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Stochastic Gravitational Wave Background

‣ Evidenced by PTA observations (NANOGrav, InPTA, EPTA, PPTA, CPTA)

?



Probing BSM with GW

‣ Created in the Universe by 
 spontaneous U(1) breaking 

‣ Predicted by many BSM physics 

‣ GUT 

‣ Dark photon

Cosmic Strings

φ = veiθ



Probing BSM with GW

‣ Created in the Universe by 
 spontaneous U(1) breaking 

‣ Predicted by many BSM physics 

‣ GUT 

‣ Dark photon

Cosmic Strings

Credit: Daniel Dominguez from CERN's Education, Communications & 
Outreach (ECO) Department.



Metastable Cosmic Strings for PTA

10 the NANOGrav Collaboration
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Figure 3. Median GWB spectra produced by a subset of the new-physics models, which we construct by mapping our model
parameter posterior distributions to h

2⌦GW distributions at every frequency f (see Appendix B for more details and Figs. 19
and 20 for the models not included here). We also show the periodogram for an HD-correlated free spectral process (gray violins)
and the GWB spectrum produced by an astrophysical population of inspiraling SMBHBs with the parameters ABHB and �BHB

fixed at the central values µBHB of the 2D Gaussian prior distribution specified in Eq. (A1) (black dashed line).

to merge SMBHBs within a Hubble time, the number
of binaries emitting in the PTA band depends on in-
teractions between binaries and their local galactic en-
vironment to extract orbital energy and drive systems
toward merger (Begelman et al. 1980). If these environ-
mental e↵ects extend into the PTA band, or if binary
orbits are substantially eccentric, then the GWB spec-
trum can flatten at low frequencies (typically expected
at f ⌧ 1 yr�1; Kocsis & Sesana 2011). At high frequen-
cies, once the expected number of binaries dominating
the GWB approaches unity, the spectrum steepens be-
low 13/3 (typically expected at f � 1 yr�1; Sesana et al.
2008).

Unfortunately, current observations and numerical
simulations provide only weak constraints on the spec-
tral amplitude or the specific locations and strengths of
power-law deviations. Despite these uncertainties, the
sensitivity range of PTAs is su�ciently narrowband that
it is reasonable, to first approximation, to model the sig-

nal by a power law in this frequency range:

�BHB(f) =
A

2
BHB

12⇡2

1

Tobs

✓
f

yr�1

◆��BHB

yr3 , (13)

where �BHB/�f is the timing residual PSD (see Eq. (6)).
Following Middleton et al. (2021), we can gain some

insight into the allowed range of values for the ampli-
tude, ABHB, and slope, �BHB, of this power law by sim-
ulating a large number of SMBHB populations cover-
ing the entire range of allowed astrophysical parame-
ters. Specifically, we consider the SMBHB populations
contained in the GWOnly-Ext library generated as part
of the NG15smbh analysis (and discussed in additional
detail there). This library was constructed with the
holodeck package (Kelley et al. 2023) using semian-
alytic models of SMBHB mergers. These models use
simple, parameterized forms of galaxy stellar mass func-
tions, pair fractions, merger rates, and SMBH-mass ver-
sus galaxy-mass relations to produce binary popula-
tions and derived GWB spectra. While some param-
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Metastable cosmic strings can explain the NANOGrav signal

[Afzal et al., 2023]

Stable cosmic strings do not work



Metastable Cosmic Strings

‣ Spontaneously cut by monopole-antimonopole pair creation 

‣ Arise from e.g.  w/ : simply connectedG → U(1) → 1 G

string
antimonopole

monopole



‣  

‣ NANOGrav:  

‣  must be calculated precisely

Γ ∼ exp[−πκ]

κ ∼ 8

κ

Metastable Cosmic Strings
GW spectrum depends on the decay rate

[Buchmüller et al., 2023]



Tunneling and bounce

‣ Procedure: 

‣ Go to imaginary time 

‣  invert the potential 

‣ Find the bounce solution 

‣ Action:  

‣ Decay rate: 

≈

SB

Γ ∼ exp[−SB]

x

→V (x)

String breaking rate

x

V (x)

x→
x+0

see e.g. [Coleman, 1985]



Preskill-Vilenkin approximation

‣ Neglect monopole size and string width 

‣  

‣   

‣

SE = 2πρ*E Mmono−πρ*2
E Tstr

ρ*E = Mmono/Tstr

πκ = SB = πM2
mono/Tstr

String breaking rate
[Preskill & Vilenkin, 1992]



Is Preskill-Vilenkin valid here?

