QED 5-loop on the lattice

Ryuichiro Kitano (KEK)

Reference: Kitano, 2411.11554 [hep-lat] Kitano and Takura, PTEP 2023 (2023) 10, 103B02, 2210.05569 [hep-lat] Kitano, Takaura and Hashimoto, JHEP 05 (2021) 199, 2103.10106 [hep-lat]

Int. Joint Workshop on the SM and Beyond 2024@UNSW, December 9-13, 2024

QED 5-loop

The two groups have independently calculated the 5loop coefficient of lepton g-2.

Wonderful achievement of theorists!!

A little bit of discrepancy?

 $A_1^{(10)} = 6.737 (159)$ $A_1^{(10)}[Volkov] = 5.891(61)$ [Aoyama, Hayakawa, Kinoshita, Nio '19] [Volkov '24]

seems to be resolved recently. [Muon g-2 Theory Initiative@KEK]

I tried to develop a numerical method to evaluate the perturbative coefficients in QED on the **lattice**.

Path integral

throw dice many times and take an average.

For example, two point functions of electrons:

$$\langle \psi(x)\bar{\psi}(0)\rangle = \int [dA] \det D D_{(x,0)}^{-1} e^{-S[A]}$$

Lattice people do this everyday. No Feynman diagram needed.

Even simpler

The most difficult and the most important part of the contributions are from diagrams with no lepton loops. That's actually the easiest part for lattice.

$$\langle \psi(x)\bar{\psi}(0)\rangle = \int [dA] \det DD_{(x,0)}^{-1} e^{-S[A]}$$

Ignore lepton loops

$$\langle \psi(x)\bar{\psi}(0)\rangle = \int [dA] \det Q D_{(x,0)}^{-1} e^{-S[A]}$$

In QED, this part is **free** theory! throwing the dice part is trivially done! (Gaussian noise)

Perturbative calculations on the lattice

[Di Renzo, Scorzato '00]

diagonal in the momentum space

Sequence of multiplying diagonal matrices and FFT.

Very effectively done on computers.

We simply store the values at each order in the perturbation.

Averaging process adds up all the diagrams at each order automatically.

Renormalization?

This is the three-point function I can calculate perturbatively. This is a **divergent** quantity.

$$G_{\mu}(t) = \left\langle \sum_{\mathbf{p}'} D^{-1}(t_{\text{sink}}, t; \mathbf{p}, \mathbf{p}') \gamma_{\mu} D^{-1}(t, t_{\text{src}}; \mathbf{p}' + \mathbf{k}, \mathbf{p} + \mathbf{k}) \right\rangle$$

But anyway, by separating t_{sink}, t, t_{src}, this quantity is dominated by the contributions from **on-shell fermion states**.

Electric and Magnetic projections:

$$G_E(t) = \operatorname{tr}\left[\frac{1+\gamma_4}{2}G_4(t)\right], \quad G_M(t) = i\sum_{i,j,k} \epsilon_{ijk} \operatorname{tr}\left[\frac{1+\gamma_4}{2}\gamma_5\gamma_i G_j(t)\right] \mathbf{k}_k,$$

Repeat the same calculations for

$$G_{\mu}^{\text{norm}}(t) = \sum_{\mathbf{p}'} \left\langle D^{-1}(t_{\text{sink}}, t; \mathbf{p}, \mathbf{p}') \right\rangle \gamma_{\mu} \left\langle D^{-1}(t, t_{\text{src}}; \mathbf{p}' + \mathbf{k}, \mathbf{p} + \mathbf{k}) \right\rangle$$

and normalize

$$F_E(t) = \frac{G_E(t)}{G_E^{\text{norm}}(t)}, \quad F_M(t) = \frac{G_M(t)}{G_M^{\text{norm}}(t)},$$

now external legs are taken away. We get form factors.

Finally, we get the g-factor
$$rac{g(t)}{2}=rac{F_M(t)}{F_E(t)},$$
 perturbatively.

All the divergence is gone, because this is a physical quantity!

Done!

Of course, the life is not so easy.

Limit, limit, limit...

