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MOTIVATION FOR SCALE INVARIANCE
THE HIERARCHY PROBLEM

* Formulate the Standard Model in terms of a cutoff energy scale for new physics, A.

* Physical mass my,p, ¢ of the Higgs differs from the bare mass my, ;¢
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Mpy phys = 125 GeV A > 10% GeV
* No symmetry protecting the Higgs



MOTIVATION FOR SCALE INVARIANCE
CLASSICAL SCALE INVARIANCE AS A SOLUTION

e Scaling transformation:

 Energy:E > AE e Time:t-> A1t

e Momentum:p - Ap e Scalar field amplitude: @ = 1 @

 Distance:x - A1 x *  Fermion field amplitude: 1 — 13/2 ¢
* Classical scale invariance: N LML

e Spontaneously broken by a quantum anomaly

Technical naturalness

Classical scale invariance in the Radiative corrections to my ,pys

—

UV is broken by the anomaly are < the anomaly and can
remain small



A - Energy cutoff scale
Ap- Cosmological constant

HOW SCALE INVARIANCE IS REALISED grbiceyselfieracibiiparameter
vy, - Higgs vacuum expectation-value
PROMOTION OF DIMENSIONFUL PARAMETERS 4 - Dilaton self-interaction parameter

v, - Dilaton vacuum expectation value
¢ — Higgs-dilaton coupling strength

a — ratio between A and 2%

* Replace all dimensionful parameters (m;,, A, A¢) with ¥ and a dimensionless parameter

V(H) = 2x(8) (HTH — vi(A)* + 20 (0)

A—- ay
e i

V(H, x) = Ap(ax) HTH — X+ Ay (an)x”

e y develops a vacuum expectation value Uy (dimensional transmutation)

A=avx

e All other scales are set by v
YV mf = n(av)E(avy)vi

Ao = A, (av,)vy



INITIAL IMPLICATIONS AND VIABILITY OF SCALE INVARIANCE
EXISTENCE OF A MINIMUM

* Minimisation conditions

av
ax > Ui g
Xy=v,h=vy, h)( =v,,h=vy,

* Vanishing cosmological constant
V(vh, vX) =0

* Experimental top mass:

me = 172.52 + 0.14 + 0.30

Fig. 1. Plot of the allowed range of parameters (shaded region) with m ;WL“} =0,
i.e., the electroweak vacuum being a minimum. The solid line displays the cut-off

e Borderline but modified by other new scale A as function of the top-quark mass m; for which the conditions in Eq. (G)

are satisfied.
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Arunasalam et al., 2017



INITIAL IMPLICATIONS AND VIABILITY OF SCALE INVARIANCE
COUPLING AND MASS OF THE DILATON

e Assuming a = vA ~1 and A ~ 101° GeV
X

2
 Thenform; = 125 GeV, E(A) =2 Z—’Zl~ 1073* so a very weak coupling between h and y
X

* Dilaton develops a mass at second loop level (assuming a vanishing cosmological constant):

B ) h
ms = 4—?&1;,%(/\% (1078 eV)?

* Makes it a light dark matter candidate!



INITIAL IMPLICATIONS AND VIABILITY OF SCALE INVARIANCE
FIFTH FORCE AND EQUIVALENCE-PRINCIPLE CONSTRAINTS
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INITIAL IMPLICATIONS AND VIABILITY OF SCALE INVARIANCE
THE ELECTROWEAK PHASE TRANSITION

Increasing time
—

Decreasing temperature

Effective Potential Effective Potential

Standard Model:
Higgs field Higgs field

Effective Potential

Effective Potential Effective Potential

Scale invariant
Standard Model:
lone X =0
(along a = 0) Higgs field Higgs field

Effective Potential

T=0

T

0?

Higgs field

Higgs field




INITIAL IMPLICATIONS AND VIABILITY OF SCALE INVARIANCE
THE CHIRAL PHASE TRANSITION

* Yukawa couplings: V. owa = y,ij Qu/H + ycileide + h.c. arelinear in the Higgs field

* When the quark condensate (gq) # 0, the Yukawa terms contribute a linear term to the
Higgs effective potential

Increasing time

—

Decreasing temperature

* Naively expect:

Effective Potential Effective Potential Effective Potential

Higgs field Higgs field

Higgs field
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INITIAL IMPLICATIONS AND VIABILITY OF SCALE INVARIANCE
COSMOLOGICAL TIMELINE

Hadronization and
Chiral symmetry

Electroweak PT breaking Baryogenesis
T = 140 GeV T = 150 MeV T= 4 MeV
Standard Model: } } } >
Chiral and .
Hadronization  Ejectroweak PTs Baryogenesis
: : = = T= 4 MeV
Scale invariant J 85: MeV T=25MeV . .

