

Outline

- **Introduction**
- The BABAR Detector
- Analysis strategy for *B→Dℓ⁻⊽* **• Tag one B meson via hadronic decay** ● Signal-to-background separation **● Extraction of signal weight factors O** Unbinned angular fits ● Systematic errors Cross checks
- **e** Results
	- Fit results for *B→Dℓ⁻⊽*
	- **Form factors**
	- $|V_{cb}|$
- **Conclusions and Outlook**

G. Eigen, GGWS24, Sydney 10/12/2024 2

Introduction

- The decay *B→Dℓ⁻* \overline{v} proceeds through a simple tree-level diagram and has been studied by many experiments
- The decay proceeds via the vector current only

$$
\langle D|\overline{c}\gamma_{\mu}b|\overline{B}\rangle_{V} = f_{+}(q^{2})\left((p_{B} + p_{D})_{\mu} - \frac{(p_{B} + p_{D}) \cdot q}{q^{2}}q_{\mu}\right)
$$

$$
+ f_{0}(q^{2})\frac{(p_{B} + p_{D}) \cdot q}{q^{2}}q_{\mu}
$$

- \bullet In the limit of vanishing lepton masses $f_0(q^2)$ becomes zero
- The differential *B→Dℓ*⁻ \bar{v} decay rate is with and $w = \frac{m_B^2 + m_D^2 - q^2}{2m_Rm_D}$ So, $d\Gamma$ is a function of q^2 and cos θ_ℓ and depends on form factor $f_+(q^2)$ and CKM element $|V_{cb}|$

Introduction cont.

- Using the full data set, *BABAR* has performed a new study of *B→Dℓ*⁻^{*τ*} by analyzing the process $e^+e^- \rightarrow Y(4S) \rightarrow B_{\text{taq}} \overline{B}_{\text{siq}}$, where B_{taq} is reconstructed in *B* hadronic decays and B_{sig} represents the $\bar{B}{\rightarrow}D\ell^{\text{-}}\bar{\nu}\,$ signal mode
- Two different form factor parametrizations are employed, the model-independent Boyd-Grinstein-Lebed (BGL) expansion and the model-dependent Caprini-Lellouch-Neubert (CLN) expansion Nucl.Phys. **B461**, 493 (1996) Nucl.Phys. **B530**, 153 (1998)
- **BGL form factors** $f_{0,+}$ are expressed as an expansion in variable $z(w) = \frac{\sqrt{w+1} \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$ with free coefficients $a_{0,+}$ constrained by $\frac{P}{\sqrt{w+1}}$ with free coefficients $a_{0,+}$ constrained by $\sum_{i=1}^{n} |a_i^{0,+}|^2 \le 1$ normalized to Blaschke factors $P_{0,+}(z)$ that remove contributions of bound state B_c ^(*) poles and non-perturbative outer functions $\phi_{0,+}(z)$

CLN form factors, based on QCD dispersion relations and HQET, have been used in most analyses and are expressed as

 $G(w) = G(1)(1-8\rho_D^2 z(w) + (51\rho_D^2 - 10)z(w)^2 - (252\rho_D^2 - 84)z(w)^3)$

where $G(1)$ is the normalization and ρ_D is the slope

G. Eigen, GGWS24, Sydney 10/12/2024

The BABAR Detector

Analysis Strategy

e-

 $\overline{B}_{\text{sig}}$

e+

D(*)

 π

*B*tag

D

- Data sample consist of 471×10^6 $Y(4S) \rightarrow BB$ events (426 fb⁻¹) NIM **A726**, 203 (2013)
- One B is tagged via a hadronic decay ($D^{(*)0}$, $D^{(*)+}$, $D_s^{(*)+}$, J/ψ) plus up to 5 charged charmless light mesons and 2 neutral mesons PRD **110**, 032018 (2024)

The reconstruction relies on 2 variables

 $=\sqrt{\frac{1}{4}\,\mathcal{S}-\Big|\vec{\bm{\rho}}^{\,^\ast}_{\mathsf{tag}}}$ 2 $\varDelta E=\mathsf{E}^*_{\mathsf{tag}}-\frac{1}{2}\sqrt{s}$

 $m_{ES} = \sqrt{\frac{1}{4}}s - |\vec{p}_{tag}|$ 3-momentum and energy $\frac{1}{V}$ $\sqrt{\frac{1}{2}}$ of B_{tag} in the CM frame and $\frac{1}{V}$ where $\vec{p}^*_{\text{ tag}}$ and $\vec{E}^*_{\text{ tag}}$ are 3-momentum and energy s is center-of-mass energy squared

 \bullet Select events with m_{ES} >5.27 GeV/ c^2 and $|\Delta E|$ <72 MeV

- Select 10 modes on signal side: $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$, $D^+ \rightarrow K^-\pi^+\pi^+$, $K^-\pi^+\pi^-\pi^0$ plus an *e*- with p_e >200 MeV/*c* or a μ with p_u > 300 MeV/*c*
- Analysis is similar to that of old $B{\to}D^* \ell^-\bar{\nu}$ PRL **123**, 091801 (2019)

G. Eigen, GGWS24, Sydney 10/12/2024

Analysis Strategy cont.

