Multi-component dark matter from Minimal Flavor Violation

Based on 2408.16812 in collaboration with Federico Mescia (INFN LNF), Keyun Wu (ICCUB, Barcelona)

The International Joint Workshop on the Standard Model and Beyond 2024 & The 3rd Gordon Godfrey Workshop on Astroparticle Physics *10 December 2024* University of New South Wales, Sydney

Shohei Okawa

Flavor of matter fermions

picture from <u>higgstan.com</u>

Flavor = species of fermions

- ▶ 6 flavor quarks, 6 flavor leptons
- Fermions with the same charge have similar properties \rightarrow repetition of the basic fermion family

Flavor symmetry in the Standard Model

In the gauge sector, there is a global flavor symmetry:

$$\mathcal{G} = \mathrm{U}(3)_{q_L} \times \mathrm{U}(3)_{u_R} \times \mathrm{U}(3)_{d_R} \times \mathrm{U}(3)_{\ell_L} \times \mathrm{U}(3)_{e_R}$$

$$q_L^i, \, u_R^i, \, d_R^i, \, \ell_L^i, \, e_R^i \qquad (i=1,2,3)$$

- There exist three species, or flavors in each representation

The matter fermions comprise five different gauge representations of Weyl fermions

In the gauge sector, there is a global flavor symmetry:

$$\mathcal{G} = \mathrm{U}(3)_{q_L} \times \mathrm{U}(3)_{u_R} \times \mathrm{U}(3)_{d_R} \times \mathrm{U}(3)_{\ell_L} \times \mathrm{U}(3)_{e_R}$$

broken by Yukawa interactions
$$\mathcal{L}_{\mathrm{yuk}} = -\overline{q}_L Y_u \widetilde{H} u_R - \overline{q}_L Y_d H d_R - \overline{\ell}_L Y_e H e_R + \mathrm{h.c.}$$

$$\underbrace{\mathrm{U}(1)_Y, \, \mathrm{U}(1)_B, \mathrm{U}(1)_L, \, \mathrm{U}(1)_{L_e - L_{\mu}}, \mathrm{U}(1)_{L_{\mu} - L_{\tau}}}_{\mathrm{remnant symmetry}}$$

Flavor symmetry in the Standard Model

Flavor symmetry in the Standard Model

Flavor dynamics in the SM is governed by

$$\mathcal{G} = \mathrm{U}(3)_{q_L} \times \mathrm{U}(3)_{u_R}$$

 $\times \operatorname{U}(3)_{d_R} \times \operatorname{U}(3)_{\ell_L} \times \operatorname{U}(3)_{e_R}$

Symmetry breaking by $\,Y_u,\,Y_d,\,Y_e$

All flavor violation is caused solely by the Yukawa matrices

[Chivukula, Georgi '87; Hall, Randall '90; D'Ambrosio et al. '02]

Formally, MFV is achieved by promoting the Yukawa matrices to spurious fields transforming like

$$Y_u \sim \left({f 3}, {f \overline 3}, {f 1}, {f 1}, {f 1}
ight), \quad Y_d \sim$$

All flavor violation is caused solely by the Yukawa matrices

[Chivukula, Georgi '87; Hall, Randall '90; D'Ambrosio et al. '02]

$(\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}), \quad Y_e \sim (\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{3}, \overline{\mathbf{3}}).$

under $\mathrm{U}(3)_{q_L} \times \mathrm{U}(3)_{u_R} \times \mathrm{U}(3)_{d_R} \times \mathrm{U}(3)_{\ell_L} \times \mathrm{U}(3)_{e_R}$

Formally, MFV is achieved by promoting the Yukawa matrices to spurious fields transforming like

$$\begin{split} Y_u &\sim \left(\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1}\right), \quad Y_d \sim \left(\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}\right), \quad Y_e \sim \left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{3}, \overline{\mathbf{3}}\right). \\ & \text{under} \quad \mathrm{U}(3)_{q_L} \times \mathrm{U}(3)_{u_R} \times \mathrm{U}(3)_{d_R} \times \mathrm{U}(3)_{\ell_L} \times \mathrm{U}(3)_{e_R} \end{split}$$

