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Long-lived particles

Various theories of beyond-SM
physics (e.g. supersymmetry)
“naturally” include particles
that can be long lived:  

Particles have long lifetimes due to inaccessibility of states into which
they can readily decay (i.e. due to kinematics and/or couplings)

● Examples exist already within the SM, e.g. muons  τμ  ~ 2.2 μs

● Big Bang nucleosynthesis limit on long-lived new particles is ~0.1s (cτ ~107 m)

→  Reasonable to expect
that beyond-SM particles
may also have long lifetimes,
particularly if they are light
or have “feeble” couplings
to the SM
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Searching for LLPs

LLP searches have been identified by
the [HL-]LHC community as a growing
priority

● High centre of mass energy gives
access to heavy states that may be
coupled to LLPs (e.g. Higgs) 

● Very high luminosity (HL-LHC)

However, the LHC could be making
LLPs that are efectvely invisible to
its main detectors

Neutral long-lived particles (LLPs) cannot be directly
detected in experiments

● Instead, the SM decay daughters must be detected and the
LLP reconstructed based on the displaced decay vertex

● If the decay length cτ  is too long, the decay can occur
outside of the detector fiducial volume

● “Missing energy” searches are possible, but these
signatures can be challenging due to resolution,
background, and trigger issues
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Concept
Proposal for a large LLP detector on
the surface adjacent to one of the LHC
interaction regions (CMS)

● 40m x 40m x 16m instrumented decay
volume to detect decay daughters of LLPs
produced by LHC interactions

● Array of 16 10m x 10m modules composed
of 6 layers of tracking detectors, plus 2
layers of floor “veto” detectors

● Back wall tracking layers to improve
tracking acceptance

Track multiplicity of potential signals
depends on the LLP mass

● Reconstruct 4D decay vertices of upward-
going LLPs 

● Use timing and hit position information to
reject LHC and cosmic ray backgrounds   

Original (100m x 100m x 25m) MATHUSLA
proposal recently re-scoped for cost reasons
(new design referred to as “MATHUSLA-40”)

https://mathusla-experiment.web.cern.ch/
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Backgrounds

 Cosmic rays:

● ~300 kHz flux to entire detector; rejected by
directionality (timing) and topology

● Cosmic ray nucleons can undergo inelastic
backscatter in detector floor

● Results in O(100) non-relativistic Ks
0     

(over life of experiment) traveling into
MATHUSLA volume and decaying into
charged particles that could reach the
ceiling trackers.

● Can be characterized with beam off, and
distinctive low momentum signature

 GeV-scale atmospheric neutrinos:

● Scattering within the decay volume result in
a few events per year

● Can be effectively vetoed using time-of-
flight track measurements

Primary physics target (high
multiplicity DV) is essentially
background-free

● Secondary physics target of low-
mass, low multiplicity LLP decays
have backgrounds that need to be
carefully studied

 LHC muons:

● Muons with E > 40 GeV  can penetrate rock
shielding, but do not generally form vertices

● Delta rays and rare decays can be rejected
based on vertex topology
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Location
An appropriate site is available
adjacent to the CMS surface buildings
at CERN Point 5 (Cessy, France)

● CERN owned land, green-field site
(currently leased as farmland) 

● MATHUSLA decay volume would be
located ~100m “as the mole digs” from
the CMS IP.

● Substantial shielding from LHC,
particularly for LHC muons

Local ordinances restrict roof height
to 17m for the surface building,
limiting vertical extent of detector

● excavation possible, but expensive 

~100m
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Detector concept
40m x 40m array of 16 “towers” of
low-cost plastic scintillator bars

● floor and forward “veto” layers to
reject punch-through LHC muons
and CR back-scatters

● scintillator panels surround support
columns to veto interactions in
material

● Detector access possible via
catwalks between towers

● Removable floor scintillator panels
to access floor walkways

● Serviced by (low profile) overhead
rail crane and/or floor-lifts
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Extruded plastic scintillator

● Primary dopant:   ~1% PPO
  2,5-diphenyloxazole

● Secondary dopant:   ~0.02%  POPOP
(wavelength shifter)
        1,4-bis(5-phenylxazole-2-yl)benzene 

● TiO2 reflective coating co-extruded

● Various profiles can be extruded, with hole(s)
for inserting WLSF

Extruded scintillator based on commercial
polystyrene pellets with added dopants

● MUCH cheaper than “cast” scintillator

● Intrinsic light yield comparable to cast
scintillator, but poorer optical quality
( i.e. attenuation length O(10cm) )

● wavelength shifting optical fibre used to bring
signals to photodetectors  

  

Fermilab extrusion facility

Extruded plastic
scintillator is
primary detector
element

Light brought to
the bar ends via
blue-green
wavelength
shifting optical
fiber (WLSF)
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Bar modules

32 bars per module:

● ~5m WLSF looped through two bars, with
SiPMs on both ends

● Absolute and differential timing from the two
end of each fibre

● Electronic readout only on one side of bar
assembly

Very simple detector technology based on extruded plastic scintillator

● 3.5cm x 1cm x 2.35m extruded scintillator bars, threaded with 1.5mm WLSF
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Tower assemblies
Bar modules can be mechanically connected edge-wise to create
quarter-planes of ~9m x 2.35m of active detector area 

● 8 bar modules per quarter-plane

● 4 quarter-planes staggered to
provide full plane coverage: 

