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High redshift supermassive 
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Observations of high-z supermassive black holes (SMBHs):
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Observations of high-z supermassive black holes (SMBHs):
Window shopping in the astronomy department
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● Goulding et al 2023
● Juodžbalis et al 2023
● Übler et al 2023
● Larson et al 2023
● Harikane et al 2023
● Carnall et al 2023
● Onoue et al 2023
● Kocevski et al 2023

Z~5-10+ 



The puzzle of high-z SMBH formation
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Inoyashi et al 
2020
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Inoyashi et al 
2020

Seed mass



The puzzle of high-z SMBH formation
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Inoyashi et al 
2020

Seed mass

+ Primordial black hole seeds…



The puzzle of high-z SMBH formation
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Bogdan et al 2023

Eddington limit: 
accretion rate 
balanced by 
radiation



The puzzle of high-z SMBH formation

11

Probing the 
Genesis of SMBH, 
Nov 2024
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Direct collapse formation
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Direct collapse black hole formation
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Inoyashi et al 
2020



Direct collapse black hole formation
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Inayoshi et al 2019



Direct collapse black hole formation

16

Inayoshi et al 2019

Jeans instability causes 
fragmentation of cloud

⇒No direct collapse!



Direct collapse black hole formation
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Inayoshi et al 2019 Becerra et al 2015

Jeans instability causes 
fragmentation of cloud

⇒No direct collapse!



Direct collapse black hole formation

Essential requirement:

Suppression of H2



Direct collapse black hole formation

Essential requirement:

Suppression of H2

Shaw et al 2005



How to suppress molecular hydrogen?
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Solutions: additional heating or ionizing 
radiation
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Solutions: additional heating or ionizing 
radiation

● For astronomers: Lymen-werner 
photons from nearby star formation
○ Haiman et al 1996, Shang et al 2009
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How to suppress molecular Hydrogen?
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Solutions: additional heating or ionizing 
radiation

● For astronomers: Lymen-werner 
photons from nearby star formation
○ Haiman et al 1996, Shang et al 2009

● For cosmologists: magnetic fields
○ Sethi et al 2010

● For astroparticle peeps: dark matter
○ Freese 2015
○ Friedlander et al 2022



Our proposals for suppressing molecular Hydrogen: 

Heating:

Evaporation of small PBHs

Lyman-Werner radiation:

Slow decay of dark matter
Complete decay of new particle X
More to come…

24



Simulating the direct 
collapse
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Evolution of baryonic clouds
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● Clouds (~108 solar masses) of baryons and dark matter 
enter non-linear regime
○ Model with spherical top-hat collapse 

Gunn and Gott 1972, Peebles 1980

● Eventually they decouple and virialize
○ Must turn on chemistry 
○ Treat dark matter and baryons individually

■ Dissipative cooling (baryons) vs. gravity (DM)
● Time of collapse is ~free parameter to top-hat model
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Evolution of halos after recombination: baryons
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Temperature evolution

● Important heating/cooling channels:

0. Adiabatic cooling
1. Inverse Compton cooling (electrons scatter off CMB)
2. Hydrogen line cooling (atomic hydrogen collides with free electrons)

Dominant above 10,000 K, sets max T
3. Molecular hydrogen cooling (collisional excitations)

Dominant below 10,000 K. Must be suppressed with extra heat 
or removal of molecular hydrogen



Evolution of halos after recombination: baryons

29

Temperature evolution

● Important heating/cooling channels:

0. Adiabatic cooling
1. Inverse Compton cooling (electrons scatter off CMB)
2. Hydrogen line cooling (atomic hydrogen collides with free electrons)

Dominant above 10,000 K, sets max T
3. Molecular hydrogen cooling (collisional excitations)

Dominant below 10,000 K. Must be suppressed with extra heat 
or removal of molecular hydrogen



Evolution of halos after recombination: baryons
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Chemical evolution

● Track atomic and molecular Hydrogen, ionized hydrogen (protons), free 
electrons, and helium (12 reactions tracked)

● Heavily coupled:
○ Free electrons density affected by photo- and collisional- ionization of 

Hydrogen atoms
○ Formation of molecular hydrogen via dominant channel:

Photodetachment
Photodissociation



Evolution of halos after recombination: dark matter
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● Adiabatic contraction
○ Dark matter responds to 

collapsing baryons in center
○ Eggen, Lynden-Bell, & Sandage 1962

● We included this dynamically in 
our collapse simulation



Specific scenarios
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Primordial black holes
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● Small PBHs are well constrained by 
(non) observation of Hawking 
evaporation effects
○ CMB, BBN, 21-cm line
○ Cang et al 2022, Carr et al 2010, Acharya & Khatri 

2022, Chluba et al 2020

● In order to get enough heating, we 
consider halos with large PBH 
clustering
○ Ie large ‘local’ fraction

Cang, Gao, & Ma 2022



Heating the halos with PBH Hawking evaporation
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● Black holes of mass 2 𝗑 1014 g 
evaporate at z~20
○ Narrow lognormal spectrum ⇒ 

broad collapse times
● Secondary spectra computed with 

BlackHawk
○ Arbey & Auffinger 2019
○ Electrons, photons, protons

● Compute attenuation in halo and 
assume that attenuated particles 
transfer their energy as heat
○ Freese et al 2016

Mosbech and ZSCP 2022



Particle decay

Axion-like particles (ALP)

● If all of the dark matter:
○ Low decay rate

● If a subcomponent of a dark 
sector (‘X’)
○ Higher rate allowed

Considered two-body and 
three-body decay to photons

35(Crayon O’hair)



Particle decay

Axion-like particles (ALP)

● If all of the dark matter:
○ Low decay rate

● If a subcomponent of a dark 
sector (‘X’)
○ Higher rate allowed

Considered two-body and 
three-body decay to photons

Axiverse?

36(Crayon O’hair)



Results
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PBH results: molecular hydrogen fraction
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time



PBH results: halo temperature
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No fragmentation 
⇒ direct collapse



Results: ALP dark matter decay
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Results: X particle decay
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Observational consequences

● ‘Hot spots’ at formation sites?
○ Point-like x-ray or gamma sources
○ Possibly dwarfed by other radiation from 

direct collapse
○ Failed direct collapse sites??

● Particle decay - contributes to cosmic 
optical background
○ Future HST observation?

42

Carenza et al 2023



Conclusions
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● How are the earliest SMBH formed??
○ Not enough time to accrete from small seeds…

● Direct collapse of gas clouds can help
○ Requires extra injection of radiation

■ Evaporating PBHs?
■ Decaying dark matter?
■ Decaying new particles?
■ …even more exotic things…?

Thanks!



Results for particle decay
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Results: heating/cooling rates for insufficient PBH heating
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Results: heating/cooling rates for sufficient PBH heating
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‘Critical curve’ comparison
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Dissociation 
rate

Detachment rate



Primordial black hole clustering: justifications
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● Non-Gaussianities from inflation
○ curvature perturbation ζ, 

non-Gaussianity parameter f 
○  ζf ∼ 0.5 ⇒ 107 increase in local 

number density
○ Young & Byrnes 2020, Ferrante et al 2023, 

Franciolini et al 2023

● Other PBH formation mechanisms 
which depend on DM density
○ Yukawa force collapse in dark sector
○ Q-Ball or oscillon DM
○ PBH dominated clustering (Holst et al 

2024)
Young and Byrnes 2019