All flavor violation is caused solely by the Yukawa matrices

[Chivukula, Georgi '87; Hall, Randall '90; D'Ambrosio et al. '02]

▶ This makes Yukawa Lagrangian flavor singlet $\mathcal{L}_{yuk} = -\overline{q}_L Y_u \widetilde{H} u_R - \overline{q}_L Y_d H d_R - \overline{\ell}_L Y_e H e_R + h.c.$

Formally, MFV is achieved by promoting the Yukawa matrices to spurious fields transforming like $Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{3}, \mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1}),$ under $U(3)_{q_L} \times U(3)_u$

This makes Yukawa Lagrangian flavor singlet \mathcal{L}

For new physics interactions, e.g. $\mathcal{L}_{NP} = C_{ij} (\overline{u}_{Ri} \gamma^{\mu} u_{Rj}) \mathcal{O}_{\mu}$

$$C_{ij} = c_0 \,\delta_{ij} + \epsilon \,c_1 (Y_u^{\dagger} Y_u)_{ij} + \epsilon^2 \left[c_2 (Y_u^{\dagger} Y_u Y_u^{\dagger} Y_u)_{ij} + c_2' (Y_u^{\dagger} Y_d Y_d^{\dagger} Y_u)_{ij} \right] + \dots$$

All flavor violation is caused solely by the Yukawa matrices

[Chivukula, Georgi '87; Hall, Randall '90; D'Ambrosio et al. '02]

Flavored dark matter can naturally be stabilized within MFV

[Batell, Pradler, Spannowsky '11]

Flavored dark matter can naturally be stabilized within MFV [Batell, Pradler, Spannowsky '11]

Solution Consider a new field χ that has no color but a flavor charge

$$\chi \sim (n_{q_L}, m_{q_L}) \times (n_{u_R}, m_{u_R}) \times (n_{d_R}, m_{d_R}) \qquad \text{ under } \mathcal{G}_F = \mathrm{SU}(3)_{q_L} \times \mathrm{SU}(3)_{u_R} \times \mathrm{SU}(3)_{d_R}$$

Dynkin coefficients: (1,0)=triplet, (1,1)=octet

Flavored dark matter can naturally be stabilized within MFV

Solution Consider a new field χ that has no color but a flavor charge

$$\chi \sim (n_{q_L}, m_{q_L}) \times (n_{u_R}, m_{u_R}) \times (n_{d_R}, m_{d_R}) \times (n_$$

Dynkin coefficients: (1,0)=triplet, (1,1)=octet

A general decay operator is formally expressed by

$$\mathcal{O}_{\text{decay}} = \chi \underbrace{q_L \dots \overline{q}_L \dots u_R \dots \overline{u}_R \dots \overline{u}_R \dots d_R \dots}_{A \quad \overline{A} \quad \overline{A} \quad B \quad \overline{B} \quad \overline{C} \quad C \quad X \quad Y_u \dots Y_u^{\dagger} \dots Y_d \dots \underbrace{\overline{D} \quad \overline{D} \quad \overline{D} \quad E}^{\dagger}$$

[Batell, Pradler, Spannowsky '11]

 (m_{d_R}) under $\mathcal{G}_F = \mathrm{SU}(3)_{q_L} \times \mathrm{SU}(3)_{u_R} \times \mathrm{SU}(3)_{d_R}$

Flavored dark matter can naturally be stabilized within MFV

This decay operator must be QCD and flavor singlet if present

 $SU(3)_C$: $(A + B + C - \overline{A} - \overline{B} - \overline{C}) \mod 3 = 0$, $SU(3)_{q_L}: (n_{q_L} - m_{q_L} + A - \overline{A} + D - \overline{D} + E - \overline{E}) \mod 3 = 0,$ $SU(3)_{u_R}: (n_{u_R} - m_{u_R} + B - \overline{B} - D + \overline{D}) \mod 3 = 0,$ $SU(3)_{d_{R}}: \left(n_{d_{R}} - m_{d_{R}} + C - \overline{C} - E + \overline{E}\right) \mod 3 = 0,$

[Batell, Pradler, Spannowsky '11]

