Listening to Dark Sectors with Pulsar Timing Arrays

(work with Y. Cui, Y.-D. Tsai and Y. Tsai)

Amitayus Banik

Chungbuk National University

5th International Joint Workshop on the Standard Model and Beyond 2024 & 3rd Gordon Godfrey Workshop on Astroparticle Physics

10th December 2024

Measurements from **P**ulsar **T**iming **A**rrays (NANOGrav, EPTA, PPTA, CPTA, etc.) provide **strong** evidence for a stochastic GW background.

- Measurements from **P**ulsar **T**iming **A**rrays (NANOGrav, EPTA, PPTA, CPTA, etc.) provide **strong** evidence for a stochastic GW background.
- **Possible origins:** merging population of supermassive black holes (astrophysical) **NANOGrav Collab. (2021, 2023), ...**

- Measurements from **PTAs** (NANOGrav, EPTA, PPTA, CPTA) provide **strong** evidence for a stochastic GW background.
- **Possible origins:** merging population of supermassive black holes (astrophysical), **but** beyond-the-SM sources (phase transition, collapsing domain walls, cosmic string network, ...) also **allowed**.

..., NANOGrav Collab (2023), T. Bringmann et al. (2023), Y. Bai et al. (2023), J. Ellis et al. (2023), ...

- Measurements from **PTAs** (NANOGrav, EPTA, PPTA, CPTA) provide **strong** evidence for a stochastic GW background.
- **Possible origins:** merging population of supermassive black holes (astrophysical), **but** beyond-the-SM sources (phase transition, collapsing domain walls, cosmic string network, ...) also **allowed**. **..., NANOGrav Collab (2023), T. Bringmann et al. (2023), Y. Bai et al. (2023), J. Ellis et al. (2023), ...**
- **Here:** focus on first-order phase transitions occurring in a dark sector. **..., C. Han et al. (2023), S.-P. Li & K.-P. Xie (2023), ...**

- Measurements from **PTAs** (NANOGrav, EPTA, PPTA, CPTA) provide **strong** evidence for a stochastic GW background.
- **Possible origins:** merging population of supermassive black holes (astrophysical), **but** beyond-the-SM sources (phase transition, collapsing domain walls, cosmic string network, ...) also **allowed**. **..., NANOGrav Collab (2023), T. Bringmann et al. (2023), Y. Bai et al. (2023), J. Ellis et al. (2023), ...**
- **Here:** focus on first-order phase transitions occurring in a dark sector. **..., C. Han et al. (2023), S.-P. Li & K.-P. Xie (2023), ...**
- In particular: **connect** observed PTA spectrum to microphysics model parameters as opposed to macroscopic phase transition (PT) parameters **T. Bringmann et al. (2023), A. Addazi et al (2023), M. Winkler & K. Freese (2024), ...**

• Need a scalar driving the PT

• Need a scalar driving the PT, additional bosonic degrees of freedom to **augment** PT.

- Need a scalar driving the PT, additional bosonic degrees of freedom to **augment** PT.
- **Minimal setup:** Gauged dark U(1) with complex scalar Φ

- Need a scalar driving the PT, additional bosonic degrees of freedom to **augment** PT.
- **Minimal setup:** Gauged dark U(1) with complex scalar Φ

$$
\mathcal{L}_{\text{DSPT}} \supset (D^\mu \Phi)^\dagger (D_\mu \Phi) - \mu^2 \, \Phi^\dagger \Phi + \frac{\lambda}{2} (\Phi^\dagger \Phi)^2
$$

where $D_\mu \Phi = \partial_\mu \Phi + i g_D \, A'_\mu \, \Phi$ and μ^2 , $\lambda > 0$

- Need a scalar driving the PT, additional bosonic degrees of freedom to **augment** PT.
- **Minimal setup:** Gauged dark U(1) with complex scalar Φ

$$
\mathcal{L}_{\text{DSPT}} \supset (D^\mu \Phi)^\dagger (D_\mu \Phi) - \mu^2 \, \Phi^\dagger \Phi + \frac{\lambda}{2} (\Phi^\dagger \Phi)^2
$$

where $D_\mu \Phi = \partial_\mu \Phi + i g_D \, A'_\mu \, \Phi$ and μ^2 , $\lambda > 0$

• Symmetry breaking,

$$
\langle \Phi \rangle = \frac{v_0 + \phi}{\sqrt{2}}\,, \quad \text{with} \quad v_0 = \sqrt{\frac{\mu^2}{\lambda}}
$$

