Light mass window of inert doublet dark matter with lepton portal interaction

Yuji Omura (Kindai Univ.)

Based on PRD109(2024)7,075007 (arXiv: 2310.13685) with Ryo Higuchi (Kindai U.), Syuhei Iguro (KMI) and Shohei Okawa (KEK)

Reference JHEP03(2023)010 (arXiv: 2208.05487) with Syuhei Iguro and Shohei Okawa (KEK); JHEP02(2021)231 (arXiv: 2011.04788) with Shohei Okawa; JHEP08(2020)042 (arXiv: 2002.12534) with Junichiro Kawamura (IBS) and Shohei Okawa

Introduction

Contents

discuss models with light thermal DM,

Motivation

avoid the very strong constraints from the DM direct detection experiments.

Comparison with previous research

Light thermal DM scenarios have been proposed

in many papers.

YO, Gondolo, P.Ko, '12; Alvarado, et al., '21; Herms, et al., '22; Asai, et al., '21; Matsumoto, et al., '19; Longas, et al., '24; etc.

Comparison with previous research

Light thermal DM scenarios have been proposed

in many papers.

YO, Gondolo, P.Ko, '12; Alvarado, et al., '21; Herms, et al., '22; Asai, et al., '21; Matsumoto, et al., '19; Longas, et al., '24; etc.

Light new particles, in addition to DM, are (usually) predicted, to realize the annihilation.

 ϕ : light quarks, light leptons, **light new particles**

 $X\colon$ light Z', light new scalar, light new fermion

Comparison with previous research

Light thermal DM scenarios have been proposed

Light new particles, in addition to DM, are (usually) predicted, to realize the annihilation.

 ϕ : light quarks, light leptons, light new particles

X: light Z', light new scalar, light new fermion in this talk

Contents

- Setup of models with light scalar DM
- · Phenomenology

DM physics

Signals at the LHC

Results

• Summary

Setup of light thermal DM models

construct models where DM DM $\rightarrow \nu \nu$,

is enough large to thermally produce DM.

construct models where DM DM $\rightarrow \nu \nu$,

is enough large to thermally produce DM.

Matter content

	Mall		Lepton	stabilize						
							num.	DM		
		Fields	spin	SU(3)	$SU(2)_L$	$U(1)_Y$	$U(1)_L$	Z_2		
		Q_L^i	1/2	3	2	$\frac{1}{6}$	0	+		
		u_R^i	1/2	3	1	$\frac{2}{3}$	0	+		
		d_R^i	1/2	3	1	$-\frac{1}{3}$	0	+		
		ℓ^i_L	1/2	1	2	$-\frac{1}{2}$	1	+		
		e_R^i	1/2	1	1	-1	1	+		
	extra	ψ_L	1/2	1	1	0	1			
		ψ_R	1/2	1	1	0	1	—		
		Φ	1	1	2	$\frac{1}{2}$	0	+		
	extra	$\Phi_{ u}$	1	1	2	$\frac{1}{2}$	0	—		
	-		V .	to a	to avoid too large					
$ \psi $	and	neutr	utrino masses							
are	e goo	d DN								
	radiatively induce									

The charge assignment allows this Yukawa couplings

$$-\mathcal{L}_{\ell} = y_{\nu}^{i} \,\overline{\ell_{L}^{i}} \,\widetilde{\Phi_{\nu}} \,\psi_{R} + h.c.$$

 $\langle \Phi_{
u} \rangle$ is vanishing, and decomposed as

$$\Phi_{\nu} = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (H + iA) \end{pmatrix}$$

After EWSB
$$-\mathcal{L}_{\ell} = y_{\nu}^{i} \left[\frac{1}{\sqrt{2}} \overline{\nu_{L}^{i}} (H - iA) \psi_{R} - \overline{e_{L}^{i}} H^{-} \psi_{R} \right] + h.c.$$

The charge assignment allows this Yukawa couplings

$$-\mathcal{L}_{\ell} = y_{\nu}^{i} \,\overline{\ell_{L}^{i}} \,\widetilde{\Phi_{\nu}} \,\psi_{R} + h.c.$$

 $\langle \Phi_{
u} \rangle$ is vanishing, and decomposed as

$$\Phi_{\nu} = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} (H + iA) \end{pmatrix}$$

After EWSB
$$-\mathcal{L}_{\ell} = y_{\nu}^{i} \left[\frac{1}{\sqrt{2}} \overline{\nu_{L}^{i}} (H - iA) \psi_{R} - \overline{e_{L}^{i}} H^{-} \psi_{R} \right] + h.c.$$

Then, we obtain the annihilation

Phenomenology

DM candidate and the annihilation

I consider the case that H is DM. This is similar to lnert doublet DM. The annihilation precess, in addition to the EW int., is

To obtain the relic density,

 \cdot large Yukawa couplings are required (compared with $~\psi~$ DM case.)

