Revisiting Metastable Cosmic String Breaking Akifumi Chitose (ICRR, U. Tokyo)

Based on: JHEP 04 (2024) 068 [arXiv:2312.15662] Akifumi Chitose, Masahiro Ibe, Yuhei Nakayama, Satoshi Shirai and Keiichi Watanabe

Stochastic Gravitational Wave Background

Evidenced by PTA observations (NANOGrav, InPTA, EPTA, PPTA, CPTA)

Cosmic Strings Probing BSM with GW

- Created in the Universe by spontaneous U(1) breaking
- Predicted by many BSM physics
 - ► GUT
 - Dark photon

Cosmic Strings Probing BSM with GW

- Created in the Universe by spontaneous U(1) breaking
- Predicted by many BSM physics
 - ► GUT
 - Dark photon

Credit: Daniel Dominguez from CERN's Education, Communications & Outreach (ECO) Department.

Metastable Cosmic Strings for PTA

Stable cosmic strings do not work

Metastable Cosmic Strings

- Spontaneously cut by monopole-antimonopole pair creation
- Arise from e.g. $G \rightarrow U(1) \rightarrow 1$ w/ G: simply connected

Metastable Cosmic Strings GW spectrum depends on the decay rate

- $\Gamma \sim \exp[-\pi\kappa]$
- NANOGrav: $\sqrt{\kappa} \sim 8$
- κ must be calculated precisely

String breaking rate Tunneling and bounce see e.g. [Coleman, 1985]

- Procedure:
 - Go to imaginary time
 - \approx invert the potential
 - Find the bounce solution
 - Action: S_B
 - Decay rate: $\Gamma \sim \exp[-S_B]$

String breaking rate **Preskill-Vilenkin approximation** [Preskill & Vilenkin, 1992]

- Neglect monopole size and string width
- $S_E = 2\pi\rho_E^* M_{\text{mono}} \pi\rho_E^{*2} T_{\text{str}}$

$$\bullet \ \rho_E^* = M_{\rm mono} / T_{\rm str}$$

•
$$\pi\kappa = S_B = \pi M_{\rm mono}^2 / T_{\rm str}$$

String breaking rate Is Preskill-Vilenkin valid here?

- String width should be negligible: $T_{\rm str}^{-1/2} \ll \rho_E^*$
 - $\sqrt{\kappa} \gg 1 \cdots$ Is this OK for PTA ($\sqrt{\kappa} \sim 8$)?
 - →Alternative evaluation desired

Re-evaluation of Bounce Action

Strategy How to evaluate the bounce action?

- Solve 4D Euclidean field equation?
 - Stiff equation
 - Bounce: saddle point of S_E • nontrivial algorithm needed
- → Alternative strategy

Strategy **Conceptual sketch**

Construct independently

Strategy **Step 1: Build "excited strings" with an Ansatz**

- Unwind the whole string gradually
 - $\beta = 0$: ordinary string, $\beta = \pi/2$: vacuum
 - Field configuration: given by Ansatz [Shifman & Yung, 2002]

Strategy Step 2: Promote β to a field on the string

- Vary β on the worldsheet
- Effective 1D theory for $\beta(t_E, z) = \beta(\rho_E)$
 - Solve EoM \rightarrow bounce action
- Upper bound on true S_B

ResultsString being cut

Results

Conclusions & Outlook

- - free of the conventional assumption
- Next steps:
 - Optimal bounce action?
 - More realistic setup?

An upper bound on the bounce action for string breaking was calculated

The Preskill-Vilenkin approximation can be inappropriate for the PTA data

Thank you!

Backup

Cosmic Strings Gravitational waves from loops

Network of long strings

Setup A toy model for $SU(2) \rightarrow U(1) \rightarrow 1$

- SU(2) gauge theory
- Higgses:
 - ϕ : SU(2) triplet
 - $\langle \phi \rangle = V$: SU(2) \rightarrow U(1), monopoles formed
 - ► *h*: SU(2) doublet

• $\langle h \rangle = v: U(1) \rightarrow 1$, strings formed

Setup SU(2) gauge theory w/ adjoint Higgs & fundamental Higgs

•
$$\mathscr{L} = -\frac{1}{4g^2}F^2 - |Dh|^2 - \left(D\overrightarrow{\phi}\right)^2 - V_{\text{Higgs}}(h,\phi)$$

