Recent dark sector results from the BABAR experiment

Steven Robertson

Institute of Particle Physics, Canada steven.robertson@ualberta.ca

On behalf of the BABAR Collaboration

The International Joint Workshop on the Standard Model and Beyond 2024 UNSW, Sydney, Australia Dec 9-13, 2024

Outline

BABAR DETECTOR FOR THE PEP-II B FACTORY

- B-mesogenesis introduction
- BABAR overview
- Searches:
 - $B^+ \rightarrow p + \psi_D$

-
$$B^0 \rightarrow \Lambda + \psi_D$$

- $B^+ \rightarrow \Lambda_c^{+} + \psi_D$

Phys. Rev. Lett. 131, 201801 (2023)

Phys. Rev. D 107, 092001 (2023)

Submitted to Phys. Rev. D Lett.

Dark matter and the BAU

The particle physics Standard Model has no explanation for two of the biggest problems in cosmology:

Baryon Asymmetry of the Universe (BAU)

- Sakharov conditions: Sakharov, A D, JETP 5 (1967) 24
 - Baryon number violation
 - C and CP violation
 - Deviation from thermal equilibrium

Dark Forces at Accelerators

- Astronomical evidence for dark matter is overwhelming, all measurements to date are gravitational in nature
- The majority of the matter in the universe has an unknown composition

B Mesogenesis

Possible mechanism to explain dark matter abundance and BAU:

- Baryon number conservation includes both visible and dark sector
- Postulates the existence of a light dark-sector anti-baryon and a TeV-scale color-triplet bosonic mediator (Y)

G. Elor, M. Escudero and A. E. Nelson, Phys. Rev. D 99, 035031 (2019).

G. Alonso-Alvarez, G. Elorand, and M. Escudero, Phys.Rev. D 104, 035028 (2021).

- Matter antimatter asymmetry arises from CP violation in B^0 \overline{B}^0 oscillations
- BAU results from B meson decays into a baryon and a dark sector anti-baryon ψ_D (+ mesons)

Visible and dark sectors have equal but opposite baryon number asymmetries, but total baryon number is conserved

• Experimentally testable predictions of ${\,{f B}} o {\,\psi_{D}} + {\mathcal B}$ (+ ${\mathcal M}$)

Decay modes

Baryon asymmetry is produced by B^0 decays, but the same operators produce analogous charged B^+ decays as well:

• B^+ and B_d modes potentially accessible at B factory experiments

BABAR experiment

(qu)(sucupert ← 10

(e⁺e

n

3.1 GeV

Ϋ́(4S)

10.58

10.62

Asymmetric B Factory experiment at the SLAC National Accelerator Laboratory

- **BABAR** collected data from 1999 until 2008:
- **432 fb⁻¹ \Upsilon(4S) "on peak"** (~470 x 10⁶ BB pairs)
- 53 fb⁻¹ non-resonant "off peak"
- Smaller samples at the $\Upsilon(2S)$ and $\Upsilon(3S)$ energies

Optimized for tracking and B vertex reconstruction, K - π particle identification, precision calorimetry, and μ ID

- Clean environment with large solid-angle detector coverage and good missing energy reconstruction
- Inclusive trigger (N_{tracks}>3) as well as dedicated low-multiplicity triggers

CUSB (https://inspirehep.net/experiments/

9.44 9.46 10.00 10.02

9 Ge'

Y(3S)

10.37

10.54

10.34

Dark sector and BSM (

Dark matter may carry charges for non-SM gauge interactions:

• Effective Field Theory (EFT) provides a number of "portals" to access this dark sector:

Darkonium : Phys. Rev. Lett. 128 021802 (2022)

Axion-like particles : Phys. Rev. Lett. 128, 131802 (2022).

Dark Leptophilic scalar : Phys. Rev. Lett. 125,181801 (2020).

Six quark dark matter : Phys. Rev. Lett. 122, 072002 (2019).

Dark photon : Phys. Rev. Lett. 113, 201801 (2014); Phys. Rev. Lett. 119, 131804 (2017).

Muonic dark force : Phys. Rev. D 94, 011102 (2016).

