

Outline

- Introduction
- The BABAR Detector
- Analysis strategy for B→Dℓ-v
 Tag one B meson via hadronic decay
 Signal-to-background separation
 Extraction of signal weight factors
 Unbinned angular fits
 Systematic errors
 Cross checks
- Results
 - Fit results for $\overline{B} \rightarrow D\ell^- \overline{\nu}$
 - Form factors
 - |V_{cb}|
- Conclusions and Outlook

Introduction

- The decay $\overline{B} \rightarrow D\ell \overline{\nu}$ proceeds through a simple tree-level diagram and has been studied by many experiments
 - The decay proceeds via the vector current only

$$< D\left|\overline{c}\gamma_{\mu}b\right|\overline{B} > \int_{V} = f_{+}(q^{2})\left(\left(p_{B}+p_{D}\right)_{\mu}-\frac{\left(p_{B}+p_{D}\right)\cdot q}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{\left(p_{B}+p_{D}\right)\cdot q}{q^{2}}q_{\mu}$$

- In the limit of vanishing lepton masses $f_0(q^2)$ becomes zero
- The differential $\overline{B} \rightarrow D\ell^{-}\overline{\nu}$ decay rate is $\frac{d\Gamma}{dq^{2}dcos\theta_{I}} = \frac{G_{F}^{2}|V_{cb}|^{2}\eta_{EW}^{2}}{32\pi^{3}}k^{3}|f_{+}(q^{2})|^{2}sin^{2}\theta_{I}}$ with $k = m_{D}\sqrt{w^{2}-1}$ and $w = \frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2m_{B}m_{D}}$ with $k = m_{D}\sqrt{w^{2}-1}$ and $w = \frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2m_{B}m_{D}}$ with $k = m_{D}\sqrt{w^{2}-1}$

Introduction cont.

- Using the full data set, *BABAR* has performed a new study of $\overline{B} \rightarrow D\ell^- \overline{\nu}$ by analyzing the process $e^+e^- \rightarrow Y(4S) \rightarrow B_{tag}\overline{B}_{sig}$, where B_{tag} is reconstructed in *B* hadronic decays and \overline{B}_{sig} represents the $\overline{B} \rightarrow D\ell^- \overline{\nu}$ signal mode
- Two different form factor parametrizations are employed, the model-independent Boyd-Grinstein-Lebed (BGL) expansion and the model-dependent Caprini-Lellouch-Neubert (CLN) expansion
 Nucl.Phys. B461, 493 (1996) Nucl.Phys. B530, 153 (1998)
- BGL form factors f_{0,+} are expressed as an expansion in variable with free coefficients a_{0,+} constrained by normalized to Blaschke factors P_{0,+}(z) $\sum_{i=1}^{n} |a_i^{0,+}|^2 \le 1$ that remove contributions of bound state B_c^(*) poles and non-perturbative outer functions $\phi_{0,+}(z)$

CLN form factors, based on QCD dispersion relations and HQET, have been used in most analyses and are expressed as

 $\mathcal{G}(w) = \mathcal{G}(1) \left(1 - 8\rho_D^2 z(w) + (51\rho_D^2 - 10)z(w)^2 - (252\rho_D^2 - 84)z(w)^3 \right)$

where $\mathcal{G}(1)$ is the normalization and $\rho_{\rm D}$ is the slope

The BABAR Detector

Analysis Strategy

- Consist of 471×10^6 Y(4S)→ $B\overline{B}$ events (426 fb⁻¹) NIM A726, 203 (2013)
- One B is tagged via a hadronic decay $(D^{(*)0}, D^{(*)+}, D_s^{(*)+}, J/\psi)$ plus up to 5 charged charmless light mesons and 2 neutral mesons PRD 110, 032018 (2024)

The reconstruction relies on 2 variables

 $m_{\rm ES} = \sqrt{\frac{1}{4}s - \left|\vec{p}_{\rm tag}^{*}\right|^{2}}$ $\Delta E = E_{\rm tag}^{*} - \frac{1}{2}\sqrt{s}$

where \vec{p}_{tag}^* and \vec{E}_{tag}^* are 3-momentum and energy of B_{tag} in the CM frame and \vec{v}_{ℓ} s is center-of-mass energy squared **B**_{tag}

B_{sig}

π

- Select events with $m_{\rm ES}$ > 5.27 GeV/ c^2 and $|\Delta E|$ < 72 MeV
- Select 10 modes on signal side: $D^0 \rightarrow K^- \pi^+$, $K^- \pi^+ \pi^0$, $K^- \pi^+ \pi^-$, $D^+ \rightarrow K^- \pi^+ \pi^-$, $K^- \pi^+ \pi^- \pi^0$ plus an e^- with $p_e > 200$ MeV/c or a μ with $p_{\mu} > 300$ MeV/c
- Solution Content of Content

Analysis Strategy cont.