- Need a scalar driving the PT, additional bosonic degrees of freedom to **augment** PT.
- **Minimal setup:** Gauged dark U(1) with complex scalar Φ

$$
\mathcal{L}_{\text{DSPT}} \supset (D^\mu \Phi)^\dagger (D_\mu \Phi) - \mu^2 \, \Phi^\dagger \Phi + \frac{\lambda}{2} (\Phi^\dagger \Phi)^2
$$

where $D_\mu \Phi = \partial_\mu \Phi + i g_D \, A'_\mu \, \Phi$ and μ^2 , $\lambda > 0$

• Symmetry breaking,

$$
\langle \Phi \rangle = \frac{v_0 + \phi}{\sqrt{2}}\,, \quad \text{with} \quad v_0 = \sqrt{\frac{\mu^2}{\lambda}}
$$

 \bullet Useful to also consider limit of $SU(N)$, but need **maximal breaking** (avoid remnant massless degrees of freedom)

- Need a scalar driving the PT, additional bosonic degrees of freedom to **augment** PT.
- **Minimal setup:** Gauged dark U(1) with complex scalar Φ

$$
\mathcal{L}_{\text{DSPT}} \supset (D^\mu \Phi)^\dagger (D_\mu \Phi) - \mu^2 \, \Phi^\dagger \Phi + \frac{\lambda}{2} (\Phi^\dagger \Phi)^2
$$

where $D_\mu \Phi = \partial_\mu \Phi + i g_D \, A'_\mu \, \Phi$ and μ^2 , $\lambda > 0$

• Symmetry breaking,

$$
\langle \Phi \rangle = \frac{v_0 + \phi}{\sqrt{2}}\,, \quad \text{with} \quad v_0 = \sqrt{\frac{\mu^2}{\lambda}}
$$

- \bullet Useful to also consider limit of $SU(N)$, but need **maximal breaking** (avoid remnant massless degrees of freedom)
- Can also consider a Yukawa term: $y_D \bar{\Psi} \Phi_{\chi}$, with Dirac fermion Ψ and one singlet fermion χ

• Promote the vev v_0 to background field $\varphi \equiv \varphi(T)$; temperature evolution governed by **finite-temperature effective potential**

$$
V_{1-L}(\varphi,T) = V_0(\varphi) + V_{\rm CW}(\varphi) + V_T(\varphi,T)
$$

• Promote the vev v_0 to background field $\varphi \equiv \varphi(T)$; temperature evolution governed by **finite-temperature effective potential**

$$
V_{1-L}(\varphi,T) = V_0(\varphi) + V_{\text{CW}}(\varphi) + V_T(\varphi,T)
$$

• Promote the vev v_0 to background field $\varphi \equiv \varphi(T)$; temperature evolution governed by **finite-temperature effective potential**

$$
V_{1-L}(\varphi,T) = V_0(\varphi) + V_{\rm CW}(\varphi) + V_T(\varphi,T)
$$

- At high T, $\varphi = 0$ and symmetry intact.
- At low T , end up at the true vacuum $\varphi = v_0$ where the symmetry is broken.

• Promote the vev v_0 to background field $\varphi \equiv \varphi(T)$; temperature evolution governed by **finite-temperature effective potential**

$$
V_{1-L}(\varphi,T) = V_0(\varphi) + V_{\text{CW}}(\varphi) + V_T(\varphi,T)
$$

- At high T , $\varphi = 0$ and symmetry intact.
- As low T , φ ends up at the true vacuum $\varphi = v_0$ where the symmetry is broken.
- **If a barrier** forms (at critical temp. T_c) separating the two vacua, the PT is said to be **first-order (FOPT)**.

