu} + C_{BB} B_{\mu\nu} \tilde{B}^{\mu\nu} \right), \qquad \qquad \mathcal{L}_{at\bar{t}} = -i C_{a\phi} \frac{m_t a}{f_a} (\bar{t}\gamma^5 t).$$

 $\mathcal{L}_{\rm EW} \supset -\frac{1}{4} a \left(g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} + g_{a\gamma Z} F_{\mu\nu} \right)$

Interaction Lagrangian

$$G_{\mu\nu}\tilde{Z}^{\mu\nu} + g_{aZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu} + g_{aWW}W_{\mu\nu}\tilde{W}^{\mu\nu}\right) ,$$

• Consider:
$$pp \rightarrow qb \rightarrow tja$$

•
$$pp \rightarrow gq \rightarrow t\bar{b}ja$$

•
$$pp \rightarrow gb \rightarrow tWa$$

•
$$pp \rightarrow q\bar{q}' \rightarrow t\bar{b}a$$

W

FIG. 2: Production cross sections for the signal process $pp \to j t a$ with $a \to \gamma \gamma$ and $t \to bW, W \to l\nu_l$ at the LHC ($\sqrt{s} = 14$ TeV) for $M_a = 25, 50, 100$ GeV. We fix the aW^+W^- coupling by setting $C_{WW} = C_{BB} = 1$ and $f_a = 10$ TeV. The $at\bar{t}$ coupling $C_{a\phi}$ varies from -10 to +10.

FIG. 6: Production cross sections for the signal processes $pp \rightarrow t \ j \ a, \ pp \rightarrow t \ j \ b \ a$, $pp \to t W a$, and $pp \to t b a$ at the LHC ($\sqrt{s} = 14 \text{ TeV}$) for $M_a = 50 \text{ GeV}$. We fix the ALP-gauge boson pair coupling by setting $C_{WW} = C_{BB} = 1$ and $f_a = 10$ TeV. The $at\bar{t}$ coupling $C_{a\phi}$ varies from -10 to +10.

• Final state consists of $q'ta \rightarrow j(b\ell\nu)(\gamma\gamma)$. Benchmark: $f_a = 10 \text{ TeV}$, $C_{WW} = C_{BB} = 1$, $C_{a\phi} = -10 \text{ to } 10$ •Backgrounds: (i) $pp \rightarrow tj\gamma\gamma$ (BG1), (ii) $pp \rightarrow Wjj\gamma\gamma$ (BG2) • Signal and background event rates:

$$N_{s}, N_{b} = \sigma_{s,b} \times \frac{N_{\text{selected}}}{N_{\text{sim}}} \times \mathscr{L} \times (\eta)$$

• B-tagging efficiency: $\eta_{b-tag} = 0.75$, mis-tag efficiency: $\eta_{i \rightarrow b} = 0.01$

Signal-Background analysis for $qb \rightarrow q'ta$

 η_{b-tag} or $\eta_{j\to b}$)

$$p_{T_{\gamma}}^{\text{leading}} > 60 \text{ GeV}, |\eta_{\gamma}^{\text{leading}}|$$

 $M_{bl} < 200 \text{ GeV}, |\eta_b| < 1.5, |M_{\gamma\gamma} - M_a| < 5 \text{ GeV}$

Cut	BG1	$\mathbf{BG2}$	Signal				
			$C_{a\phi} = -10$	$C_{a\phi} = -5$	$C_{a\phi} = 0$	$C_{a\phi} = 5$	$C_{a\phi} = 10$
\mathbf{NT}	2318.39	307.86	120.56	43.26	15.73	49.69	131.68
$P_{T_{\gamma}}^{\text{leading}} > 60 \text{ GeV}$	1181.01	170.03	99.22	36.80	14.83	42.53	109.11
$ \eta_{\gamma}^{\text{leading}} < 1.5$	853.03	124.99	81.24	29.35	10.90	33.61	88.86
$2.5 < \eta_j < 4.7$	384.44	8.92	47.97	15.80	3.45	17.05	51.62
$M_{bl} < 200 { m ~GeV}$	384.44	7.03	47.97	15.80	3.45	17.05	51.62
$ \eta_b < 1.5$	266.20	4.68	37.94	12.38	2.56	13.47	40.46
$45 \text{ GeV} < M_{\gamma\gamma} < 55 \text{ GeV}$	8.95	0.15	37.94	12.38	2.56	13.47	40.46

TABLE II: Cutflow table for the SM backgrounds (BG1: $p \ p \to t \ j \ \gamma \ \gamma$ and BG2: $p \ p \to W \ j \ j \ \gamma \ \gamma$) and the signal: $p \ p \to j \ t \ a$ with different $C_{a\phi}$ couplings. Here $M_a = 50$ GeV, $f_a = 10$ TeV, $C_{WW} = C_{BB} = 1$. The number of events are calculated by Eq. (10) and luminosity is set to $\mathcal{L} = 3000$ fb⁻¹.