‣ String width should be negligible:  

‣   Is this OK for PTA ( )? 

→Alternative evaluation desired

T−1/2
str ≪ ρ*E

κ ≫ 1 ⋯ κ ∼ 8

String breaking rate

Thickness ∼ T−1/2
str



Re-evaluation of Bounce Action



How to evaluate the bounce action?

‣ Solve 4D Euclidean field equation? 

‣ Stiff equation 

‣ Bounce: saddle point of  
→ nontrivial algorithm needed 

→ Alternative strategy

SE

Strategy



Strategy
Conceptual sketch

Interpolate

Construct independently



Strategy
Step 1: Build “excited strings” with an Ansatz

‣ Unwind the whole string gradually 

‣ : ordinary string, : vacuum 

‣ Field configuration: given by Ansatz

β = 0 β = π/2

β = 0 β =
π
2

β =
π
4

[Shifman & Yung, 2002]



Strategy
Unwinding the string

SU(2) tripletSU(2) doublet
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Strategy
Unwinding the string

SU(2) tripletSU(2) doublet



Strategy
Unwinding the string

SU(2) tripletSU(2) doublet



Strategy
Unwinding the string

SU(2) tripletSU(2) doublet



Strategy
Tension for each β

ordinary string tension

“monopole everywhere”

vacuum



Step 2: Promote  to a field on the stringβ

‣ Vary  on the worldsheet 

‣ Effective 1D theory for  

‣ Solve EoM → bounce action 

‣ Upper bound on true 

β

β(tE, z) = β(ρE)

SB

z

tE

ρE

“True” vacuum

β =
π

2

False vacuum
β = 0Strategy



Results
String being cut



Results
Interpretation of NANOGrav results modified
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Conclusions & Outlook

‣ An upper bound on the bounce action for string breaking was calculated 

‣ free of the conventional assumption 

‣ The Preskill-Vilenkin approximation can be inappropriate for the PTA data 

‣ Next steps: 

‣ Optimal bounce action? 

‣ More realistic setup?



Thank you!



Backup



Cosmic Strings
Gravitational waves from loops

Network of long strings

≲ H−1≳ H−1

Loops GW

f ∼ (loop size)−1

∼ H−1



Setup
A toy model for SU(2) → U(1) → 1

‣ SU(2) gauge theory 

‣ Higgses: 

‣ : SU(2) triplet 

‣ : SU(2) → U(1), monopoles formed 

‣ : SU(2) doublet 

‣ : U(1) → 1, strings formed

ϕ

⟨ϕ⟩ = V

h

⟨h⟩ = v



Setup
SU(2) gauge theory w/ adjoint Higgs & fundamental Higgs

‣  

‣ : SU(2) fundamental, : SU(2) adjoint 

‣  

‣ Assumptions: , 

ℒ = −
1

4g2
F2 − |Dh |2 − (D ⃗ϕ )

2
− VHiggs(h, ϕ)

h ϕ

VHiggs(h, ϕ) = λ ( |h |2 − v2)
2

+ λ̃ ( ⃗ϕ 2 − V2)
2

+ γ (ϕa τa

2
−

V
2 ) h

2

λ, λ̃, γ > 0 V > v



Setup
Symmetry breaking pattern

‣  

‣ SU(2) → U(1) by  

‣ U(1) generator:  

‣ U(1) → 1 by 

VHiggs(h, ϕ) = λ ( |h |2 − v2)
2

+ λ̃ ( ⃗ϕ 2 − V2)
2
+γ (ϕa τa

2
−

V
2 ) h

2

ϕa = Vδa
3

τ3/2

hi = vδ1
i

γV2 |h2 |2

ϕa = Vδa
3



Setup
Cosmic Strings and Monopoles

‣ 1st SSB: SU(2) → U(1) by  

‣ Monopoles formed by  

‣ 2nd SSB: U(1) → 1 by  

‣ Cosmic strings formed by  

‣ But SU(2) is simply connected → only metastable

ϕ = Vδa
3

ϕ

h1 = vei×0

h1

 

→ interested in 

κPV ∝ V/v

V/v = 𝒪(1)



from U(1) breaking

‣ Simplest setup: abelian Higgs 

‣  

‣ U(1):  

‣ broken by 

V(ϕ) = λ (ϕ†ϕ − v2)2

ϕ → eiαϕ

⟨ϕ⟩ = v

Cosmic Strings



Cosmic Strings
from U(1) breaking (ctd.)

x

y

x

y

Vacuum Wound about  axisz



Cosmic Strings
from U(1) breaking (ctd.)