Flavored dark matter can naturally be stabilized within MFV

This decay operator must be QCD and flavor singlet if present

$$\begin{split} & \mathrm{SU}(3)_C \colon \left(A + B + C - \overline{A} - \overline{B} - \overline{C}\right) \mod 3 = 0, \\ & \mathrm{SU}(3)_{q_L} \colon \left(n_{q_L} - m_{q_L} + A - \overline{A} + D - \overline{D} + E - \overline{E}\right) \mod 3 = 0, \\ & \mathrm{SU}(3)_{u_R} \colon \left(n_{u_R} - m_{u_R} + B - \overline{B} - D + \overline{D}\right) \mod 3 = 0, \\ & \mathrm{SU}(3)_{d_R} \colon \left(n_{d_R} - m_{d_R} + C - \overline{C} - E + \overline{E}\right) \mod 3 = 0, \end{split}$$

lized within MFV [Batell, Pradler, Spannowsky '11]

= 0, only $q\bar{q}$, qqq can be QCD singlet $E - \overline{E} \mod 3 = 0$, $\operatorname{od} 3 = 0$,

Flavored dark matter can naturally be stabilized within MFV [Batell, Pradler, Spannowsky '11]

This decay operator must be QCD and flavor singlet if present

 $SU(3)_{C}: (A + B + C - \overline{A} - \overline{B} - \overline{C}) \mod 3 = 0$ $SU(3)_{q_{L}}: (n_{q_{L}} - m_{q_{L}} + A - \overline{A} + D - \overline{D} + E - \overline{C})$ $SU(3)_{u_{R}}: (n_{u_{R}} - m_{u_{R}} + B - \overline{B} - D + \overline{D}) \mod 3$ $SU(3)_{d_{R}}: (n_{d_{R}} - m_{d_{R}} + C - \overline{C} - E + \overline{E}) \mod 3$

Flavored dark matter can naturally be stabilized within MFV

This decay operator must be QCD and flavor singlet if present

$$\begin{split} & \operatorname{SU}(3)_{C} \colon \left(A + B + C - \overline{A} - \overline{B} - \overline{C}\right) \operatorname{mod} 3 = 0, \\ & \operatorname{SU}(3)_{q_{L}} \colon \left(n_{q_{L}} - m_{q_{L}} + A - \overline{A} + D - \overline{D} + E - \overline{E}\right) \operatorname{mod} 3 = 0, \\ & \operatorname{SU}(3)_{u_{R}} \colon \left(n_{u_{R}} - m_{u_{R}} + B - \overline{B} - D + \overline{D}\right) \operatorname{mod} 3 = 0, \\ & \operatorname{SU}(3)_{u_{R}} \colon \left(n_{u_{R}} - m_{u_{R}} + B - \overline{B} - D + \overline{D}\right) \operatorname{mod} 3 = 0, \\ & \operatorname{SU}(3)_{d_{R}} \colon \left(n_{d_{R}} - m_{d_{R}} + C - \overline{C} - E + \overline{E}\right) \operatorname{mod} 3 = 0, \\ & \operatorname{SU}(3)_{d_{R}} \colon \left(n_{d_{R}} - m_{d_{R}} + C - \overline{C} - E + \overline{E}\right) \operatorname{mod} 3 = 0, \end{split}$$

For χ to be stable, at least one of four equations should **NOT** be satisfied

$$(n_{\chi} - m_{\chi}) \mod 3 \neq 0 \qquad \begin{array}{c} \text{stability} \\ \text{(flavor trians)} \end{array}$$

[Batell, Pradler, Spannowsky '11]

lity condition riality condition)

Flavored DM candidates

(n,m)	$SU(3)_Q \times SU(3)_{u_R} \times SU(3)_{d_R}$	Stable?
(0,0)	(1, 1, 1)	
(1,0)	(3 , 1 , 1),(1 , 3 , 1),(1 , 1 , 3)	Yes
(0,1)	$({f ar 3},{f 1},{f 1}),({f 1},{f ar 3},{f 1}),({f 1},{f 1},{f ar 3})$	Yes
(2,0)	(6 , 1 , 1),(1 , 6 , 1),(1 , 1 , 6)	Yes
	(3 , 3 , 1),(3 , 1 , 3),(1 , 3 , 3)	
(0,2)	$(\bar{6}, 1, 1), (1, \bar{6}, 1), (1, 1, \bar{6})$	Yes
	$(\bar{\bf 3}, \bar{\bf 3}, {f 1}), (\bar{f 3}, {f 1}, \bar{f 3}), ({f 1}, \bar{f 3}, \bar{f 3})$	
(1,1)	(8 , 1 , 1),(1 , 8 , 1),(1 , 1 , 8)	
	$({\bf 3},{f ar 3},{f 1}),({f 3},{f 1},{f ar 3}),({f 1},{f 3},{f ar ar 3})$	
	$(\bar{3},3,1),(\bar{3},1,3),(1,\bar{3},3)$	