$$Z = \sqrt{2} \left[(N_s + N_b) \ln \left(\frac{(N_s + N_b)(N_b + \sigma_B^2)}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_s + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2}{\sigma_B^2} \ln \left(\frac{N_b^2 + N_b^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right) - \frac{N_b^2 + (N_b + N_b)\sigma_B^2}{N_b^2 + (N_b + N_b)\sigma_B^2} \right)$$

Summary

- Interference effects between ALP-gauge ALP-top are present but mild.
- The channel can probe down to $1/f_a \sim 5 \times 10^{-2} \,\mathrm{TeV^{-1}}$ for $m_a = 25 - 100 \text{ GeV}$

Cut	BG1	BG2	Signal				
			$C_{a\phi} = -10$	$C_{a\phi} = -5$	$C_{a\phi} = 0$	$C_{a\phi} = 5$	$C_{a\phi} = 10$
\mathbf{NT}	2318.39	307.86	59.17	24.68	7.12	27.53	63.69
$P_{T_{\gamma}}^{\text{leading}} > 60 \text{ GeV}$	1181.01	170.03	41.28	17.96	6.04	20.45	45.44
$ \eta_{\gamma}^{\text{leading}} < 1.5$	853.03	124.99	32.76	13.97	4.15	15.66	35.88
$2.5 < \eta_j < 4.7$	384.44	8.92	19.38	7.78	1.39	8.26	20.54
$M_{bl} < 200 { m ~GeV}$	384.44	7.03	19.38	7.78	1.39	8.26	20.54
$ \eta_b < 1.5$	266.20	4.68	14.85	5.93	1.00	6.28	15.69
$20 \mathrm{GeV} < \mathrm{M}_{\gamma\gamma} < 30 \mathrm{GeV}$	4.08	0.06	14.85	5.93	1.00	6.28	15.69

TABLE I: Cutflow table for the SM backgrounds (BG1: $p \ p \to t \ j \ \gamma \ \gamma$ and BG2: $p \ p \to W \ j \ j \ \gamma \ \gamma$), and the signal: $p \ p \to j \ t \ a$ with various $C_{a\phi}$ couplings. Here we set $M_a = 25 \text{ GeV}, \ f_a = 10 \text{ TeV}, \ C_{WW} = C_{BB} = 1$, and $C_{a\phi} = -10, -5, 0, 5, 10 \text{ GeV}$. **NT** in the first row denotes the total number of events with basic cuts shown in Appendix A before further event selections. The number of events are calculated by Eq. (10) and integrated luminosity is set to $\mathcal{L} = 3000 \text{ fb}^{-1}$. It is noteworthy that the number of events

Axion Dark Matter

Experimental hunt

 \bullet

Cut	BG1	BG2	Signal				
			$C_{a\phi} = -10$	$C_{a\phi} = -5$	$C_{a\phi} = 0$	$C_{a\phi} = 5$	$C_{a\phi} = 10$
\mathbf{NT}	2318.39	307.86	124.01	44.55	18.81	50.40	136.64
$P_{T_{\gamma}}^{\text{leading}} > 60 \text{ GeV}$	1181.01	170.03	115.96	42.07	18.39	47.90	128.89
$ \eta_{\gamma}^{\text{leading}} < 1.5$	853.03	124.99	97.00	34.28	14.13	38.80	106.93
$2.5 < \eta_j < 4.7$	384.44	8.92	58.41	17.88	4.16	19.29	62.29
$M_{bl} < 200 \mathrm{GeV}$	384.44	7.03	58.41	17.88	4.16	19.29	62.29
$ \eta_b < 1.5$	266.20	4.68	46.02	14.12	3.19	15.37	49.38
$95 \text{ GeV} < M_{\gamma\gamma} < 105 \text{ GeV}$	19.40	0.31	45.76	14.07	3.18	15.28	49.23

TABLE III: Cutflow table for the SM background (BG1: $p \ p \to t \ j \ \gamma \ \gamma$ and BG2: $p \ p \to W \ j \ j \ \gamma \ \gamma$) and the signal: $p \ p \to j \ t \ a$ with different $C_{a\phi}$ couplings. Here $M_a = 100$ GeV, $f_a = 10$ TeV, $C_{WW} = C_{BB} = 1$. The number of events are calculated by Eq. (10) and luminosity is set to $\mathcal{L} = 3000$ fb⁻¹.

• DM prediction: $\Omega_a h^2 \simeq \left(\frac{f_a}{9 \times 10^{11} \text{ Ge}}\right)$

• For $f_a > 10^9$ GeV, axion DM can be substantial and even 100%. • A lot of experiments searching for axion DM:

Axion Dark Matter

$$\frac{1.165}{\text{eV}}\right)^{1.165} \theta_i^2 \simeq 0.12 \left(\frac{6\mu\text{eV}}{m_a}\right)^{1.165} \theta_i^2$$