Determine missing momentum

$$
\rho_{\overline{v}} \equiv \rho_{\text{miss}} = \rho_{e^+e^-} - \rho_{tag} - \rho_D - \rho_{\ell}
$$

For a semileptonic decay with one missing neutrino this is fulfilled

- We use the discriminating variable $(E^{**}_{miss}$ and \vec{p}^{**}_{miss} are $\bar{\nu}$ energy and 3-momentum in *B*_{sig} rest frame) $\bm{U} = \bm{E}^{**}_{\sf miss} - \left| \vec{\bm{\rho}}^{**}_{\sf miss} \right|$
- We measure the extra energy in the calorimeter, r require E_{Extra} (\leq 80 MeV)

- \bullet We perform a kinematic fit of the entire event, constraining B_{taq} , B_{sig} and *D* mesons to their nominal masses, constrain *B* and *D* decay products to separate vertices
- \bullet In case of multiple candidates, we retain that with the lowest E_{Extra}
- A second kinematic fit with a *U*=0 constraint is done to improve the resolution in the variables q^2 and cos θ_{ℓ} (*q* is the momentum transfer to the ℓ ⁻ ν system and θ_{ℓ} is the lepton helicity angle)

We test the binned fit on the *U* distribution for the *K* $\tau \tau$ + $e^{\tau} \overline{\nu}$ mode G. Eigen, GGWS24, Sydney 10/12/2024

Background Varies across Phase Space

- We show that this method works in different regions of cos θ_{ℓ} and q^2
- Binned fits to data in $K^-\pi^+\pi^+e^-\overline{\nu}$ mode
- Fits describe data well

Binned fits to data in $K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} e^{\scriptscriptstyle -} {\overline{\nu}}$ mode

- Fits describe data well
- Distributions illustrate different background shapes

G. Eigen, GGWS24, Sydney 10/12/2024

 Ω

5

 $|\cos \theta_{e} + 0.85| < 0.05$ $|\cos \theta_{e} - 0.85| < 0.05$

→ Data **Full fit Signal** **Bkgd.**

−0.2 −0.1 0 0.1 0.2 0.3 *U* (GeV)

Remove Peaking Background at low *q*²

- **For low** q^2 **, the squared missing-mass distribution shows a small peaking** background from $B \rightarrow D\pi$, particularly in muon modes
- \bullet Probably caused by $\mu \leftrightarrow \pi$ misidentification in the muon channel
- We remove this peaking background by requiring $q^2 > 0.5$ GeV $^2/c^2$

PRD **93**, 032006 (2016)

G. Eigen, GGWS24, Sydney 10/12/2024 10

Extraction of Signal Weight Factors

- **We perform continuous** *U***-variable fits in** q^2 **and cos** θ_ℓ **regions, selecting 50 events** at a time that are closest to a selected event to determine signal and background components from which we determine signal weights for each event
-

Signal weight $Q_i = \frac{S_i(U_i)}{S_i(U_i) + B_i(U_i)}$ and background weight

11

We observe 16,701 events in all ten modes

 $\mathcal{S}_i(\bm{\mathsf{U}}_i) + \mathcal{B}_i(\bm{\mathsf{U}}_i)$

- To illustrate how well this procedure works, we show the *U* variable distributions for different q^2 and cos θ_{ℓ} regions, summing the Q_i values of all 10 modes
- Red points result from signal weights *^Q*ⁱ and blue points from background weights (1-*Q*ⁱ)

Unbinned Angular Fits

- We require $|U|$ <50 MeV, $0.5 \le q^2 \le 10$ GeV²/ c^2 & $|\cos \theta_e|$ < 0.97 for the final sample
- We perform ML fits in the q^2 -cos θ_ℓ plane using only signal weights Q_i

 $\mathcal{L}(% \mathcal{M})=\mathcal{M}\left(\mathcal{M}(\mathcal{M})\right)$

- \bullet We add two external constraints
	- To set normalization of the form factors, the *w*→1 region calculations from (2015) lattice QCD are added as Gaussian constraints (6 $f_{0,+}(w)$ MILC data points)
	- \bullet To access $|V_{cb}|$ the absolute q^2 -differential decay rate data from Belle are also incorporated as Gaussian constraints (40 d*H*dw data points) $\overrightarrow{ }$ $\overrightarrow{ }$ $\overrightarrow{ }$ دי
∴ PRD **93**, 032006 (2016)

 $\left| \vec{x} \right\rangle_{\!\!\text{ltot}} = -2\!\ln\mathcal{L}(\vec{x})$

- The total likelihood function is
- \bullet We perform fits both with the BGL (N=2,3) and CLN forms
- \bullet 1d projections of the nominal fit in comparison with simulation using the BGL form