FOPTs proceed through nucleation of **bubbles** of the true vacuum;

FOPTs proceed through nucleation of **bubbles** of the true vacuum; rate per Hubble volume given by

S.R. Coleman (1977), C. G. Callan, Jr. and S. R. Coleman (1977), A. D. Linde (1981, 1983)

$$
\Gamma(T) = T^4 \left(\frac{S_3}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{S_3}{T}\right)
$$

FOPTs proceed through nucleation of **bubbles** of the true vacuum; rate per Hubble volume given by

S.R. Coleman (1977), C. G. Callan, Jr. and S. R. Coleman (1977), A. D. Linde (1981, 1983)

$$
\Gamma(T) = T^4 \left(\frac{S_3}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{S_3}{T}\right)
$$

• Bubble nucleation occurs at T_* determined by

$$
\Gamma(T_*) \sim H^4(T_*),
$$

FOPTs proceed through nucleation of **bubbles** of the true vacuum; rate per Hubble volume given by

S.R. Coleman (1977), C. G. Callan, Jr. and S. R. Coleman (1977), A. D. Linde (1981, 1983)

$$
\Gamma(T) = T^4 \left(\frac{S_3}{2\pi T}\right)^{\frac{3}{2}} \exp\left(-\frac{S_3}{T}\right)
$$

• Bubble nucleation occurs at T_* determined by

$$
\Gamma(T_*) \sim H^4(T_*)\,, \quad \text{where}\quad H^2(T)=\frac{8\pi G_N}{3}\,\rho_R(T)\equiv \frac{8\pi G_N}{3}\left(\frac{\pi^2}{30}g_{*,\,\text{tot}}\,T^4\right)
$$

Phase Transition Parameters

Obtain

$$
S_3 = 4\pi \int_0^\infty dr \, r^2 \left[\frac{1}{2} \left(\frac{d\varphi_b}{dr} \right)^2 + V_{1-\text{L}}(\varphi_b, T) \right],
$$

the 3-D Euclidean action for bounce configuration, using FindBounce. **V. Guada, et. al. (2020)**

Phase Transition Parameters

Obtain

$$
S_3 = 4\pi \int_0^\infty dr \, r^2 \left[\frac{1}{2} \left(\frac{d\varphi_b}{dr} \right)^2 + V_{1-\text{L}}(\varphi_b, T) \right],
$$

the 3-D Euclidean action for bounce configuration, using FindBounce. **V. Guada, et. al. (2020)**

• PT characterized by its inverse duration β and strength α_* (\sim latent heat)

$$
\frac{\beta}{H_\star} \equiv T_* \, \left[\frac{d}{dT} \left(\frac{S_3}{T} \right) \right] \bigg|_{T_*} \, , \quad \alpha_* \equiv \frac{1}{\rho_R(T_*)} \left(\Delta V \bigg|_{T_*} - T_* \, \frac{\partial \Delta V}{\partial T} \bigg|_{T_*} \right) \, ,
$$

Phase Transition Parameters

Obtain

$$
S_3 = 4\pi \int_0^\infty dr \, r^2 \left[\frac{1}{2} \left(\frac{d\varphi_b}{dr} \right)^2 + V_{1-\text{L}}(\varphi_b, T) \right],
$$

the 3-D Euclidean action for bounce configuration, using FindBounce. **V. Guada, et. al. (2020)**

• PT characterized by its inverse duration β and strength α_* (\sim latent heat)

$$
\frac{\beta}{H_\star} \equiv T_* \, \left[\frac{d}{dT} \left(\frac{S_3}{T} \right) \right] \bigg|_{T_*} \, , \quad \alpha_* \equiv \frac{1}{\rho_R(T_*)} \left(\Delta V \bigg|_{T_*} - T_* \, \frac{\partial \Delta V}{\partial T} \bigg|_{T_*} \right) \, ,
$$

• Model dependence comes from $V_{1-\text{L}}(\varphi_b, T) \longrightarrow \text{PT parameters}$ end up depending on the model parameters $[\mu, \lambda, q_D, (y_D, N)]$

U(1) Example: T_*

Work with pure U(1) group, $y_D = 0$. Fix $\lambda = 0.05$, study trend of T_* in (μ, g_D) plane.

U(1) Example: T_*

Work with pure U(1) group, $y_D = 0$. Fix $\lambda = 0.05$, study trend of T_* in (μ, g_D) plane.

U(1) Example: T_*

Work with pure U(1) group, $y_D = 0$. Fix $\lambda = 0.05$, study trend of T_* in (μ, g_D) plane.

μ fixes the **relative scale** of $T_*!$

U(1) Example: β/H_* and α_*

Set $\mu = 2$ MeV and $y_D = 0$. Study trend of β/H_* and α_* in (g_D, λ) plane.

U(1) Example: β/H_* and α_*

Set $\mu = 2$ MeV and $y_D = 0$. Study trend of β/H_* and α_* in (g_D, λ) plane.