 $\cdot m_H \simeq m_\psi$ is also favored, making use of coannihilation processes.

Constraints on H couplings

 \cdot Large mass hierarchy is required to avoid the constraint of $\,H_{\pm}$

$$m_{H} \ll m_{A} \simeq m_{H^{\pm}} = \mathcal{O}(100) \text{ GeV}$$
some couplings in Higgs potential should be large.
$$m_{H}^{2} = m_{H^{\pm}}^{2} + \frac{(\lambda_{4} + \lambda_{5})v^{2}}{2}$$

$$m_{H}^{2} = m_{H^{\pm}}^{2} + \frac{(\lambda_{4} + \lambda_{5})v^{2}}{2}$$
should be large.
$$V = m_{1}^{2}(\Phi^{\dagger}\Phi) + m_{2}^{2}(\Phi^{\dagger}_{v}\Phi_{v}) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + \lambda_{2}(\Phi^{\dagger}_{v}\Phi_{v})^{2} + \lambda_{3}(\Phi^{\dagger}\Phi)(\Phi^{\dagger}_{v}\Phi_{v}) + \lambda_{4}(\Phi^{\dagger}\Phi_{v})(\Phi^{\dagger}_{v}\Phi) + \frac{\lambda_{5}}{2}[(\Phi^{\dagger}\Phi_{v})^{2} + h.c.]$$

Constraints on H couplings

 \cdot Large mass hierarchy is required to avoid the constraint of $\,H_{\pm}$

$$m_{H} \ll m_{A} \simeq m_{H^{\pm}} = \mathcal{O}(100) \text{ GeV}$$
some couplings in Higgs potential should be large.
$$m_{H}^{2} = m_{H^{\pm}}^{2} + \frac{(\lambda_{4} + \lambda_{5})v^{2}}{2}$$

$$m_{H}^{2} = m_{H^{\pm}}^{2} + \frac{(\lambda_{4} + \lambda_{5})v^{2}}{2}$$
should be large.
$$V = m_{1}^{2}(\Phi^{\dagger}\Phi) + m_{2}^{2}(\Phi^{\dagger}_{v}\Phi_{v}) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + \lambda_{2}(\Phi^{\dagger}_{v}\Phi_{v})^{2}$$

$$+ \lambda_{3}(\Phi^{\dagger}\Phi)(\Phi^{\dagger}_{v}\Phi_{v}) + \lambda_{4}(\Phi^{\dagger}\Phi_{v})(\Phi^{\dagger}_{v}\Phi) + \frac{\lambda_{5}}{2}[(\Phi^{\dagger}\Phi_{v})^{2} + h.c.]$$

 Tuning parameters is needed because of constraints from invisible decay of <u>125 GeV Higgs</u> and <u>the EWPO</u>.

$$\frac{\lambda_{345}}{2} v h_{125} H^2$$

should be suppressed

$$(\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5)$$

large

small large

$$m_A^2 = m_{H^\pm}^2 + rac{(\lambda_4 - \lambda_5)v^2}{2}$$

should be suppressed
for $m_A \simeq m_{H^\pm}$

Direct detection of H (DM)

The interaction of ${\cal H}$ with nuclei is given by 125 GeV Higgs exchange

Indirect detection of H (DM)

DMs (H) annihilate to two fermions:

EW interaction gives some signals but small.

Signals at the LHC

R. Higuchi, S. Iguro, S. Okawa, YO PRD109(2024)7,075007 (arXiv: 2310.13685)

H and $\,\psi\,$ are produced via EW interaction.

Mono-Z search is complementary to slepton search.

R. Higuchi, S. Iguro, S. Okawa, YO PRD109(2024)7,075007 (arXiv: 2310.13685)

Results assuming DM dominantly couples to τ and ν_{τ} .

Another way to test this model

S. Okawa YO JHEP02(2021)231 (arXiv:2011.04788)

125 GeV Higgs signal is deviated from the SM prediction.

Fermionic DM case

S. Okawa YO JHEP02(2021)231 (arXiv:2011.04788)

S. Iguro, S. Okawa, YO JHEP03(2023)010 (arXiv: 2208.05487)

If extra fermion, ψ , is light than H , ψ is DM.

Yukawa couplings can be relatively small.

Fermion DM case

S. Iguro, S. Okawa, YO JHEP03(2023)010 (arXiv: 2208.05487)

(DM dominantly couples to T and V_T)

Summary

- I introduce a DM model where DM is scalar and the mass is lighter than 10 GeV. The setup is similar to Inert two Higgs doublet model, where the DM mass is around 60 GeV or heavy.
- Fermion, ψ , is also a good DM candidate. The Yukawa couplings are relatively small in the Fermion DM case. (arXiv: 2011.04788, 2208.05487, S. Iguro, S.Okawa and YO).
- Bounds from DM physics are not strong.
- We can search for the extra scalars and extra fermion at LHC. Mono-Z search is complementary to stau search.
- Making mass difference among scalars is one issue: large couplings required in the scalar potential. → <u>A solution is to add one more scalar (see arXiv: 2011.04788,</u> <u>S.Okawa and YO).</u>
- In Higgs physics, $h \rightarrow \gamma \gamma$ is largely deviated (about 10 %) and invisible decay is also large, because of the large couplings.

