First measurement of weak mixing angle in direct detection

Tarak Nath Maity University of Sydney

Based on: TNM, C Boehm; 2409.04385

Have we ever tested the weak sector of the Standard Model in sub-MeV energy regime before? Perhaps not!

Have we ever tested the weak sector of the Standard Model in sub-MeV energy regime before?

Perhaps not!

Weak mixing angle

 $A^{\mu} = B_0^{\mu} \cos \theta_W + W_0^{\mu} \cos \theta_W$ $Z^{\mu} = W_0^{\mu} \cos \theta_W - B_0^{\mu} \sin \theta_W$

$$\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2}$$

 $g : SU(2)_L$ gauge coupling $g' : U(1)_Y$ gauge coupling

Perhaps not!

Weak mixing angle

$$A^{\mu} = B_0^{\mu} \cos \theta_W + W_0^{\mu} \cos \theta_W$$
$$Z^{\mu} = W_0^{\mu} \cos \theta_W - B_0^{\mu} \sin \theta_W$$

$$\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2}$$

 $g: SU(2)_L$ gauge coupling g': U(1)_Y gauge coupling

Have we ever tested the weak sector of the Standard Model in sub-MeV energy regime before?

Perhaps not!

Weak mixing angle $A^{\mu} = B_0^{\mu} \cos \theta_W + W_0^{\mu} \cos \theta_W$ $Z^{\mu} = W^{\mu}_{0} \cos \theta_{W} - B^{\mu}_{0} \sin \theta_{W}$ $\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2}$ $g: SU(2)_L$ gauge coupling g': U(1)_Y gauge coupling Quantum correction

Running of weak mixing angle

Have we ever tested the weak sector of the Standard Model in sub-MeV energy regime before?

Perhaps not!

Weak mixing angle $A^{\mu} = B_0^{\mu} \cos \theta_W + W_0^{\mu} \cos \theta_W$ $Z^{\mu} = W^{\mu}_{0} \cos \theta_{W} - B^{\mu}_{0} \sin \theta_{W}$ $\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2}$ $g: SU(2)_L$ gauge coupling g': U(1)_Y gauge coupling Quantum correction

Running of weak mixing angle

Have we ever tested the weak sector of the Standard Model in sub-MeV energy regime before?

How are we doing? **By observing Solar neutrinos**

How are we doing? **By observing Solar neutrinos**

Borexino Nature (2018)

Coherent elastic neutrino -nucleus scattering ($CE\nu NS$)

Neutrino-electron scattering

S1-S2 analysis

Tarak Nath Maity

No S2/S1 ratio - can't distinguish - nuclear and electron recoil

Tarak Nath Maity

No S2/S1 ratio - can't distinguish - nuclear and electron recoil

Tarak Nath Maity

No S2/S1 ratio - can't distinguish - nuclear and electron recoil

 $E_{\rm recoil} \lesssim 1 \, {\rm keV}$

electron recoil excitation + ionization nuclear recoil escaping electrons S₂ ionization Xe⁺ atomic motion electrons +Xe Xe₂⁺ + e⁻ recombination 2Xe + h∨ Xe**+Xe scintillation light (175 nm) SI **S2** $\nu_{e,\mu,\tau}$ S1-S2 analysis (E_{\cdot}) $u_{e,\mu,\tau}$ Electron recoil Nuclear recoil **S2 S2 S1 S1** Time Time **S2/S1** S2/S1 << S2/S1 ratio - can distinguish - nuclear and electron recoil $E_{\rm recoil} \gtrsim 1 \,\rm keV$

Tarak Nath Maity

XENONnT

ar iV > nucl-ex > arXiv:2408.02877

Nuclear Experiment

[Submitted on 6 Aug 2024]

First Measurement of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

Observed events: $10.7^{+3.7}_{-4.2}$ (S1-S2 analysis)

Statistical significance: 2.73 σ

Neutrino events at DD? nuclear recoil

PandaX-4T

$ar \times iv > hep-ex > arXiv:2407.10892$	Search
	Help
High Energy Physics – Experiment	

[Submitted on 15 Jul 2024 (v1), last revised 13 Sep 2024 (this version, v3)]

First Indication of Solar ⁸B Neutrino Flux through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T

Observed events: 3.5 ± 1.3 (S1-S2 analysis) **Observed events:** 78 ± 28 (**S2-only analysis**)

Statistical significance: 2.64 σ

 $u_{e,\mu, au}$

XENONnT

ar (iv > nucl-ex > arXiv:2408.02877

Nuclear Experiment

[Submitted on 6 Aug 2024]

First Measurement of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

Observed events: $10.7^{+3.7}_{-4.2}$ (S1-S2 analysis)

Statistical significance: 2.73 σ

Observing essentially the Standard Model process, can we say something new?