● tracking planes
alternate bar
orientation in x-y
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Performance
Large detector volume means material costs are a limiting factor,
hence desirable to use: 

● smallest number of electronic readout channels (i.e. widest/longest scintillator bars)

● thinnest feasible scintillator bars 

● smallest diameter WLSF 

Hit efficiency and timing are
key performance metrics:

● Light yield

● WLSF based on K-27 fluor
(e.g. Y-11) are not fast enough,
given the typical light yield in
the MATHUSLA design

# Photo-electrons detected by SiPM
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Ongoing R&D activities

● Studies of new WLSF formulations with higher
yield, shorter decay times and longer
attenuation lengths

– Light yield impacts timing resolution (not
efficiency), and reduces material costs 

●  Cost/performance optimization for SiPMs

– SiPM performance not a limiting factor

– Define QA/QC criteria

● Detailed GEANT4 simulation studies
with robust pattern recognition/ track
finding (Kalman filter) and vertexing

“Global” performance optimization of
extrusion, WLSF and SiPMs still to be
performed (detailed technical design)

(image based on 
old MATHUSLA-100 
geometry)
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Tracking test-stands
Ongoing testing of prototype scintillator bar modules
in two large cosmic ray hodoscopes

● Tracking with four-layer x-y arrays with looped WLSF and
80cm layer spacing

● Scintillator bars, fiber and SiPMs with close to MATHUSLA
nominal specifications

~1
m

~1
m

UVic:  Full-length (~5m) WLSF routed to single
64-SiPM array with CAEN readout system

UofT:  Individual SiPMs
mounted on front face of
scintillator bars 

● Custom preamps
mounted on bar
module

● More similar to final
MATHUSLA design,
but different WLSF
configuration
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Tracking test-stands
Recent milestones:

● MATHUSLA benchmark 1ns timing
performance achieved using FNAL
4cm x 1cm extrusion and 1.5mm St.
Gobain BCF-92XL fibre

● O(10cm) position resolution from timing
  

● Work ongoing to characterize tracking
parameters (i.e. residuals) in UVic test
stand

Cosmic ray muon
track reconstructed
in UVic test stand

Cosmic ray muon
hit positions in
scintillator bars
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New physics sensitivity

– Cosmic ray inelastic interactions,
(most importantly protons and
neutrons): simulated using
PARMA

– LHC muons:  MadGraph +
Pythia for EW & bb
production, propagate
through rock to detector in
GEANT4

– Atmospheric neutrinos: simulate
interaction with detector
material, support structure
and air in GENIE

● LHC muons and atmospheric neutrinos can be completely eliminated by signal
selection cuts, with typical signal efficiency ~ 50%

►   MATHUSLA-40 would significantly extend HL-LHC reach for LLPs

MATHUSLA-40 Benchmark analysis:   h → XX LLP, with X → hadrons

● Backgrounds (in order of severity):



Dec 8, 2024  The  MATHUSLA Experiment                  Steven Robertson       17

New physics sensitivity
Dark glueballs produced in exotic Higgs decays:

●  LLP signal arising from the production of all meta-stable dark glueball species

Additional scenarios studied based on original MATHUSLA-100 concept

● To be updated using new geometry and simulation framework

Predicted exclusion limits
as a function of the dark
glueball mass and SM-
neutral top partner mass

MATHUSLA
effectively probes
neutral naturalness
solutions of the little
hierarchy problem
across the entire
motivated TeV-
range of neutral top
partner masses
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Prospects

Updated Conceptual Design
Report for MATHUSLA-40
detector is almost finalized

● Hopefully, will be publicly
available soon!

● Detailed GEANT4 simulation of realistic MATHUSLA-40 detector

● Full physics simulations with robust and realistic background
estimates for benchmark physics models

● Detector R&D ongoing using large test stands in Canada; have
demonstrated required performance capabilities
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Extra material
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Detector specifications
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Neutral Naturalness

Reach of the 40m MATHUSLA design in a simplified parameter space of Neutral Naturalness,
generated using the dark glueball Monte Carlo from [18]. Dark glueballs, the lightest of which has mass
m0, are produced in exotic Higgs decays which undergo dark Lund-String hadronization. The effective higgs
coupling to dark gluons, which also allows glueballs to decay, is generated by neutral top partners in the Folded
SUSY [46] and Fraternal Twin Higgs [16] models, with masses indicated on the horizontal axes. The solid blue
curve shows the reach for 8 decays in the MATHUSLA decay volume, corresponding to the exclusion limit
for 50% reconstruction efficiency expected for near-background-free searches. The dashed curves represent
theoretical uncertainties in this reach from unknown aspects of non-perturbative dark Nf = 0 QCD.
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Physics objectives

● LLPs with mass less than a few GeV
  (any decay mode)

– Typically low multiplicity (i.e. 2 tracks) final states

– Sensitivity very dependent on detector
geometry and performance due to both
signal efficiency and background rejection
requirements    

● Hadronically decaying LLPs ranging from a few
GeV to TeV scale

– High multiplicity final states are relatively easy to
vertex and distinguish from backgrounds

– Factor of 1000 improvement over LHC for LLPs
with mass < ~100GeV    (LHC searches
background limited and are difficult to trigger)

MATHUSLA can search for two general
categories of physics signatures:

Any production process with 
σ>1fb can give a signal.  
Sensitivity to multi-TeV scales:

Second category provides the main benchmarks for detector design
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Location
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CODEX-b
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