Determine missing momentum

$$\mathcal{D}_{\overline{\nu}} \equiv \mathcal{P}_{\mathsf{miss}} = \mathcal{P}_{e^+e^-} - \mathcal{P}_{tag} - \mathcal{P}_{D} - \mathcal{P}_{\ell}$$

For a semileptonic decay with one missing neutrino this is fulfilled

- We use the discriminating variable $U = E_{\text{miss}}^{**} |\vec{p}_{\text{miss}}^{**}|$ $(E^{**}_{\text{miss}} \text{ and } \vec{p}^{**}_{\text{miss}} \text{ are } \vec{\nu} \text{ energy and 3-momentum in}$ $\overline{B}_{\text{sig}}$ rest frame)
- We measure the extra energy in the calorimeter, require E_{Extra} (\leq 80 MeV)

- We perform a kinematic fit of the entire event, constraining B_{tag}, B_{sig} and D mesons to their nominal masses, constrain B and D decay products to separate vertices
- In case of multiple candidates, we retain that with the lowest E_{Extra}
- A second kinematic fit with a U=0 constraint is done to improve the resolution in the variables q^2 and $\cos \theta_{\ell}$ (q is the momentum transfer to the $\ell \bar{\nu}$ system and θ_{ℓ} is the lepton helicity angle)

Signal-to-Background Separation

- We use a novel technique to separate signal from background since the background shape varies across phase space
- Primary background is from $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$ with $D^* \rightarrow D\pi$ or $D^* \rightarrow D\gamma$

- Background from charmless *B* decays and $q\bar{q}$ continuum is small
- We define pdfs for signal (4 two-piece Gaussians) and background (2 two-piece Gaussians)

• We test the binned fit on the *U* distribution for the $K^-\pi^+e^-\overline{\nu}$ mode G. Eigen, GGWS24, Sydney 10/12/2024

Background Varies across Phase Space

- We show that this method works in different regions of $\cos \theta_{\ell}$ and q^2
- Binned fits to data in $K^-\pi^+\pi^+e^-\overline{\nu}$ mode
- Fits describe data well

- Binned fits to data in $K^-\pi^+\pi^-\pi^+e^-\overline{\nu}$ mode
- Fits describe data well
- Distributions illustrate different background shapes

Remove Peaking Background at low q²

- For low q^2 , the squared missing-mass distribution shows a small peaking background from $\overline{B} \rightarrow D\pi$, particularly in muon modes
- Probably caused by $\mu \leftrightarrow \pi$ misidentification in the muon channel
- We remove this peaking background by requiring q²>0.5 GeV²/c²

PRD 93, 032006 (2016)

G. Eigen, GGWS24, Sydney 10/12/2024

Extraction of Signal Weight Factors

- We perform continuous U-variable fits in q^2 and $\cos \theta_{\ell}$ regions, selecting 50 events at a time that are closest to a selected event to determine signal and background components from which we determine signal weights for each event
- Signal weight $Q_i = \frac{S_i(U_i)}{S_i(U_i) + B_i(U_i)}$ and background weight

- We observe 16,701 events in all ten modes
- To illustrate how well this procedure works, we show the U variable distributions for different q^2 and $\cos \theta_{\ell}$ regions, summing the Q_i values of all 10 modes
- Red points result from signal weights Q_i and blue points from background weights $(1-Q_i)$

Unbinned Angular Fits

- We require |U| < 50 MeV, $0.5 \le q^2 \le 10$ GeV²/ c^2 & $|\cos \theta_\ell| < 0.97$ for the final sample
- We perform ML fits in the q^2 -cos θ_ℓ plane using only signal weights Q_i
- We add two external constraints
 - To set normalization of the form factors, the $w \rightarrow 1$ region calculations from (2015) lattice QCD are added as Gaussian constraints (6 $f_{0,+}(w)$ MILC data points)
 - To access |V_{cb}| the absolute q² –differential decay rate data from Belle are also incorporated as Gaussian constraints (40 dΠdw data points)
 PRD 93, 032006 (2016)
- The total likelihood function is
- We perform fits both with the BGL (N=2,3) and CLN forms
- Id projections of the nominal fit in comparison with simulation using the BGL form

 $\mathcal{L}(\vec{x})_{\text{ltot}} = -2\ln \mathcal{L}(\vec{x})_{\text{IBABAR}} + \chi^2(\vec{x})_{\text{IBelle}} + \chi^2(\vec{x})_{\text{IFNAL/MILC}}$

• The cos θ_{ℓ} distribution exhibits the sin² θ_{ℓ} dependence expected in the SM this indicates that the \overline{v} reconstruction works well G. Eigen, GGWS24, Sydney 10/12/2024

Cross Checks

Besides the nominal fit, we perform 3 other fits with different background subtraction to study systematic uncertainties

Arbitrary units

We perform cross checks between backgroundsubtracted data and efficiency-corrected simulations with BGL weighting and ISGW2 weighting for the confidence level of the fit and the E_{Extra} distribution PRD 52, 2783 (1995)

The relative resolution of the deviation of the reconstructedto-generated values for the q^2 and $\cos \theta_{\ell}$ distributions peak at 1, σ =2.6%