Dark Higgs bosons : Phys. Rev. Lett. 108, 211801 (2012)

Dark sector @ BABAR:

- Production of on-shell dark bosons via $e^+e^- \rightarrow \gamma Z'$ "radiative" and $e^+e^- \rightarrow f f Z'$ "-strahlung" processes
- Light dark sector particles can be produced in decays of B and D mesons

Extensive BABAR program of dark sector and BSM searches

Feb 21, 2023

Methodology

B meson decays with missing energy have limited kinematic information available to uniquely identify the signal decay

 Instead, exclusively reconstruct one of the B meson decays ("Tag B") in one of several thousand possible hadronic decay modes:

- Advantage: improves knowledge of signal kinematics and missing energy, and strongly suppresses combinatorial backgrounds
- Disadvantage: low reconstruction efficiency (~0.1%)

Hadronic tag reconstruction method extensively used for semileptonic/leptonic decay studies and rare/forbidden decay searches

$\begin{array}{c} B^+ \longrightarrow p + \psi_D \\ & \text{and} \\ B^0 \longrightarrow \Lambda + \psi_D \end{array}$

Dec 10, 2024

${}^{*} \qquad B^{+} \rightarrow p + \psi_{D} \quad \& \quad B^{0} \rightarrow \Lambda + \psi_{D}$

Dark anti-baryon reconstruction

Missing energy 4-vector of "recoil" against the p or Λ yields the ψ_D invariant mass

- For $B \rightarrow p \psi_D$, m_{miss} resolution varies from ~110 MeV/c² (low mass) to ~11 MeV/c² (high mass)
- Background estimated directly from m_{miss} sideband data

$$m_{\rm miss}c^2 = \sqrt{(E_{B_{\rm sig}}^* - E_{\rm p}^*)^2 - |\vec{\rm p}_{B_{\rm sig}}^* - \vec{\rm p}_{\rm p}^*|^2 c^2}$$

41 events pass signal selection

Scan the recoil m_{miss} distribution in steps of $\sigma(m_{miss})$ for evidence of a narrow signal peak above a smoothly varying background

Entries per 10 MeV/c²

Branching fraction limits

 $B \rightarrow p \psi_D$:

- a total of 127 mass hypotheses are tested
- largest local significance @ 3.3 GeV/c² corresponds to ~1 σ global significance

 $B \rightarrow \Lambda \psi_D$:

- 193 mass hypotheses are tested
- largest local significance @ 3.7 GeV/c² corresponds to ~0.4 σ global significance

Branching fraction 90% confidence limits obtained at level of $10^{-6} - 10^{-5}$ for both modes:

- Probes effective operators $O_{i,j} = (\psi_D b)(q_i q_j)$ with $q_i = u$ and $q_j = d$,s
- Excludes a large fraction of the model parameter space

RPV SUSY interpretation

 $B \to \ensuremath{\mathcal{B}}$ + (missing energy) signature can also be generically interpreted in other new physics models

• e.g. missing neutralino in $B \rightarrow \mathcal{B} + \chi^0$ in RPV SUSY model:

- Results in limits on RPV coupling $\lambda "_{113}$ and $\lambda "_{123}$

Decay modes

Baryon asymmetry is produced by B^0 decays, but the same operators produce analogous charged B^+ decays as well:

Expect only one operator to dominate

• B^+ and B_d modes potentially accessible at B factory experiments

p

Λ

Baryon asymmetry is produced by B^0 decays, but the same operators produce analogous charged B^+ decays as well:

		Operator	Initial	Final	ΔM	
		and Decay	State	State	(MeV)	
			B_d	$\psi + n (udd)$	4340.1	
		$\mathcal{O}_{ud} = \psi b u d$	B_s	$\psi + \Lambda \left(u d s ight)$	4251.2	
		$\bar{b} ightarrow \psi u d$	B^+	$\psi +p\left(duu ight)$	4341.0	A lock
			Λ_b	$ar{\psi}+\pi^0$	5484.5	
			B_d	$\psi + \Lambda (usd)$	4164.0	N and S a
Expect only one operator to dominate		$\mathcal{O}_{us} = \psi b u s$ $\bar{b} o \psi u s$	B_s	$\psi + \Xi^0 \left(uss ight)$	4025.0	
			B^+	$\psi + \Sigma^+ (uus)$	4090.0	
			Λ_b	$ar{\psi}+K^0$	5121.9	I
		$egin{aligned} \mathcal{O}_{cd} &= \psi b c d \ ar{b} o \psi c d \end{aligned}$	B_d	$\left \psi+\Lambda_{c}+\pi^{-}\left(cdd ight) ight $	2853.6	
			B_s	$\psi + \Xi_{c}^{0}\left(cds ight)$	2895.0	
			B^+	$\psi + \Lambda_c^+ (dcu)$	2992.9	
			Λ_b	$ar{\psi}+\overline{D}^0$	3754.7	
		${\cal O}_{cs}=\psibcs$	B_d	$\psi + \Xi_{c}^{0}\left(csd ight)$	2807.8	
			B_s	$\psi + \Omega_c \left(css ight)$	2671.7	
		$\bar{b} ightarrow \psi c s$	B^+	$\psi + \Xi_{c}^{+} \left(csu ight)$	2810.4	B^+ \sim c Λ_c
			Λ_b	$\bar{\psi} + D^- + K^+$	3256.2	d d
						$Y \setminus$

• B^+ and B_d modes potentially accessible at B factory experiments

$B^+ \rightarrow \Lambda_c^+ + \psi_D$

$B^+ \rightarrow \Lambda_c^+ + \psi_I$

Operator $O_{cd} = \psi bcd$ can be accessed via B⁺ $\rightarrow \Lambda_c^{+} \psi_D$ mode

- Λ_c^+ is reconstructed via $\Lambda_c^+ \to p \ K^- \pi^+$ (all charged tracks)
- Hadronic tag reconstruction of ${\rm B}_{tag}$ with $\Lambda_c^{\ +}$ candidate reconstructed from remaining tracks

- Require exactly 3 high quality tracks, satisfying $\Lambda_c^+ \rightarrow p \ K^- \pi^+$ charge and particle ID expectations
- Very low background from $B \rightarrow$ baryons + X; backgrounds arise primarily from $q\overline{q}$ (continuum) sources.

• Analysis based on 399 fb⁻¹ of data (~2 x $10^8 B^+B^-$ events), with an additional 32 fb⁻¹ used for (non-blinded) analysis optimization and subsequently discarded

Signal reconstruction

Signal Λ_c^{+} reconstruction is validated using m_{ES} sideband region data

- Clear Λ_c^+ peak visible from continuum $q\overline{q}$ (q = u,d,s,c) with an incorrectly reconstructed B_{tag}
- Not present in continuum MC, but enables data-driven background estimate in m_{ES} signal region, as well as check of resolution of $m(pK\pi)$ in data

 $\Lambda_c^{ \scriptscriptstyle +}$ candidates in m_{ES} sideband region

 $\begin{array}{l} \mbox{Continuum } \Lambda_c^{\ +} \mbox{ events and } B \rightarrow \mbox{baryons+} X \\ \mbox{backgrounds typically have low missing} \\ \mbox{energy and additional neutral particles} \\ \mbox{besides the } B_{tag} \ \mbox{and } \Lambda_c^{\ +} \mbox{candidates} \end{array}$

- Multivariate (BDT) selector to suppress remaining backgrounds
- 14 inputs, based on overall event shape, B_{tag} properties, Λ_c^{+} candidate properties, and additional detector activity in the event

Background rejection

Boosted decision tree (BDT) provides extremely high suppression of remaining backgrounds with little loss of signal efficiency

- 32 fb⁻¹ data sample used for input validation and training, then discarded
- Signal samples spanning full kinematically accessible ψ_D mass range.
- Optimization performed blinded
- BDT score > 0.99

No events survive BDT selection (~0.4 expected background)

- Three events close to signal region were examined and found to be consistent with $q\overline{q}$ continuum production of $\Lambda_c^{\ +}$

Results

Signal significance determined as a function of $\psi_D~$ mass by scanning across $m(\psi_D)$ in steps of $\sigma(m(\psi_D))$

