Early supermassive black hole Direct collapse with dark matter

Zachary S. C. Picker UCLA

Early supermassive black hole Direct collapse with dark matter

Zachary S. C. Picker UCLA

with Alexander Kusenko and Yifan Lu

Early supermassive black hole Direct collapse with dark matter

Zachary S. C. Picker

Feeding plankton to whales: high-redshift supermassive black holes from tiny black hole explosions

Yifan Lu,^{1,*} Zachary S. C. Picker,^{1,†} and Alexander Kusenko^{1,2,‡}

¹Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, 90095-1547, USA 2 Kavli Institute for the Physics and Mathematics of the Universe (WPI). The University of Tokyo Institutes for Advanced Study. The University of Tokyo, Chiba 277-8583, Japan

Direct-collapse supermassive black holes from relic particle decay

Yifan Lu, ^{1,*} Zachary S. C. Picker, ^{1,†} and Alexander Kusenko^{1, 2,‡} ¹Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, 90095-1547, USA 2 Kavli Institute for the Physics and Mathematics of the Universe (WPI). The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Chiba 277-8583, Japan

UCLA $arXiv: 2312.15062, 2404.03909, ...$?

High redshift supermassive black holes

Observations of high-z supermassive black holes (SMBHs):

Observations of high-z supermassive black holes (SMBHs): Window shopping in the astronomy department

- Goulding et al 2023
- Juodžbalis et al 2023
- \bullet Uhler et al 2023
- Larson et al 2023
- Harikane et al 2023
- Carnall et al 2023
- Onoue et al 2023
- Kocevski et al 2023

 $Z \sim 5 - 10 +$

Inoyashi et al 2020

Inoyashi et al 2020

+ Primordial black hole seeds…

Inoyashi et al

2020

Bogdan et al 2023

Eddington limit: accretion rate balanced by radiation

Probing the Genesis of SMBH, Nov 2024 @Kavli IPMU

Probing the Genesis of SMBH, Nov 2024 @Kavli IPMU

Direct collapse formation

Inayoshi et al 2019

Jeans instability causes fragmentation of cloud

⇒No direct collapse!

Inayoshi et al 2019

Inayoshi et al 2019 Becerra et al 2015

Essential requirement:

Suppression of \overline{H}_{2}

Essential requirement:

Suppression of $H₂$

Shaw et al 2005

How to suppress molecular hydrogen?

How to suppress molecular hydrogen?

- For astronomers: Lymen-werner photons from nearby star formation
	- Haiman et al 1996, Shang et al 2009

How to suppress molecular hydrogen?

- For astronomers: Lymen-werner photons from nearby star formation
	- Haiman et al 1996, Shang et al 2009
- For cosmologists: magnetic fields
	- Sethi et al 2010
- For astroparticle peeps: dark matter
	- Freese 2015
	- Friedlander et al 2022

How to suppress molecular Hydrogen?

- For astronomers: Lymen-werner photons from nearby star formation
	- Haiman et al 1996, Shang et al 2009
- For cosmologists: magnetic fields
	- Sethi et al 2010
- For astroparticle peeps: dark matter
	- Freese 2015
	- Friedlander et al 2022

Our proposals for suppressing molecular Hydrogen:

Heating:

Evaporation of small PBHs

Lyman-Werner radiation:

Slow decay of dark matter Complete decay of new particle X More to come…

Simulating the direct collapse

Evolution of baryonic clouds

- Clouds $({\sim}10^8$ solar masses) of baryons and dark matter enter non-linear regime
	- Model with spherical top-hat collapse

Gunn and Gott 1972, Peebles 1980

- Eventually they decouple and virialize
	- Must turn on chemistry
	- Treat dark matter and baryons individually
		- Dissipative cooling (baryons) vs. gravity (DM)
- Time of collapse is \sim free parameter to top-hat model

Evolution of baryonic clouds

- Clouds $({\sim}10^8$ solar masses) of baryons and dark matter enter non-linear regime
	- Model with spherical top-hat collapse

Gunn and Gott 1972, Peebles 1980

- Eventually they decouple and virialize
	- Must turn on chemistry
	- Treat dark matter and baryons individually
		- Dissipative cooling (baryons) vs. gravity (DM)
- Time of collapse is \sim free parameter to top-hat model

Evolution of halos after recombination: baryons

Temperature evolution

$$
\frac{dT}{dt} = (\gamma - 1) \left(\frac{\dot{n}_b}{n_b} T + \frac{L_{\text{cool}} + L_{\text{heat}}}{k n_b} \right)
$$

- Important heating/cooling channels:
	- 0. Adiabatic cooling
	- 1. Inverse Compton cooling (electrons scatter off CMB)
	- 2. Hydrogen line cooling (atomic hydrogen collides with free electrons)
	- 3. Molecular hydrogen cooling (collisional excitations)