[Batell, Pradler, Spannowsky '11]

- independent of spin and EW representation of χ
- Only the lightest flavored state is stabilized due to MFV
 - All heavy flavors quickly decay, and only the lightest flavor is DM (Batell+ '11; Lopez-Honorez+ '13)
 - Some heavy flavors are decaying but long-lived enough to serve as $DM \rightarrow multi-component DM$

[Mescia, **SO**, Wu, 2408.16812]

A gauge singlet scalar $S \sim (\mathbf{1}, \mathbf{3}, \mathbf{1})$ Scalar potential

$$V(H,S) = \left\{ m_0^2 + \epsilon m_1^2 (y_u^i)^2 \right\} S_i^* S_i$$
$$+ \frac{\lambda}{2} \left(b_0 + \epsilon b_1 (y_u^i)^2 \right) (2vh + h^2) S_i^* S_i$$

(ϵ : MFV expansion parameter $\ll 1$)

Dim-6 operators

$$\mathcal{L}_{d=6} \sim \frac{c_2^4}{\Lambda^2} \left(\bar{q}_{Li} \left(Y_u \right)_{ij} S_j \right) \widetilde{H} \left(S_k^* \delta_{kl} u_{Rl} \right) + \\ \sim \frac{c_2^4}{\Lambda^2} \bar{u}_i \left(m_u^i P_R + m_u^j P_L \right) u_j \left(S_j^* S_i \right)$$

•
$$M_j^2 - M_i^2 = \epsilon m_1^2 \left[(y_u^j)^2 - (y_u^i)^2 \right]$$

flavor diagonal -> no heavy scalar decay

+ h.c.

$$S_3 \to S_1 t \bar{u}, S_2 t \bar{c}$$

heavy scalar decay triggered at the ϵ^0 order

Decay of heavy components

Example S3 decay (*Dominant mode depends on the mass splitting $\Delta M = M_3 - M_1$)

Decay of heavy components

Example S3 decay (*Dominant mode depends on the mass splitting $\Delta M = M_3 - M_1$)

$$\Gamma \sim \frac{m_t^2 (\Delta M)^5}{480 \pi^3 \Lambda^4 M_3^2}$$

Smaller ΔM or weaker interaction (~1/ Λ) leads to longer lifetime

Decay at higher orders

Three-body decay into light particles is induced at higher orders or via loop ▶ appears at ε^2 order or two-loop level

▶ can surpass four or five-body ε^0 -order processes

Parameter spaces for multi-component DM

$$\epsilon = 10^{-2} \simeq \frac{M_3 - M_1}{y_t^2 M_1} \simeq \frac{M_2 - M_1}{y_c^2 M_1}$$

 $\lambda=0$ no coupling to Higgs

S1, S2 are DM

$$\ \ \, \tau_{S_i} > \tau_U \ \rightarrow \mathrm{DM}$$

- ▶ $au_{S_i} < au_U \to \text{not DM}$ and has to decay prior to the BBN (we require $au_{S_i} < 1$ sec)
- DM is composed of two or three components in the white region

Implications

Phenomenological

- indirect search: $S_i \rightarrow S_i \gamma \gamma, S_i q \bar{q}, \dots$
- inelastic scattering: $S_i N \rightarrow S_i N$
- flavor physics: $b \to s S_3 S_2^{\dagger}$ and $s \to d S_2 S_1^{\dagger}$

Theoretical

- other spin and EW representation
- extension to lepton sector
- connection to UV theory

Dark Matter

- Flavor symmetry in the SM might determine the nature of dark matter
 - Within MFV, dark matter naturally has a family!

Thanks for your attention!