- $m(\psi_D)$ resolution varies from $60-20\;MeV/c^2$ as a function of mass
- 4-vector of ψ_D obtained from inferred B_{sig} kinematics in range $0.94~<~m(\psi_D)~<~2.99~GeV/c^2$

Branching fraction limit @ 90% CL B(B⁺ $\rightarrow \Lambda_c^{+} \psi_D^{-}) < (1.6 - 1.7) \times 10^{-4}$ over accessible mass range

- Exclusive $B^+ \rightarrow \Lambda_c^{+} \psi_D$ branching fraction expected to range from 10% - 100% of inclusive $B(B^+ \rightarrow \Lambda_c^{+} \psi_D X)$, depending on mass
- Substantial new constraint on model parameter space for O_{cd} operator

•

Conclusion

Clean B factory environment is extremely well suited to searches for light dark sector signatures, and precision probes of new physics:

- Two 2023 BABAR papers substantially reduce parameter space for B-mesogenesis operators $O_{ud} = \psi b u d$ and $O_{us} = \psi b u s$
- New results for $B^+ \rightarrow \Lambda_c^+ \psi_D$ search constrain operator $O_{cd} = \psi bcd$

$B^0 \to \Lambda \; \psi_D$	Phys. Rev. D 107, 092001 (2023)
$B^{\scriptscriptstyle +} \mathop{\rightarrow} p \; \psi_D$	Phys. Rev. Lett. 131, 201801 (2023)
$B^{\scriptscriptstyle +} \to \Lambda_c^{\scriptscriptstyle +} \psi_D$	arXiv:xxxxxxx[hep-ex] (submitted to Phys. Rev. D Lett.)

Unique **BABAR** data set remains productive more than 15 years after the end of data taking!

Extra Material

BABAR data sets

BABAR collected data from 1999-2008

- 432 fb⁻¹ Υ(4S) "onpeak" (~470 x 10⁶ BB pairs)
- 53 fb⁻¹ non-resonant "offpeak"
 - collected ~40MeV below Y(4S) peak
- Samples of "narrow Υ" events collected during last few months of running:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays

Process	Cross section (nb)
bb	1.1
cc	1.3
light quark	qq ~2.1
$\tau^+\tau^-$	0.9
e⁺e⁻	~40

*

$B^+ \to \Lambda_c^{+} + \psi_D$

BDT inputs:

Input	Type	Description	
R_2	Event	Ratio of the second to the zeroth Fox-	
	shape	Wolfram moment [20] computed using	
		all tracks and neutral clusters	
purity	$B_{ m tag}$	Fraction of correctly reconstructed B	
		mesons in each B_{tag} mode	
intpurity	$B_{ m tag}$	Integrated purity of the overall B_{tag}	
		sample as a function of the value of a	
		cut applied on purity	
$B_{ m mode}$	$B_{ m tag}$	Reconstructed decay mode of the B_{tag}	
$m_{ m ES}$	B_{tag}	$B_{\rm tag}$ invariant mass	
ΔE	$B_{ m tag}$	Difference between the B_{tag} energy and	
		the beam energy	
B_{thrust}	$B_{ m tag}$	The magnitude of the B_{tag} thrust	
B_{thrustZ}	$B_{ m tag}$	Component of the B_{thrust} along the z-	
		axis (i.e. the e^+e^- collision axis)	
$m_{pK^+\pi^-}$	Λ_c^+	Reconstructed invariant mass of the Λ_c^+	
		candidate	
χ^2	Λ_c^+	χ^2 of the fit of the Λ_c^+ candidate	
$N_{ m neut}$	ECL	Total number of additional neutral	
		clusters	
N_{π^0}	ECL	Number of additional π^0 candidates	
$E_{ m extra}$	ECL	Sum of the energies of all additional	
		neutral clusters	
$\cos heta_{\psi_D}$	ψ_D	Cosine of the polar angle of the miss-	
		ing energy 4-vector in the laboratory	
		frame.	

- Baryon number asymmetry depends on the level of CP violation in B mixing, and on the branching fraction to dark baryons
- Dark baryon mass must be large enough to protect against proton decay but small enough to permit production from B meson decays

 Dark baryon must decay rapidly into other dark sector particles (i.e. astronomical dark matter), to avoid decay to SM particles