Standard Model:
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LINEAR SIGMA MODEL OF CHIRAL AND ELECTROWEAK SYMMETRY BREAKING
MODEL CHECKLIST

* Should be SU(6), X SU(6) 4, symmetric (except for a mass term)

* Needs an order parameter o and symmetry breaking potential V(o) to model the chiral
symmetry breaking

* Integrating out o should reduce the theory to the usual non-linear sigma model of pions

fn‘z qTera

2
= TTr(aMUa#U) + k Tr(UM) + h.c. sl
* Should be classically scale invariant

L



o — Chiral transition order parameter
1% - 35 pion fields

T% - 35 SU(6) generators

y; - Yukawa couplings

LINEAR SIGMA MODEL OF CHIRAL AND ELECTROWEAK SYMMETRY BREAKING ns - Number of flavours = 6
LAGRANGIAN AND EFFECTIVE POTENTIAL qcn, [ HCD SONANEREniaca’s

2 ara

L =Tr(0,®0*®) — A,(Tr(®T @) — nv2)" + A, Tr(PT ®OM) + h.c. S ei\/z_"fnag

‘/an h

M = dla ) ) ) ) ) T =

* Effective potential: 90w Yar Yer Yer Vo yt)\/f

AO’ 4 AKyt 3
Vo(o,h) = i _2n3/20 h
f

 With 1-loop radiative and thermal corrections:
m; (a h) m-z(a,h)
Vew(o,h) =X g log—
It 62 Agep Dominant contribution from:
. _ it
T4' m (0- h) L = W_,Z, TTy5,Tye, -, Il35

B
Vr(o ) iglzn_z B( T2 )
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IMPLICATIONS OF THE MODEL
THE EFFECTIVE POTENTIAL

Veri(p) MeV*
800000

600000
400000

200000

— T =30 MeV

T =27 MeV

T =25 MeV

p MeV — T =20 MeV

50 (along Qmin) — T =0 MeV

Sigma field:

o = psin@
Higgs field:

h =pcos6

Hmin ~ 0.67

Critical

temperature:
T, = 27 MeV
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IMPLICATIONS OF THE MODEL
FIRST ORDER PHASE TRANSITION

* Metastable vacuum means the electroweak phase and chiral phase transitions are now first-order

False vacuum

False vacuum Gravitational
Waves
- True
u
Vacuum — S
Sem!classlcal i 1 Gives the

approximation for LGRS percolation
tt.mnelll.ng.(m.the ’Lratr;-sl-ltlop T temperature
high-T limit) gives probability I'(T) T, = 26 MeV

5(T)
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IMPLICATIONS OF THE MODEL
SPEED OF BUBBLE WALLS AND ENERGY BUDGET

* Where does the released vacuum energy go?

Fret e Fdriving IR Ffriction (vw)

A A A

F,
e |If ’;1“ >0 for all v, then we get a runaway bubble, and the energy mostly goes to the walls

* Otherwise, we get a terminal velocity v,, and the energy is mostly deposited inside the bubble

oV T d,p ut
62p+ eff(p )_ uP f(p) i

4t \/ g (aup ut g(p))2

e Gives a terminal velocity v, = 0.99986 (thanks to scale invariance and 0 cosmological constant)
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fsw

P _¢ H (kya\? (100\1/3 f\? 7 712
IMPLICATIONS OF THE MODEL Qowh? = 2.65x 107 Z(22)" (22)  w, (L) <4+3( - )2>
GRAVITATIONAL WAVES

1/6
* 3 sources of gravitational waves:

1p " g+
=19 x107°H —( )
Jsw 0y H\100GeV (100)

e Collision of bubble walls

e Sounds waves (dominant here) —— This model
« Magnetohydrodynamic turbulence LISA
DECIGO
— BBO
* Ratio of latent heat to radiation — NANOGrav
energy a@ = —22€ ~ (.09 — PPTA
gY i - - 12 — EPTA
. Py IPTA
* Ratio of transition rate to Hubble _ aka
scale L3 4000
H(Ty)
* Fraction of latent heat that goesinto & Frequency (Hz)

0% 107 108 10 0% 103 102 qp 109

bulk motion of the plasma k,, = 0.1
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IMPLICATIONS OF THE MODEL
PRIMORDIAL BLACK HOLES FROM LATE-TIME NUCLEATION

 Radiation energy density scales as a(t)~* while vacuum energy density doesn’t scale

e So later nucleating patches become over-dense compared to earlier patches

late
€ (tiate) —€ra

* If the over-density 6 (t;q,) = 124 . 2 reaches a critical value 6. = 0.5, it collapses to
rad

a primordial black hole

max(Tiqee) = 12.5 MeV

3

‘ 2 Q
P(Tiaee) = eXp( 2 Tate  [fe _CL (S e—S(T)> = exp(—4 x 1036) Seeddil g

3 H(Tigte) “Tlate H(T) \ 27
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IMPLICATIONS OF THE MODEL
PRIMORDIAL BLACK HOLES FROM INFLATION OVER-DENSITIES

* The critical over-density for collapse §. depends on the equation of state of the fluid

* Near a first order phase transition the equation of state drops, w,,;n, = 4g§ig*_
e Mass givenby Mpgy = 4?” (c.H Y )Pe gy
* For the confinement transition:

T ~85MeV, g¥~ 10675, gr ~62.75, Wmn~7, Mppy~ 1Mo

* For the chiral/electroweak transition:

T ~25MeV, gf ~ 6275, gi ~10.75, Wmn~5=, Mppy ~ 10Mo
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CONCLUSION

* The scale invariant extension solves the Hierarchy problem

* It has only a small effect on the Standard Model today, adding just one more light, weakly
interacting particle but leaving the rest intact

e But it has a significant impact on cosmological history which may one day be detectable in
the gravitational wave background or in the presence of primordial black holes
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