Comparison of (1-Q) weighted data and background simulation

Systematic Errors

- Since background-subtracted data and simulations roughly agree, we assign no systematic error
- Take resolution (2.6%) in ratio of background-subtracted data and simulation as systematic error
- To evaluate systematic error associated with reconstruction we repeat unbinned fit employing kinematic variables without the kinematic fit and take difference of result wrt standard unbinned fit as systematic error
- To evaluate systematic error associated with background subtraction we perform 3 additional background subtractions and perform fits; the largest deviation wrt to the result of the nominal fit is taken as systematic error
- Variations in the background and signal line shapes are accounted for
 for background line shapes we vary all 7 parameters in the pdf by 5% and redo fits; deviations from nominal fit are taken as systematic error
 for signal line shapes we vary all parameters of the central two-piece Gaussians and weights of the two tail Gaussians by 5% and redo fits; deviations from the nominal fit are taken as systematic error

Fit Results

PRD 110, 032018 (2024)

Fit parameters for BABAR+Belle+FNAL/MILC data and BGL with N=2 expansion

a ₀ f+	a ₁ f+	a ₂ f+	a ₁ ^{f0}	a ₂ ^{f0}
0.0126 ± 0.0001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.155 ± 0.049

Fit parameters for BABAR+Belle+FNAL/MILC data and BGL with N=3 expansion

a ₀ f+	a ₁ f+	a ₂ f+	a ₃ f+	a ₁ ^{f0}	a ₂ ^{f0}	a ₃ f0
0.0126 ± 0.0001	-0.098±	0.626±	-3.939±	-0.061±	0.435±	-3.977±
	0.004	0.241	3.194	0.003	0.205	2.840

Fit parameters for BABAR+Belle+FNAL/MILC data and CLN

G(1)	ρ² _D
1.056 ± 0.008	1.155 ± 0.023

- Compare N=2 and N=3 BGL form factors
 Both agree well though the N=2 results have higher precision
 - the 1σ error includes both statistical and systematic uncertainties

Form Factor Results

- Now let us look at the f⁺ (N=2 and N=3) results for BABAR data only compared to BABAR+FNAL/MILC data
- For N=2, both results are in excellent agreement at the 1σ level
- For N=3, both results are consistent though the BABAR only result is systematically lower \longrightarrow at the 1 σ level it disagrees with the fit to BABAR+ FNAL/MILC data
- Including the lattice points reduces the total error

Form Factor Results

The B→D form factors have improved precision and show good agreement with the new, full q² B_s→D_s calculation of the HPQCD Collaboration assuming flavor SU(3) symmetry

Some slight tension exists for h₋ in the HQET basis at maximum recoil point, $q^2 \rightarrow 0$, but otherwise the SU(3) flavor symmetry seems to hold \rightarrow SU(3) flavor symmetry breaking cannot be large

|V_{cb}| Measurements

- The CKM parameter $|V_{cb}|$ is extracted either from exclusive $\overline{B} \rightarrow D\ell^- \overline{\nu} \& \overline{B} \rightarrow D^* \ell^- \overline{\nu}$ decay rates or from the inclusive $b \rightarrow c\ell^- \overline{\nu}$ decay rate
- There is a ~3 σ tension between $|V_{cb}|_{D^{*}e_{V}} = 0.0398 \pm 0.0006$ & $|V_{cb}|_{inc} = 0.0422 \pm 0.0005$ that is not understood yet
- We extract $|V_{cb}|$ by $|V_{cb}| = \sqrt{\frac{\mathfrak{B}}{\Gamma' \tau_B}}$, where B are semileptonic branching fractions taken from HFLAV, $\tau_B = \sqrt{\frac{\mathfrak{B}}{\Gamma' \tau_B}}$, where B are the B lifetimes (τ_B +=1.519±0.004 ps and $\tau_B = 1.638 \pm 0.004$ ps) and Γ is the decay rate obtained from the fit
- Using our I' fit result (BGL with N=2), we obtain for HFLAV data
- All measurements agree within the errors

Data	V _{cb}
BABAR B ⁰	$0.04036 \pm 0.00017 \pm 0.00010 \pm 0.00167$
BABAR B ⁺	$0.03898 \pm 0.00015 \pm 0.00009 \pm 0.00130$
Belle B ⁰	$0.04201 \pm 0.00018 \pm 0.00010 \pm 0.00106$
Belle B ⁺	$0.04160 \pm 0.00017 \pm 0.00010 \pm 0.00107$

Conclusions and Outlook

- We performed the first 2-dimensional unbinned angular analysis in the q^2 cos θ_ℓ plane for the $\overline{B} \rightarrow D\ell^- \overline{\nu}$ process
- We used a novel event-wise signal-to-background separation
- The lepton helicity follows a sin² θ_{ℓ} distribution as expected in the SM; this is shown for the first time confirming that the v reconstruction works well
- For the BGL form we measure $|V_{cb}|=0.0411\pm0.0012$, which is closer to the value measured in inclusive $b \rightarrow c\ell^- \overline{\nu}$ decays
- The $B \rightarrow D$ form factors are found to be consistent with the $B_s \rightarrow D_s$ form factors predicted by lattice calculations and expected by flavor SU(3) relations
- A similar analysis on $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$ is in progress to measure BGL and CLN form factors (V, A₁, A₂ & A₃) and determine $|V_{cb}|$

Thank you for your attention