Evolution of halos after recombination: baryons

Temperature evolution

$$
\frac{dT}{dt} = (\gamma - 1) \left(\frac{\dot{n}_b}{n_b} T + \frac{L_{\text{cool}} + L_{\text{heat}}}{k n_b} \right)
$$

- Important heating/cooling channels:
	- 0. Adiabatic cooling
	- 1. Inverse Compton cooling (electrons scatter off CMB)
	- 2. Hydrogen line cooling (atomic hydrogen collides with free electrons) Dominant above 10,000 K, sets max T
	- 3. Molecular hydrogen cooling (collisional excitations) Dominant below 10,000 K. Must be suppressed with extra heat or removal of molecular hydrogen

Evolution of halos after recombination: baryons

Chemical evolution

- Track atomic and molecular Hydrogen, ionized hydrogen (protons), free electrons, and helium (12 reactions tracked)
- Heavily coupled:
	- Free electrons density affected by photo- and collisional- ionization of Hydrogen atoms
	- Formation of molecular hydrogen via dominant channel:

$$
H + e^- \rightarrow H^- + \gamma,
$$

$$
H^- + H \rightarrow H_2 + e^-
$$

Photodetachment Photodissociation

Evolution of halos after recombination: dark matter

- Adiabatic contraction
	- Dark matter responds to collapsing baryons in center
	- Eggen, Lynden-Bell, & Sandage 1962
- We included this dynamically in our collapse simulation

Specific scenarios

Primordial black holes

- Small PBHs are well constrained by (non) observation of Hawking evaporation effects
	- CMB, BBN, 21-cm line
	- Cang et al 2022, Carr et al 2010, Acharya & Khatri 2022, Chluba et al 2020
- In order to get enough heating, we consider halos with large PBH clustering
	- Ie large 'local' fraction

Cang, Gao, & Ma 2022

Heating the halos with PBH Hawking evaporation

- Black holes of mass $2 \times 10^{14} g$ evaporate at z~20
	- Narrow lognormal spectrum ⇒ broad collapse times
- Secondary spectra computed with BlackHawk
	- Arbey & Auffinger 2019
	- Electrons, photons, protons
- Compute attenuation in halo and assume that attenuated particles transfer their energy as heat
	- Freese et al 2016

Mosbech and ZSCP 2022

Particle decay

Axion-like particles (ALP)

- If all of the dark matter:
	- Low decay rate
- \bullet If a subcomponent of a dark sector $({}^{\circ}X^{\cdot})$
	- Higher rate allowed

Considered two-body and three-body decay to photons

Particle decay

Axion-like particles (ALP)

- If all of the dark matter:
	- Low decay rate
- If a subcomponent of a dark sector $({}^{\circ}X^{\cdot})$
	- Higher rate allowed

Considered two-body and three-body decay to photons

Axiverse?

$\overline{\text{Crayon O'hair)}}$ ₃₆

Results

PBH results: molecular hydrogen fraction

PBH results: halo temperature

Results: ALP dark matter decay

 10^{-}

 10^{-}

 10^{-1}

 10

 $\begin{bmatrix} 1 \\ -1 \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ \hline \text{Sigma} \\ 10^{-14} \\ 10^{-15} \end{bmatrix}$

 10^{-16} 10^{-17}

 10^{-18}

 10^{-19}

Results: X particle decay

Observational consequences

- 'Hot spots' at formation sites?
	- Point-like x-ray or gamma sources
	- Possibly dwarfed by other radiation from direct collapse
	- Failed direct collapse sites??
- Particle decay contributes to cosmic optical background
	- Future HST observation?

Carenza et al 2023

Conclusions

- How are the earliest SMBH formed??
	- Not enough time to accrete from small seeds…
- Direct collapse of gas clouds can help
	- Requires extra injection of radiation
		- Evaporating PBHs?
		- Decaying dark matter?
		- Decaying new particles?
		- …even more exotic things...?

Results for particle decay

Results: heating/cooling rates for *insufficient* PBH heating

Results: heating/cooling rates for *sufficient* PBH heating

'Critical curve' comparison

Dissociation rate

Detachment rate

Primordial black hole clustering: justifications

- Non-Gaussianities from inflation
	- \circ curvature perturbation ζ, non-Gaussianity parameter *f*
	- ζ*f* ∼ 0.5 ⇒ 107 increase in local number density
	- Young & Byrnes 2020, Ferrante et al 2023, Franciolini et al 2023
- Other PBH formation mechanisms which depend on DM density
	- Yukawa force collapse in dark sector
	- Q-Ball or oscillon DM
	- PBH dominated clustering (Holst et al 2024)

Young and Byrnes 2019