Backup

Scalar DM case

R. Higuchi, S. Iguro, S. Okawa, YO PRD109(2024)7,075007 (arXiv: 2310.13685)

Scalar DM case

R. Higuchi, S. Iguro, S. Okawa, YO PRD109(2024)7,075007 (arXiv: 2310.13685)

(DM dominantly couples to μ and ν_{μ})

Extended model with a scalar

2011.04788 with Okawa

Fields	spin	SU(3)	$SU(2)_L$	$U(1)_Y$	$U(1)_{L}$	Z_2
Q_L^i	1/2	3	2	$\frac{1}{6}$	0	+
u_R^i	1/2	3	1	$\frac{2}{3}$	0	+
d_R^i	1/2	3	1	$-\frac{2}{3}$	0	+
ℓ_L^i	1/2	1	2	$-\frac{1}{2}$	1	+
e^i_R	1/2	1	1	$-\overline{1}$	1	+
ψ_L	1/2	1	1	0	1	_
ψ_R	1/2	1	1	0	1	—
Φ	1	1	2	$\frac{1}{2}$	0	+
$\Phi_{ u}$	1	1	2	$\frac{1}{2}$	0	—
a S	1	1	1	$ar{0}$	0	—
	Fields Q_L^i u_R^i d_R^i d_R^i ℓ_L^i ℓ_R^i ψ_L ψ_R Φ Φ_{ν} aa	$\begin{array}{c c} {\rm Fields} & {\rm spin} \\ \hline Q_L^i & 1/2 \\ u_R^i & 1/2 \\ d_R^i & 1/2 \\ \ell_L^i & 1/2 \\ \ell_L^i & 1/2 \\ e_R^i & 1/2 \\ \psi_L & 1/2 \\ \psi_R & 1/2 \\ \hline \psi_R & 1/2 \\ \hline \Phi & 1 \\ \Phi_\nu & 1 \\ {\rm a} \ S & 1 \end{array}$	Fields spin $SU(3)$ Q_L^i $1/2$ 3 u_R^i $1/2$ 3 d_R^i $1/2$ 3 d_R^i $1/2$ 3 ℓ_L^i $1/2$ 1 ℓ_L^i $1/2$ 1 ψ_L $1/2$ 1 ψ_R $1/2$ 1 ψ_R $1/2$ 1 Φ_{-1} 1 1 Φ_{ν} 1 1 \mathbf{a} S 1 1	Fieldsspin $SU(3)$ $SU(2)_L$ Q_L^i $1/2$ 32 u_R^i $1/2$ 31 d_R^i $1/2$ 31 ℓ_L^i $1/2$ 12 e_R^i $1/2$ 11 ψ_L $1/2$ 11 ψ_R $1/2$ 11 ϕ_R $1/2$ 11 Φ 1 12 Φ_{ν} 1 12a S1 11	Fieldsspin $SU(3)$ $SU(2)_L$ $U(1)_Y$ Q_L^i $1/2$ 32 $\frac{1}{6}$ u_R^i $1/2$ 31 $\frac{2}{3}$ d_R^i $1/2$ 31 $-\frac{2}{3}$ ℓ_L^i $1/2$ 12 $-\frac{1}{2}$ e_R^i $1/2$ 11 -1 ψ_L $1/2$ 11 0 ψ_R $1/2$ 11 0 ϕ_R $1/2$ 12 $\frac{1}{2}$ Φ_{ν} 1 12 $\frac{1}{2}$ a S1 11 0	Fieldsspin $SU(3)$ $SU(2)_L$ $U(1)_Y$ $U(1)_L$ Q_L^i $1/2$ 32 $\frac{1}{6}$ 0 u_R^i $1/2$ 31 $\frac{2}{3}$ 0 d_R^i $1/2$ 31 $-\frac{2}{3}$ 0 ℓ_L^i $1/2$ 12 $-\frac{1}{2}$ 1 e_R^i $1/2$ 11 0 1 ψ_L $1/2$ 11 0 1 ψ_R $1/2$ 11 0 1 ψ_R $1/2$ 11 0 1 Φ_{ν} 1 12 $\frac{1}{2}$ 0 $a S$ 1 11 0 0

Additional coupling involving S

$$-\Delta \mathcal{L} = A_S \, \Phi^\dagger \Phi_\nu S + h.c.$$