• h: SU(2) fundamental, $\phi: SU(2)$ adjoint

$$V_{\text{Higgs}}(h,\phi) = \lambda \left(|h|^2 - v^2 \right)^2 + \tilde{\lambda} \left(\overrightarrow{\phi}^2 - V^2 \right)^2 + \gamma \left| \left(\phi^a \frac{\tau^a}{2} - \frac{V}{2} \right) h \right|^2$$

• Assumptions: λ , $\tilde{\lambda}$, $\gamma > 0$, V > v

Setup Symmetry breaking pattern

$$V_{\text{Higgs}}(h,\phi) = \lambda \left(|h|^2 - v^2 \right)^2 + \tilde{\lambda} \left(\overrightarrow{\phi}^2 - V^2 \right)^2 + \gamma \left| \left(\phi^a \frac{\tau^a}{2} - \frac{V}{2} \right) h \right|^2$$

$$SU(2) \rightarrow U(1) \text{ by } \phi^a = V \delta_3^a$$

$$V(1) \text{ generator: } \tau^3/2$$

$$V^{V^2} |h_2|^2$$

- $U(1) \rightarrow 1$ by $n_i = vo_i^{-1}$

Setup **Cosmic Strings and Monopoles**

• 1st SSB: SU(2) \rightarrow U(1) by $\phi = V\delta_3^a$

• Monopoles formed by ϕ

- ► 2nd SSB: U(1) → 1 by $h_1 = ve^{i \times 0}$
 - Cosmic strings formed by h_1
 - But SU(2) is simply connected \rightarrow only metastable

$\sqrt{\kappa_{PV}} \propto V/v$ $\rightarrow \text{ interested in } V/v = \mathcal{O}(1)$

Cosmic Strings from U(1) breaking

- Simplest setup: abelian Higgs
- $V(\phi) = \lambda \left(\phi^{\dagger}\phi v^2\right)^2$
- U(1): $\phi \rightarrow e^{i\alpha}\phi$
 - broken by $\langle \phi \rangle = v$

Cosmic Strings from U(1) breaking (ctd.)

Cosmic Strings from U(1) breaking (ctd.)

Monopoles 0 dimensional cousin of cosmic string

- Arise from winding on 2D sphere
- Behave like point-like particles*

Each point: 4D field configuration

True (optimal) bounce action: $\leq S_E[\bullet] = \min_{\substack{\text{path joining the two sides } \Phi \in \text{path}}} \max_{\substack{\Delta E \in \text{path}}} S_E[\Phi]$

 $\begin{cases} \text{Jpath that} \\ \text{Joins the two vacua} \\ \text{stays within the effective } \beta \text{ theory} \\ \text{has maximum } S_E \text{ at } \bullet \end{cases}$

 $\rightarrow S_E[\bullet] \ge S_E[\bullet]$

Cosmic Strings for PTA Failure of stable cosmic strings

Metastable Cosmic Strings Early times

When does thin-wall break down?

- Introduce " β -thin-wall approximation"
- Thin-wall approximation to the 1D effective theory of $\beta(\rho_E)$
 - Valid only for $V \gg v$
- Preskill-Vilienkin approximation: similar but different
 - β -thin-wall: Ansatz \rightarrow effective 1D theory \rightarrow thin-wall
 - Preskill-Vilenkin: assume thin-wall in the 4D theory

Results Hint for stronger results?

- solid: bounce, dashed: β -thin-wall
- For large hierarchy:
 - Primitive: Preskill-Vilenkin $\times \mathcal{O}(1)$
- For small hierarchy:
 - β -thin-wall deviates from the bounce
 - Preskill-Vilenkin: also questionable

Strategy **Unwinding the string** • $U = e^{-i\tau_3\varphi} \cos\beta + i\tau_1 \sin\beta \in S^2 \subset SU(2)$ • $h = U(v \ 0)^{\top}, \ \phi = U(\tau_3/2)U^{\dagger}$ controls the U(1) winding • $h_1 = e^{-i\varphi} v$ for $\beta = 0$ • $U = i\tau_1 = \text{const. for } \beta = \pi/2$ completely unwound

On metastability Stable strings vs. PTA

- Nanograv's spectrum: blue tilted
- GW spectrum from stable cosmic strings →
 - The amplitude and the low-frequency cutoff correlate
 - ► → Mismatch with Nanograv

On metastability Metastable strings vs. PTA

- Finite lifetime moves the cutoff to the right
 - ► → better fit with the PTA data