0 dimensional cousin of cosmic string

‣ Arise from winding on 2D sphere 

‣ Behave like point-like particles*

Monopoles



Strategy
Why it is an upper bound

SE

True bounce
False vacuum ∀tE

(string)
True vacuum ∀tE

Each point: 4D field configuration



Strategy
Why it is an upper bound

SE



Strategy
Why it is an upper bound

SE

True (optimal) bounce action:
SE[ ] = min

path joining the two sides
max

Φ∈path
SE[Φ]



→ SE[ ] ≥ SE[ ]

Strategy
Why it is an upper bound

SE

within β theory

Solution to EoM of β(ρE)
→ point with maximum SE on some path

→ higher than

path that 
joins the two vacua 
stays within the effective  theory 
has maximum  at 

∃

β
SE



Cosmic Strings for PTA
Failure of stable cosmic strings

10 the NANOGrav Collaboration
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Figure 3. Median GWB spectra produced by a subset of the new-physics models, which we construct by mapping our model
parameter posterior distributions to h

2⌦GW distributions at every frequency f (see Appendix B for more details and Figs. 19
and 20 for the models not included here). We also show the periodogram for an HD-correlated free spectral process (gray violins)
and the GWB spectrum produced by an astrophysical population of inspiraling SMBHBs with the parameters ABHB and �BHB

fixed at the central values µBHB of the 2D Gaussian prior distribution specified in Eq. (A1) (black dashed line).

to merge SMBHBs within a Hubble time, the number
of binaries emitting in the PTA band depends on in-
teractions between binaries and their local galactic en-
vironment to extract orbital energy and drive systems
toward merger (Begelman et al. 1980). If these environ-
mental e↵ects extend into the PTA band, or if binary
orbits are substantially eccentric, then the GWB spec-
trum can flatten at low frequencies (typically expected
at f ⌧ 1 yr�1; Kocsis & Sesana 2011). At high frequen-
cies, once the expected number of binaries dominating
the GWB approaches unity, the spectrum steepens be-
low 13/3 (typically expected at f � 1 yr�1; Sesana et al.
2008).

Unfortunately, current observations and numerical
simulations provide only weak constraints on the spec-
tral amplitude or the specific locations and strengths of
power-law deviations. Despite these uncertainties, the
sensitivity range of PTAs is su�ciently narrowband that
it is reasonable, to first approximation, to model the sig-

nal by a power law in this frequency range:

�BHB(f) =
A

2
BHB

12⇡2

1

Tobs

✓
f

yr�1

◆��BHB

yr3 , (13)

where �BHB/�f is the timing residual PSD (see Eq. (6)).
Following Middleton et al. (2021), we can gain some

insight into the allowed range of values for the ampli-
tude, ABHB, and slope, �BHB, of this power law by sim-
ulating a large number of SMBHB populations cover-
ing the entire range of allowed astrophysical parame-
ters. Specifically, we consider the SMBHB populations
contained in the GWOnly-Ext library generated as part
of the NG15smbh analysis (and discussed in additional
detail there). This library was constructed with the
holodeck package (Kelley et al. 2023) using semian-
alytic models of SMBHB mergers. These models use
simple, parameterized forms of galaxy stellar mass func-
tions, pair fractions, merger rates, and SMBH-mass ver-
sus galaxy-mass relations to produce binary popula-
tions and derived GWB spectra. While some param-
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Blue tilt not reproduced
[Afzal et al., 2023]



Cosmic Strings for PTA
Stable strings vs. PTA

[Gouttenoire et al., 2019]

early

late

Only parameter: tension
→ cannot fit height & tilt

scaling



Metastable Cosmic Strings
Early times

Late times

Decayed Not Produced
f

ΩGW

Stable

Metastable

Metastable, larger tension



When does thin-wall break down?

‣ Introduce “ -thin-wall approximation” 

‣ Thin-wall approximation to the 1D effective theory of  

‣ Valid only for  

‣ Preskill-Vilienkin approximation: similar but different 

‣ -thin-wall: Ansatz → effective 1D theory → thin-wall 

‣ Preskill-Vilenkin: assume thin-wall in the 4D theory

β

β(ρE)

V ≫ v

β



Hint for stronger results?