Neutrino events at DD? nuclear recoil

PandaX-4T

$ar \times iv > hep-ex > arXiv:2407.10892$	Search
	Help
High Energy Physics – Experiment	

[Submitted on 15 Jul 2024 (v1), last revised 13 Sep 2024 (this version, v3)]

First Indication of Solar ⁸B Neutrino Flux through Coherent Elastic Neutrino-Nucleus Scattering in PandaX-4T

Observed events: 3.5 ± 1.3 (S1-S2 analysis) **Observed events:** 78 ± 28 (S2-only analysis)

Statistical significance: 2.64 σ

Tarak Nath Maity

 $u_{e,\mu, au}$

Our results: nuclear recoil

 $\frac{d\sigma}{dE_N} \propto f(\sin^2\theta_W)$

XENONnT

PandaX-4T

Our results: nuclear recoil

Tarak Nath Maity

TNM, Boehm; 2409.04385

Energy scale determined from recoil energy regime

Tarak Nath Maity

TNM, Boehm; 2409.04385

Our results: electron recoil

S1-S2 only analysis

S2/S1 ratio - can distinguish - nuclear and electron recoil

 $E_{\rm recoil} \gtrsim 0.5 \,\rm keV$

Neutrino-electron scattering

Observed $\nu - e$ events: ~ 60

But statistically not significant due to huge background

XENONnT 2207.11330 LZ 2307.15753 PandaX-4T 2408.07641

Our results: electron recoil S1-S2 only analysis

S2/S1 ratio - can distinguish - nuclear and electron recoil

 $E_{\rm recoil} \gtrsim 0.5 \,\rm keV$

Only upper limits above 1.16 σ

TNM, Boehm; 2409.04385

Neutrino-electron scattering

Observed $\nu - e$ events: ~ 60

But statistically not significant due to huge background

XENONnT 2207.11330 LZ 2307.15753 PandaX-4T 2408.07641

Our results: electron recoil S1-S2 only analysis

S2/S1 ratio - can distinguish - nuclear and electron recoil

 $E_{\rm recoil} \gtrsim 0.5 \,\rm keV$

TNM, Boehm; 2409.04385

Neutrino-electron scattering

Observed $\nu - e$ events: ~ 60

But statistically not significant due to huge background XENONnT 2207.11330 LZ 2307.15753

PandaX-4T 2408.07641

Only upper limits above 1.16 σ

Probing a SM parameter in an entirely new regime

Summary

While recoil energy of our analysis similar but heavy Xe nucleus shifts $CE\nu NS$ in ~10 MeV scale TNM, Boehm; 2409.04385

Summary

While recoil energy of our analysis similar but heavy Xe nucleus shifts $CE\nu NS$ in ~10 MeV scale TNM, Boehm; 2409.04385

Summary

Future Xe based: DARWIN/XLZ, PandaX-xT

trino observatories. With 300 ty, DARWIN would be able to achieve 0.15% precision in the pp flux measurement, ap-

DARWIN, 2006.03114

Future Ar based: DarkSide-20k

With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV/ c^2 .

DarkSide-20k, 2407.05813

Future low threshold experiment: Oscura

Expected to se some $CE\nu NS$ events - no detailed analysis yet

While recoil energy of our analysis similar but heavy Xe nucleus shifts $CE\nu NS$ in ~10 MeV scale TNM, Boehm; 2409.04385

Summary

Future Xe based: DARWIN/XLZ, PandaX-xT

trino observatories. With 300 ty, DARWIN would be able to achieve 0.15% precision in the pp flux measurement, ap-

DARWIN, 2006.03114

Future Ar based: DarkSide-20k

With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV/ c^2 .

DarkSide-20k, 2407.05813

Future low threshold experiment: Oscura

Expected to se some $CE\nu NS$ events - no detailed analysis yet

• Huge scope of improvement with these future experiments

While recoil energy of our analysis similar but heavy Xe nucleus shifts $CE\nu NS$ in ~10 MeV scale TNM, Boehm; 2409.04385

Summary

Future Xe based: DARWIN/XLZ, PandaX-xT

trino observatories. With 300 ty, DARWIN would be able to achieve 0.15% precision in the pp flux measurement, ap-

DARWIN, 2006.03114

Future Ar based: DarkSide-20k

With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV/ c^2 .

DarkSide-20k, 2407.05813

Future low threshold experiment: Oscura

Expected to se some $CE\nu NS$ events - no detailed analysis yet

Huge scope of improvement with these future experiments

email: tarak.maity.physics@gmail.com Thank you