Back up

Why flavored DM stabilized within MFV?

There is an unbroken \mathbb{Z}_3 symmetry $\subset SU(3)_c \times SU(3)_{q_I} \times SU(3)_{u_R} \times SU(3)_{d_R}$

 \blacktriangleright Z₃ charge ($\psi \rightarrow U\psi$): $U = (\omega^2)^{n_c - m_c} \cdot (\omega)^{n_q - m_q} \cdot (\omega)^{n_u - m_u} \cdot (\omega)^{n_d - m_d}$ where $\omega^3 = 1$

All SM fields are singlet

- quarks: $Q \rightarrow (\omega^2 \cdot \omega) Q = Q$
- other SM fields: $\phi \rightarrow \phi$
- Flavored DM: $\chi \to (\omega)^{n_{\chi} m_{\chi}} \chi$
 - χ is Z₃ non-singlet if $(n_{\chi} m_{\chi}) \mod 3 \neq 0$ -> stabilized!
- Flavored states Φ can develop VEVs if $(n_{\Phi} m_{\Phi}) \mod 3 = 0$
 - extendable to a broader framework

[Batell, Lin, Wang '13]

[Bishara+ '15]

A benchmark model

A gauge singlet, ${
m SU(3)}_{u_R}$ triplet scalar $S \sim ({f 1},{f 3},{f 1})$

Scalar potential within MFV (ϵ : MFV expansion parameter $\ll 1$)

$$V(H,S) = m_S^2 S_i^* \left(a_0 \,\delta_{ij} + \epsilon \,a_1 (Y_u^{\dagger} Y_u)_{ij} + \ldots \right) + \lambda \,S_i^* \left(b_0 \,\delta_{ij} + \epsilon \,b_1 (Y_u^{\dagger} Y_u)_{ij} + \ldots \right) S_u^2 + \left(\lambda_0 \,\delta_{ij} \delta_{kl} + \epsilon \,\lambda_1 \delta_{ij} (Y_u^{\dagger} Y_u)_{kl} + \ldots \right) S_u^2$$

$$V(H,S) = \left\{m_0^2 + \epsilon m_1^2 (y_u^i)^2\right\} S_i^* S_i$$

up to O(ϵ)
$$+ \frac{\lambda}{2} \left(b_0 + \epsilon b_1 (y_u^i)^2\right) (2vh + h)$$

+ self-interaction

 S_{j} mass term $S_j(H^\dagger H)$ coupling to the Higgs doublet $S_i^*S_jS_k^*S_l$ self-interaction

 $(n^2)S_i^*S_i$

A benchmark model

A gauge singlet, ${
m SU(3)}_{u_R}$ triplet scalar $S \sim ({f 1},{f 3},{f 1})$

Scalar potential within MFV (ϵ : MFV expansion parameter $\ll 1$)

$$V(H,S) = m_S^2 S_i^* \left(a_0 \,\delta_{ij} + \epsilon \,a_1 (Y_u^{\dagger} Y_u)_{ij} + \ldots \right) S_u^* \left(b_0 \,\delta_{ij} + \epsilon \,b_1 (Y_u^{\dagger} Y_u)_{ij} + \ldots \right) S_u^* + \left(\lambda_0 \,\delta_{ij} \delta_{kl} + \epsilon \,\lambda_1 \delta_{ij} (Y_u^{\dagger} Y_u)_{kl} + \ldots \right) S_u^*$$

$$V(H,S) = \left\{ m_0^2 + \epsilon m_1^2 (y_u^i)^2 \right\} S_i^* S_i$$

up to O(ϵ)
$$+ \frac{\lambda}{2} \left(b_0 + \epsilon b_1 (y_u^i)^2 \right) (2vh + h^2) S_i^* S_i$$

flavor independent flavor dependent

 S_{j} $S_j(H^{\dagger}H)$

 $S_i^*S_jS_k^*S_l$

A benchmark model

A gauge singlet, ${
m SU(3)}_{u_R}$ triplet scalar $S \sim ({f 1},{f 3},{f 1})$

Scalar potential within MFV (ϵ : MFV expansion parameter $\ll 1$)