‣ solid: bounce, dashed: -thin-wall 

‣ For large hierarchy: 

‣ Primitive:  

‣ For small hierarchy: 

‣ -thin-wall deviates from the bounce 

‣ Preskill-Vilenkin: also questionable

β

Preskill-Vilenkin × 𝒪(1)

β
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Results



Unwinding the string

‣  

‣ ,   

‣ controls the U(1) winding 

‣  for  

‣  for  

‣ completely unwound

U = e−iτ3φ cos β + iτ1 sin β ∈ S2 ⊂ SU(2)

h = U(v 0)⊤ ϕ = U(τ3/2)U†

h1 = e−iφv β = 0

U = iτ1 = const . β = π/2

Strategy a + i(bτ1 + cτ3)

a2 + b2 + c2 = 1



Stable strings vs. PTA

‣ Nanograv’s spectrum: blue tilted 

‣ GW spectrum from stable cosmic 
strings → 

‣ The amplitude and 
the low-frequency cutoff 
correlate 

‣ → Mismatch with Nanograv

On metastability

[Gouttenoire et al., 2019]

late emission early emission←



Metastable strings vs. PTA

‣ Finite lifetime moves the cutoff 
to the right 

‣ → better fit with the PTA data

On metastability

[Buchmüller et al., 2023]



Magnetic fields
Cross section of the breaking string
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Other parameters
Light W
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Other parameters
SUSY-like
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Other parameters
Heavy W

0

50

100

150

200

10 100

primitive

improved

monopole

N
anograv

(g
=
2)

g
=
1

mh2
= mφ = mW/2, mh = mγ/2

S
B
×
g2
m

2 γ
/m

2 W

mW /mγ

Preskill-Vilenkin



-thin-wall approximationβ

‣

 

‣  

‣ Maximum: 

SB = 2π∫
∞

0
ρEdρE [ 1

2
𝒦eff(β)β′ 2 + T(β) − T(0)]

≈ − πρ*2
E [T(0) − T ( π

2 )] + 2πρ*E ∫wall
dρE [ 1

2
𝒦eff(β)β′ 2 + T(β) − T(0)]

= − πρ*2
E [T(0) − T ( π

2 )] + 2πρ*E meff

meff := ∫
π
2

0
dβ 2𝒦eff(β)(T(β) − T(0))

SB = π
m2

eff

T(0) − T(π/2)



‣ SE = 2π∫
∞

0
ρEdρE [ 1

2
𝒦eff(β)β′ 2 + T(β)]
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Primitive Ansatz

‣  

‣ , other components: 0 

‣  

‣  

‣ , , , , ,  

h(x) = U (ξβ(ρ)
0 )

Aθ(x) = iU∂φU−1[1 − fβ(ρ)]

ϕ(x) = VU
τ3

2
U−1 + φβ(ρ)[ τ1

2
sin β −

τ2

2
cos β]

U = e−iτ3φ cos β + iτ1 sin β

ξβ(0) = 0 ξβ(∞) = v fβ(0) = 1 fβ(∞) = 0 φβ(0) = V sin 2β φβ(∞) = 0

[Shifman & Yung, 2002]



, h1 h2
⃗ϕ

β ≈
π
2

β = 0



Setup
Couplings vs. Masses

‣ Scale hierarchy:  

‣ Gauge field :  ,  

‣ (Scalars : ,  , ) 

‣ Euclidean action in terms of the masses: 

κPV = MM / Tstr ∼ V/v ∝ mW /mγ

mW = gV mγ =
1

2
gv

mϕ = 8λ̃V mh1
= 2 λv mh2

= γV

SE =
1
g2

[g independent]



Couplings vs. Masses (detailed)

‣ Gauge field :  ,  

‣ Scale hierarchy:  

‣ Scalar triplet :  

‣ Scalar doublet:  ,  

‣ Euclidean action: 

mW = gV mγ =
1

2
gv

V/v ∝ mW /mγ

mϕ = 8λ̃V

mh1
= 2 λv mh2

= γV

g2ℋ =
1
4

F2 + Dĥ
2

+
1
2 (D ̂ϕ)

2
+

m2
ϕ

8m2
W

( ̂ϕ2 − m2
W)

2
+

m2
h1

4m2
γ

( | ĥ |2 − 2m2
γ )

2
+

m2
h2

m2
W ( ̂ϕ −

mW

2 ) ĥ
2