7

U(1) Example: β/H_* and α_*

Set $\mu = 2$ MeV and $y_D = 0$. Study trend of β/H_* and α_* in (g_D, λ) plane.

Larger couplings: PT lasts **longer**; increasing g_D (for fixed λ): PT is **stronger**.

Sources: bubble collisions, sound waves, and turbulence **[A. Kosowsky et al. (1992, 1993), S. J. Huber and T. Konstandin (2008), D. J. Weir (2016)], [Hindmarsh et al. (2013, 2015, 2017)], [Kosowsky et al. (2002), Dolgov et al. (2002), Caprini et al. (2009)]**

Sources: bubble collisions, sound waves, and turbulence **[A. Kosowsky et al. (1992, 1993), S. J. Huber and T. Konstandin (2008), D. J. Weir (2016)], [Hindmarsh et al. (2013, 2015, 2017)], [Kosowsky et al. (2002), Dolgov et al. (2002), Caprini et al. (2009)]**

Depending on microphysics, different contributions **dominate**

Sources: bubble collisions, sound waves, and turbulence **[A. Kosowsky et al. (1992, 1993), S. J. Huber and T. Konstandin (2008), D. J. Weir (2016)], [Hindmarsh et al. (2013, 2015, 2017)], [Kosowsky et al. (2002), Dolgov et al. (2002), Caprini et al. (2009)]**

Depending on microphysics, different contributions **dominate** → in our case, sound waves dominant due to strong interactions of scalar with plasma

Sources: bubble collisions, sound waves, and turbulence **[A. Kosowsky et al. (1992, 1993), S. J. Huber and T. Konstandin (2008), D. J. Weir (2016)], [Hindmarsh et al. (2013, 2015, 2017)], [Kosowsky et al. (2002), Dolgov et al. (2002), Caprini et al. (2009)]**

Depending on microphysics, different contributions **dominate** → in our case, sound waves dominant due to strong interactions of scalar with plasma (sub-leading contribution from turbulence) **Rev. by Caprini et al. (2015, 2018, 2019)**

$$
\Omega^{\rm sw}_{\rm GW} h^2(f) = \Omega^{\rm sw, peak}_{\rm GW} h^2 \left(\frac{f}{f^{\rm sw}_{\rm peak}}\right)^3 \left(\frac{7}{4+3\left(\frac{f}{f^{\rm sw}_{\rm peak}}\right)^2}\right)^{\frac{7}{2}}
$$

Sources: bubble collisions, sound waves, and turbulence **[A. Kosowsky et al. (1992, 1993), S. J. Huber and T. Konstandin (2008), D. J. Weir (2016)], [Hindmarsh et al. (2013, 2015, 2017)], [Kosowsky et al. (2002), Dolgov et al. (2002), Caprini et al. (2009)]**

 \bullet Depending on microphysics, different contributions **dominate** \rightarrow in our case, sound waves dominant due to strong interactions of scalar with plasma (sub-leading contribution from turbulence) **Rev. by Caprini et al. (2015, 2018, 2019)**

$$
\Omega^{\rm sw}_{\rm GW} h^2(f) = \Omega^{\rm sw, peak}_{\rm GW} h^2 \left(\frac{f}{f^{\rm sw}_{\rm peak}}\right)^3 \left(\frac{7}{4+3\left(\frac{f}{f^{\rm sw}_{\rm peak}}\right)^2}\right)^{\frac{7}{2}}
$$

Improvements: T. Ghosh et al. (2023); **H.-K. Guo** et al. (2024), also see **his plenary talk** tomorrow!

Model Parameters and the Spectrum

$$
\Omega_{\rm GW}^{\rm sw,peak}h^2 = 5.71 \times 10^{-8} \, v_w \, \left(\frac{10}{g_{*, \rm tot}}\right)^{\frac{1}{3}} \left(\frac{\beta/H_*}{100}\right)^{-1} \left(\frac{\kappa_{\rm sw} \, \alpha_*}{1 + \alpha_*}\right)^2 \, \Upsilon
$$
\n
$$
f_{\rm peak}^{\rm sw} = \frac{1.3 \times 10^{-8} \, \text{Hz}}{v_w} \left(\frac{\beta/H_*}{100}\right) \left(\frac{g_{*, \rm tot}}{10}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \, \text{MeV}}\right)
$$