$$V(H,S) = m_S^2 S_i^* \left(a_0 \,\delta_{ij} + \epsilon \,a_1 (Y_u^{\dagger} Y_u)_{ij} + \ldots \right) S_u^* \left(b_0 \,\delta_{ij} + \epsilon \,b_1 (Y_u^{\dagger} Y_u)_{ij} + \ldots \right) S_u^* + \left(\lambda_0 \,\delta_{ij} \delta_{kl} + \epsilon \,\lambda_1 \delta_{ij} (Y_u^{\dagger} Y_u)_{kl} + \ldots \right) S_u^*$$

$$\bigvee V(H,S) = \left\{ m_0^2 + \epsilon \, m_1^2 (y_u^i)^2 \right\} S_i^* S_i$$

$$+ \frac{\lambda}{2} \left(b_0 + \epsilon \, b_1 (y_u^i)^2 \right) (2vh + h^2) S_i^* S_i$$

$$\left\} \cdot M_j^2 - M_i^2 = \epsilon \, m_1^2 \left[(y_u^j)^2 - (y_u^i)^2 \right]$$

$$\cdot \text{ flavor diagonal int. doesn't lead heavy scalar of the second seco$$

flavor independent flavor dependent

Higher dimensional operators

Dim-6 operators

$$\mathcal{L}_{d=6} = rac{1}{\Lambda^2} \left(\sum_I c^I_{ijkl} \mathcal{O}^I_{ijkl} + c^g_{ij} \mathcal{O}^g_{ij} + c^\gamma_{ij} \mathcal{O}^\gamma_{ij}
ight)$$

$$\begin{split} \mathcal{O}_{ijkl}^{1} &= (\overline{q}_{Li}\gamma^{\mu}q_{Lj})(S_{k}^{*}i\overleftrightarrow{\partial_{\mu}}S_{l}) ,\\ \mathcal{O}_{ijkl}^{3} &= (\overline{d}_{Ri}\gamma^{\mu}d_{Rj})(S_{k}^{*}i\overleftrightarrow{\partial_{\mu}}S_{l}) ,\\ \mathcal{O}_{ijkl}^{5} &= \left(\overline{q}_{Li}Hd_{Rj}\right)\left(S_{k}^{*}S_{l}\right) ,\\ \mathcal{O}_{ij}^{\gamma} &= \left(S_{i}^{*}S_{j}\right)F_{\mu\nu}F^{\mu\nu} . \end{split}$$

$$\mathcal{O}_{ijkl}^{2} = (\overline{u}_{Ri}\gamma^{\mu}u_{Rj})(S_{k}^{*}i\overset{\leftrightarrow}{\partial}_{\mu})$$
$$\mathcal{O}_{ijkl}^{4} = (\overline{q}_{Li}\widetilde{H}u_{Rj})(S_{k}^{*}S_{l})$$
$$\mathcal{O}_{ij}^{g} = (S_{i}^{*}S_{j})G_{\mu\nu}G^{\mu\nu},$$

Higher dimensional operators

Dim-6 operators

$$\mathcal{L}_{d=6} = rac{1}{\Lambda^2} \left(\sum_I c^I_{ijkl} \mathcal{O}^I_{ijkl} + c^g_{ij} \mathcal{O}^g_{ij} + c^\gamma_{ij} \mathcal{O}^\gamma_{ij}
ight)$$

The coefficients are determined by the Yukawa matrices

$$\begin{aligned} c_{ijkl}^{4} &= c_{1}^{4}(Y_{u})_{ij}\delta_{kl} + c_{2}^{4}(Y_{u})_{il}\delta_{kj} \\ &+ \epsilon \left[c_{3}^{4}(Y_{u}Y_{u}^{\dagger}Y_{u})_{ij}\delta_{kl} + c_{4}^{4}(Y_{u}Y_{u}^{\dagger}Y_{u})_{il}\delta_{kj} + c_{5}^{4}(Y_{u})_{ij}(Y_{u}^{\dagger}Y_{u})_{kl} + c_{6}^{4}(Y_{u})_{il}(Y_{u}^{\dagger}Y_{u})_{jl} \right] \\ &+ \dots , \end{aligned}$$

