Influence of the axion-nucleon interaction on the direct detection of dark matter

Yeray García del Castillo (UNSW Sydney)

24xx.xxxxx

w/ B. P. Hammett, J. Jaeckel

2410.23350 w/ C. Burrage, B. Elder, J. Jaeckel

1. Introduction

- Various astrophysical observations can not be explained without the presence of a non-detected form of matter (dark matter).

- Axions and Axion-Like Particles (ALPs) are wellmotivated candidates for dark matter.

- Pseudo-scalars

- Features - Light mass

- Wave-like classical field

- Axions and gluon-coupled ALPs present the coupling

$$
\frac{\phi}{f_a}\frac{g_s^2}{32\pi^2}G^{\mu\nu}\tilde{G}^{\mu\nu}
$$

- At low energies, this coupling produces a potential for ALPs that gets modified by **nucleon densities**

$$
V(\phi) = -m_{\pi}^2 f_{\pi}^2 \{ (\epsilon - \frac{\sigma_N \rho}{m_{\pi}^2 f_{\pi}^2}) |\cos(\frac{\phi}{2f_a})| + \mathcal{O}((\frac{\sigma_N \rho}{m_{\pi}^2 f_{\pi}^2})^2) \}
$$

 $\sigma_N = \sum_{q=u,d} m_q \frac{\partial m_N}{\partial m_q} \sim 59 \text{ MeV}$ [Hook, Huang 2017]

- For small values of the field ($f_a \gg \phi$) the effective Lagrangian for ALPs reads

$$
\mathcal{L}=\frac{1}{2}(\partial\phi)^2-\frac{1}{2}m^2\phi^2-\frac{\lambda}{2}\phi^2\rho\begin{array}{cc} \frac{m^2=\frac{m^2f_c^2\epsilon}{4f_c^2}\\ \lambda=\frac{\sigma_N}{4f_c^2}\end{array}}{\left(\square+m^2+\lambda\rho\right)\phi=0\end{array}
$$
 [Hees et al. 2018,
Balkin et al. 2018,
Balkin et al. 2022,
Banerjee et al. 2022,
Banerjee et al. 2023,

Interesting phenomenology! Nucleon densities modify the ALP's field distribution.

2. Modification of direct detection sensitivities

- Some experiments aim for interactions that are **proportional to the field** (e.g. CASPEr-Electric $(g_d\phi\bar{N}\sigma_{\mu\nu}\gamma_5NF^{\mu\nu})$ or BREAD ($\frac{1}{4}g_{\phi\gamma\gamma}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$)).

- Sensitivity estimates with ϕ_0 too naive! Earth affects! \Box Should be done with $\phi(a)$.

- Other experiments aim for interactions that are **proportional to the field's gradient** (e.g. CASPEr-Wind ($g_{\phi NN}\partial_{\mu}\phi N\gamma^{\mu}\gamma_5 N$)).
- Sensitivity estimates with $|\vec{\nabla}\phi| \approx \phi_0 mv$ too naive! Earth affects! \Box Should be done with $|\vec{\nabla}\phi(a)|$.

3.1 Repulsive case (λ>0)

3.2 Attractive case (λ<0)

4. Incident wave approach

- The Solar System moves as a whole towards Cygnus ~200km/s. A flux of dark matter is expected.

- Realistic boundary condition

$$
\lim_{r \to \infty} \phi(\vec{r}, t) = \phi_0 \left(e^{-i\omega t + i\vec{k}_0 \vec{r}} + f(\theta) \frac{e^{-i\omega t + i k_0 r}}{r} \right)
$$

5. Power spectrum

- Proper treatment of ALP as stochastic classical field.

- Non-monochromatic (dark matter velocity distribution $|\tilde{\phi}(\vec{k})|^2 \propto e^{-\frac{(\vec{k}-\vec{k}_0)^2}{2\sigma^2}}$).

$$
\phi(\vec{r},t) = \int \tilde{\phi}(\vec{k}) e^{-i\omega(k)t + i\vec{k}\vec{x} + i\alpha(\vec{k})} \frac{dk^3}{(2\pi)^3}
$$

- Gradient's power spectrum

$$
P_{ij}(\omega,\vec{x})d\omega = \mathcal{F}_{\omega}\left\{\lim_{T\to\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}dt\left\langle\partial_i\phi(t+\tau,\vec{x})\partial_j\phi(t,\vec{x})\right\rangle\right\}
$$

5.1 Repulsive coupling (λ>0)

 $\frac{P_{rr}^{\rm modified}(\omega,a,0,0)d\omega}{\int P_{rr}^{\rm free}(\omega,a,0,0)d\omega}$ -11 -12 -1000.00 $log_{10}(f_{\overline{a}}^{-1}[\frac{1}{GeV}]$
 $\frac{1}{14}$ 100.00 -14 -10.00 -15 -1.00 $-16\frac{1}{16}$ 0.00 -14 -13 -12 -11 -15 -10 $log_{10}(m[eV])$

Enhanced sensitivity

5.2 Attractive coupling (λ<0)

5.3 Enhanced sensitivity region in CASPEr-wind

6. Validity of the stationary solutions

- We have considered stationary solutions, but the Earth is in an accelerated movement around the Sun.

- Understand in which time scales these solutions are a good approximation.

Study simple physical situations that capture the relevant time scales.

6.1. Appearing source

- Why is it interesting?

- Non-trivial time dependence.
- Related to the accelerating source situation.

- How? **New Access** Semi-analytical method (Eigenfunctions).

6.1.1 Time scaling of the approach to the stationary configuration

6.2 Validity of stationary solutions

- Comparing relaxation times with Earth's deviation from a straight path.

7. Conclusions

- The presence of the Earth can affect sensitivities of direct detection.

- Enhanced sensitivities for experiments that aim for a gradient coupling, e.g. CASPEr-wind.

- For most of the mass range of interest, stationary solutions at the Earth's vicinity are a good approximation.

Thank you for listening! Questions?

Back up slides

- At low energies this coupling produces a potential for ALPs

$$
V(\phi) = -m_{\pi}^2 f_{\pi}^2 \epsilon \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2(\frac{\phi}{2f_a})}
$$
 [3]

- Nucleon densities modify the potential

$$
V(\phi) = -m_{\pi}^2 f_{\pi}^2 \{ (\epsilon - \frac{\sigma_N \rho}{m_{\pi}^2 f_{\pi}^2}) |\cos(\frac{\phi}{2f_a})| + \mathcal{O}((\frac{\sigma_N \rho}{m_{\pi}^2 f_{\pi}^2})^2) \}
$$

$$
\sigma_N = \sum_{q=u,d} m_q \frac{\partial m_N}{\partial m_q} \sim 59 \text{ MeV} \quad [1,2]
$$

References

[1] G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro, The QCD axion, precisely,

JHEP 01 (2016) 034, [arXiv:1511.02867].

[2] Anson Hook and Junwu Huang. "Probing axions with neutron star inspirals and other stellar processes". In: JHEP 06 (2018), p. 036. doi: 10.1007/JHEP06(2018)036. arXiv: 1708.08464 [hep-ph].

[3] J. M. Alarcon, J. Martin Camalich, and J. A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D85 (2012) 051503.

Bound states

 \bullet

. Bound states exist for certain values of the coupling and cause divergences.

Resonances and bound states in the k complex plane

As long as k non 0 there are no divergences!

Poles S matrix repulsive case

$$
S_l = 1 + 2ia_l
$$

Analytical expression for the scaling

$$
r/a = 5
$$
 $\lambda \rho a^2 = -5$ $m^2 a^2 = 1$