We need to take the limits of

 $m_{\gamma} \rightarrow 0$ IR cutoff $m \rightarrow 0$ continuum limit (fermion mass parameter) $L \to \infty$ infinite volume

(in the lattice unit, a=1)

while keeping

 $1/L \ll m_{\gamma} \ll m$

The strategy is to keep $m_v L \gg 1$, and take the double limit, $m_v/m \rightarrow 0$ and $m \rightarrow 0$.

We need a large volume!!

For example, if we want $m_yL \sim 4$, $m_y/m \sim 0.1$, and $m^2 \sim 0.1$, we need $L \sim 100!$ We need a supercomputer.

Supercomputer and code:

We had a good one in the next building. (-2024)

FUGAKU is also open for researchers.

Matsufuru-san in the next building has been developing a user friendly open lattice codes:

(Thanks, Matsufuru san!)

It is a good summer homework!

\leftarrow \rightarrow C \textcircled{a}	O A ≈ https://bitbucket.org/ryuichiro_kitano/pqed/src/master/src/fopr_Naive_pQED.cpp ☆	ి బి ≡ి
III I Bitbucket あなた	の作業 ブルリクエスト リボジトリ プロジェクト People More、 Create 、 Q Search 🗣 🤗	🗘 ĸ
¢/> pQED	Here's where you'll find this repository's source files. To give your users an idea of what they'll find here, add a description to your repository.	0 (2
ひ ソース	pqed / src / fopr_Naive_pQED.cpp	
♦ コミット	431 } 432	
り ブランチ	<pre>433 void pQED::Fopr_Naive_pQED::Dinv_momspace(pQED::Field_F_pQED& field1) { 434 // まず一回かける.</pre>	
ใ 3 プルリクエスト	<pre>435 pQED::For_Naive_pQED::Dinv_0_monspace(field1); 436 if (= Neartyrbatics == 1) return;</pre>	
🗘 パイプライン	430 II (<u>a_wpercurbation = 1</u>) recurn; 437	
Deployments	<pre>438 for (int int ex = 0; ex < Tietda1(0).nex(); ++ex) { 439 for (int int pert = 1; i_pert < m_Nperturbation; ++i_pert) { 444 for the manual of the manu</pre>	
📲 Jira issues	440 #pragma omp parallel 441 {	
● セキュリティ	<pre>442 m_work_tor_Dinv.set(0.0); 443 #pragma omp barrier</pre>	
🗗 ダウンロード	<pre>444 m_work_for_Dinv[i_pert - 1].setpart_ex(0, field1[i_pert - 1], ex); 445 } </pre>	
C Repository settings	<pre>440 447 pQED::Fopr_Naive_pQED::D_momspace(m_work_for_Dinv); 448 pQED::Fopr_Naive_pQED::Dinv_0_momspace(m_work_for_Dinv); 449</pre>	
	450 #pragma omp parallel	
	<pre>451 for (int ii_ext = i_pert; ii_ext < m_Nperturbation; ++ii_ext) { 453 axpy(field1[ii_ext], ex, -1.0, m_work_for_Dinv[ii_ext], 0);</pre>	
	454 } 455 }	
	456 } 457 }	

64³x128 lattice results:

I'm actually using a trick to make T-direction larger by averaging periodic and anti-periodic boundary conditions. No worry about backward propagation.

O(200,000) configurations.

64³x128 lattice results:

O(200,000) configurations. This is a result of FUGAKU 3days.

 $ma = 0.255, \ m_{\gamma}a = 0.125$

But the photon mass is still big.

Limits:

fitting with quadratic functions.

Looks like we could reproduce α/π .

systematic error (including fitting, finite volume etc.) is a percent level. (hopefully)

higher loops:

fitting with quadratic functions.

 $A^{(10)}$ (no lepton loop) = 7.0 ± 0.9

 7.668 ± 0.159 (AHKN) 6.828 ± 0.060 (Volkov)

to be compared with

I'm friendly with anybody.

Summary

I tried.

I couldn't quite reach the precision of the Feynman diagram method, but at least this gives a totally independent calculation/confirmation.