$$egin{aligned} &\mathcal{O}_{ijkl}^1 = (\overline{q}_{Li}\gamma^\mu q_{Lj})(S_k^*i\overleftrightarrow{\partial}_\mu S_l)\,, \ &\mathcal{O}_{ijkl}^3 = (\overline{d}_{Ri}\gamma^\mu d_{Rj})(S_k^*i\overleftrightarrow{\partial}_\mu S_l)\,, \ &\mathcal{O}_{ijkl}^5 = \left(\overline{q}_{Li}Hd_{Rj}
ight)\left(S_k^*S_l
ight)\,, \ &\mathcal{O}_{ij}^\gamma = \left(S_i^*S_j
ight)F_{\mu
u}F^{\mu
u}\,. \end{aligned}$$

$$egin{aligned} \mathcal{O}_{ijkl}^2 &= (\overline{u}_{Ri} \gamma^\mu u_{Rj}) (S_k^* i \overleftrightarrow{\partial}_\mu) \ \mathcal{O}_{ijkl}^4 &= \left(\overline{q}_{Li} \widetilde{H} u_{Rj}
ight) \left(S_k^* S_k ec{\partial}_\mu ec{\partial}_\mu$$

Higher dimensional operators

Dim-6 operators

$$\mathcal{L}_{d=6} = rac{1}{\Lambda^2} \left(\sum_I c^I_{ijkl} \mathcal{O}^I_{ijkl} + c^g_{ij} \mathcal{O}^g_{ij} + c^\gamma_{ij} \mathcal{O}^\gamma_{ij}
ight)$$

Heavy scalar decays are triggered even at the ε^0 order

$$\mathcal{L}_{d=6} \sim \frac{c_2^4}{\Lambda^2} \left(\bar{q}_{Li} \left(Y_u \right)_{ij} S_j \right) \widetilde{H} \left(S_k^* \delta_{kl} u_{Rl} \right) + \\ \sim \frac{c_2^4}{\Lambda^2} \bar{u}_i \left(m_u^i P_R + m_u^j P_L \right) u_j \left(S_j^* S_i \right)$$

$$egin{aligned} \mathcal{O}_{ijkl}^1 &= (\overline{q}_{Li}\gamma^\mu q_{Lj})(S_k^*i\overleftrightarrow{\partial}_\mu S_l)\,, \ \mathcal{O}_{ijkl}^3 &= (\overline{d}_{Ri}\gamma^\mu d_{Rj})(S_k^*i\overleftrightarrow{\partial}_\mu S_l)\,, \ \mathcal{O}_{ijkl}^5 &= \left(\overline{q}_{Li}Hd_{Rj}
ight)\left(S_k^*S_l
ight)\,, \ \mathcal{O}_{ij}^\gamma &= \left(S_i^*S_j
ight)F_{\mu
u}F^{\mu
u}\,. \end{aligned}$$

$$egin{aligned} \mathcal{O}^2_{ijkl} &= (\overline{u}_{Ri} \gamma^\mu u_{Rj}) (S^*_k i \overleftrightarrow{\partial}_\mu) \ \mathcal{O}^4_{ijkl} &= \left(\overline{q}_{Li} \widetilde{H} u_{Rj}
ight) \left(S^*_k S_k \cdot S_k$$

h.c.

 $S_3 \to S_1 t \bar{u}, S_2 t \bar{c}$

Partial decay widths for heavy scalars

Impact of Higgs portal coupling (1/2) 53 are DM $\epsilon = 10^{-2} \simeq \frac{M_3 - M_1}{y_t^2 M_1} \simeq \frac{M_2 - M_1}{y_c^2 M_1}$ $\lambda = 10^{-11}$

- Heavy components are also DM if $\tau_{S_i} > \tau_U$
- White region is allowed
 - two-component between orange and blue regions
 - three-component above the orange region

Impact of Higgs portal coupling (2/2)

Closer look at WIMP region

$$\epsilon = 10^{-2} \simeq \frac{M_3 - M_1}{y_t^2 M_1} \simeq \frac{M_2 - M_1}{y_c^2 M_1}$$

 $\lambda=0$ $\;$ no coupling to Higgs $\;$

- Only a limited mass range M1~180-210GeV is allowed in the freeze-out scenario
- $\ \ \ \square$ EFT is not justified in the region, $\Lambda < M_1$