Magnetic fields **Cross section of the breaking string**

Primitive

 $B_i = \frac{1}{2} \epsilon^{ijk} \frac{\phi^a}{V} F^a_{jk}$

Improved

 $x_{1,2}$

3	•	5
3		
2	•	5
2		
1	•	5
1		
0	•	5
0		

Other parameters Light W

Other parameters SUSY-like

Other parameters Heavy W

β -thin-wall approximation

$$S_{B} = 2\pi \int_{0}^{\infty} \rho_{E} d\rho_{E} \left[\frac{1}{2} \mathscr{K}_{eff}(\beta) \beta^{2} + T(\beta) - T(0) \right]$$
$$\approx -\pi \rho_{E}^{*2} \left[T(0) - T\left(\frac{\pi}{2}\right) \right] + 2\pi \rho_{E}^{*} \int_{wall} d\rho_{E}$$
$$= -\pi \rho_{E}^{*2} \left[T(0) - T\left(\frac{\pi}{2}\right) \right] + 2\pi \rho_{E}^{*} m_{eff}$$
$$M_{eff} := \int_{0}^{\frac{\pi}{2}} d\beta \sqrt{2\mathscr{K}_{eff}(\beta)(T(\beta) - T(0))}$$

• Maximum:
$$S_B = \pi \frac{m_{\text{eff}}^2}{T(0) - T(\pi/2)}$$

Kinetic term

•
$$S_E = 2\pi \int_0^\infty \rho_E d\rho_E \left[\frac{1}{2} \mathscr{K}_{eff}(\beta)\beta'^2 + T\right]$$

Primitive Ansatz [Shifman & Yung, 2002]

$$h(x) = U\begin{pmatrix} \xi_{\beta}(\rho) \\ 0 \end{pmatrix}$$

•
$$A_{\theta}(x) = iU\partial_{\varphi}U^{-1}[1 - f_{\beta}(\rho)]$$
, other c

•
$$\phi(x) = VU\frac{\tau_3}{2}U^{-1} + \varphi_{\beta}(\rho) \left[\frac{\tau_1}{2}\sin\beta + \frac{\tau_2}{2}\sin\beta\right]$$

•
$$U = e^{-i\tau_3\varphi}\cos\beta + i\tau_1\sin\beta$$

• $\xi_{\beta}(0) = 0, \xi_{\beta}(\infty) = v, f_{\beta}(0) = 1, f_{\beta}(\infty) = 0, \varphi_{\beta}(0) = V \sin 2\beta, \varphi_{\beta}(\infty) = 0$

Setup **Couplings vs. Masses**

- Scale hierarchy: $\sqrt{\kappa_{PV}} = M_M / \sqrt{T_{str}}$
 - Gauge field : $m_W = gV$, $m_{\gamma} = \frac{1}{\sqrt{2}}gv$
 - (Scalars : $m_{\phi} = \sqrt{8\lambda} V$, $m_{h_1} = 2\sqrt{\lambda} v$, $m_{h_2} = \sqrt{\gamma} V$)

$$\sim V/v \propto m_W/m_\gamma$$

Couplings vs. Masses (detailed)

• Gauge field :
$$m_W = gV$$
, $m_\gamma = \frac{1}{\sqrt{2}}gv$

- Scale hierarchy: $V/v \propto m_W/m_v$
- Scalar triplet : $m_{\phi} = \sqrt{8\tilde{\lambda}V}$
- Scalar doublet: $m_{h_1} = 2\sqrt{\lambda}v$, $m_{h_2} = \sqrt{\gamma}V$
- Euclidean action:

$$g^{2}\mathscr{H} = \frac{1}{4}F^{2} + \left|D\hat{h}\right|^{2} + \frac{1}{2}\left(D\hat{\phi}\right)^{2} + \frac{m_{\phi}^{2}}{8m_{W}^{2}}\left(\hat{\phi}\right)^{2} + \frac{m_{\phi}^{2}}{8m_{W}^{2}}\left(\hat{$$

 $\hat{\phi}^2 - m_W^2 \Big)^2 + \frac{m_{h_1}^2}{4m_{\gamma}^2} \left(|\hat{h}|^2 - 2m_{\gamma}^2 \right)^2 + \frac{m_{h_2}^2}{m_W^2} \left| \left(\hat{\phi} - \frac{m_W}{2} \right) \hat{h} \right|^2$