 $\left| \vec{X} \right\rangle_\text{Belle} + \chi^2 \big(\vec{X} \big)$

x) |*FNAL*/*MILC*

x) |BABAR + ^χ² (

The cos θ_{ℓ} distribution exhibits the sin² θ_{ℓ} dependence expected in the SM this indicates that the \overline{v} reconstruction works well 12 G. Eigen, GGWS24, Sydney 10/12/2024

Cross Checks

● Besides the nominal fit, we perform 3 other fits with different background subtraction to study systematic uncertainties

Arbitrary units

Arbitrary units

 \bullet We perform cross checks between background subtracted data and efficiency-corrected simulations with BGL weighting and ISGW2 weighting for the confidence level of the fit and the E_{Extra} distribution PRD **52**, 2783 (1995)

The relative resolution of the deviation of the reconstructed to-generated values for the *q*² and cos θ_{ℓ} distributions peak at 1, σ =2.6%

Comparison of (1-*Q*) weighted data and background simulation

Systematic Errors

- Since background-subtracted data and simulations roughly agree, we assign no systematic error
- Take resolution (2.6%) in ratio of background-subtracted data and simulation as systematic error
- To evaluate systematic error associated with reconstruction we repeat unbinned fit employing kinematic variables without the kinematic fit and take difference of result wrt standard unbinned fit as systematic error
- To evaluate systematic error associated with background subtraction we perform 3 additional background subtractions and perform fits; the largest deviation wrt to the result of the nominal fit is taken as systematic error
- Variations in the background and signal line shapes are accounted for **•** for background line shapes we vary all 7 parameters in the pdf by 5% and redo fits; deviations from nominal fit are taken as systematic error **•** for signal line shapes we vary all parameters of the central two-piece Gaussians and weights of the two tail Gaussians by 5% and redo fits;
	- deviations from the nominal fit are taken as systematic error

Fit Results

PRD **110**, 032018 (2024)

Fit parameters for *BABAR*+*Belle*+*FNAL/MILC* data and BGL with *N*=2 expansion

Fit parameters for *BABAR*+*Belle*+*FNAL/MILC* data and BGL with *N*=3 expansion

Fit parameters for *BABAR*+*Belle*+*FNAL/MILC* data and CLN

 $G(1)$ ρ^2 _D 1.056±0.008 1.155±0.023

- **Compare N=2 and N=3 BGL form factors** ● Both agree well though the N=2 results have higher precision
	- \bullet the 1 σ error includes both statistical and systematic uncertainties

G. Eigen, GGWS24, Sydney 10/12/2024

Form Factor Results

- Now let us look at the f⁺ (N=2 and N=3) results for *BABAR* data only compared to *BABAR+FNAL/MILC* data
- For N=2, both results are in excellent agreement at the 1σ level
- For N=3, both results are consistent though the *BABAR* only result is systematically lower **at the** 1σ level it disagrees with the fit to *BABAR+ FNAL/MILC* data 1 1.1 1.2 *N=2***,** BaBar+FNAL/MILC *N=2***,** BaBar-only 1 1.1 1.2 F *N=3***,** BaBar+FNAL/MILC *N=3***,** BaBar-only
- Including the lattice points reduces the total error

Form Factor Results

The *B*→*D* form factors have improved precision and show good agreement with the new, full $q^2 B_s \rightarrow D_s$ calculation of the HPQCD Collaboration assuming flavor SU(3) symmetry

• Some slight tension exists for h_r in the HQET basis at maximum recoil point, $q^2 \rightarrow 0$, but otherwise the SU(3) flavor symmetry seems to hold \rightarrow SU(3) flavor symmetry breaking cannot be large

| *V*_{cb}| Measurements

- The CKM parameter $|V_{cb}|$ is extracted either from exclusive *B→Dℓ⁻⊽* & *B→D[∗]ℓ⁻⊽* decay rates or from the inclusive b \rightarrow c $\ell^-\overline{\nu}$ decay rate
- There is a \sim 3 σ tension between $|V_{ch}|_{\sim}$ = 0.0398 ± 0.0006 & that is not understood yet *
- We extract $|V_{cb}|$ by $|V_{cb}| = \sqrt{\frac{2}{\Gamma L}}$, where B are semileptonic branching fractions taken from HFLAV, $\frac{1}{\sqrt{1+18}}$ are the B lifetimes ($\tau_{\rm B}$ +=1.519 \pm 0.004 ps and τ_B ^{0=1.638±0.004} ps) and Γ is the decay rate obtained from the fit
- \bullet Using our Γ fit result (BGL with N=2), we obtain for HFLAV data
- **All measurements agree** within the errors

Thank you for your attention

G. Eigen, GGWS24, Sydney 10/12/2024 20