Model Parameters and the Spectrum

$$
\Omega_{\rm GW}^{\rm sw,peak}h^2 = 5.71 \times 10^{-8} v_w \left(\frac{10}{g_{*,\rm tot}}\right)^{\frac{1}{3}} \left(\frac{\beta/H_*}{100}\right)^{-1} \left(\frac{\kappa_{\rm sw} \alpha_*}{1 + \alpha_*}\right)^2 \Upsilon
$$

$$
f_{\rm peak}^{\rm sw} = \frac{1.3 \times 10^{-8} \,\text{Hz}}{v_w} \left(\frac{\beta/H_*}{100}\right) \left(\frac{g_{*,\rm tot}}{10}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \,\text{MeV}}\right)
$$

Model Parameters and the Spectrum

$$
\Omega_{\rm GW}^{\rm sw,peak}h^2 = 5.71 \times 10^{-8} v_w \left(\frac{10}{g_{*, \rm tot}}\right)^{\frac{1}{3}} \left(\frac{\beta/H_*}{100}\right)^{-1} \left(\frac{\kappa_{\rm sw} \alpha_*}{1 + \alpha_*}\right)^2 \Upsilon
$$

$$
f_{\rm peak}^{\rm sw} = \frac{1.3 \times 10^{-8} \text{ Hz}}{v_w} \left(\frac{\beta/H_*}{100}\right) \left(\frac{g_{*, \rm tot}}{10}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ MeV}}\right)
$$

Fitting to the PTA Data

Fitting to the PTA Data

To study the parameter space **consistent** with the PTA data, need mean values and 1σ error bars.

Fitting to the PTA Data

- To study the parameter space **consistent** with the PTA data, need mean values and 1σ error bars.
- Test **compatibility** using

$$
\chi^2 = \sum_{i=1}^{41} \left(\frac{\log \Omega_{\text{GW},i}^\text{model} - \log \Omega_{\text{GW},i}^\text{data}}{\Delta \log \Omega_{\text{GW},i}^\text{data}} \right)^2
$$

 $\Omega_{\mathsf{GW},i}^\text{model} \equiv$ model prediction, $\Omega_{\mathsf{GW},i}^\mathsf{data} \equiv$ mean values of PTA data, Λ = error bars of PTA data.

• Need the degrees of freedom to determine confidence levels,

 $n_{\rm d.o.f.} = 41 - n_{\rm params}$

M. Winkler and K. Freese (2024)

Extremely narrow parameter space for which a DS PT can account for the PTA data.

- **Extremely narrow parameter space for which a DS PT can account for the** PTA data.
- Expected to be a **generic problem** for most models.

Best Fit to the PTA Data

• With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 - 2.5$ MeV −→ BBN constraints **Y. Bai & M. Korwal (2021)**

• With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 - 2.5$ MeV \longrightarrow BBN constraints **Y. Bai & M. Korwal (2021)** V

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV → BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV → BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**, but need to deplete its energy density through decay/annihilation to SM particles.

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV → BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**, but need to deplete its energy density through decay/annihilation to SM particles.
- **Higgs mixing?**

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV \longrightarrow BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**, but need to deplete its energy density through decay/annihilation to SM particles.
- **Higgs mixing?** \times strongly constrained and ϕ too long-lived $\tau > 0.1$ s (BBN bound)

A. M. Sirunyan et al. (2018)

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV \longrightarrow BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**, but need to deplete its energy density through decay/annihilation to SM particles.
- **Higgs mixing?** \times strongly constrained and ϕ too long-lived $\tau > 0.1$ s (BBN bound)

A. M. Sirunyan et al. (2018)

Kinetic mixing? can work

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV \longrightarrow BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**, but need to deplete its energy density through decay/annihilation to SM particles.
- **Higgs mixing?** \times strongly constrained and ϕ too long-lived $\tau > 0.1$ s (BBN bound)

A. M. Sirunyan et al. (2018)

Kinetic mixing? can work, proceeds through forbidden annihilation channel $\phi\phi \to A'A'$ followed by $A' \to e^+e^-$.

R. T. D'Agnolo and J. T. Ruderman (2015)

- With a thermalized dark sector, preferred parameters lead to $T_* \sim 2 2.5$ MeV \longrightarrow BBN constraints **Y. Bai & M. Korwal (2021)**
- Physical dark Higgs φ emerges as lightest stable particle → can be a **dark matter candidate**, but need to deplete its energy density through decay/annihilation to SM particles.
- **Higgs mixing?** \times strongly constrained and ϕ too long-lived $\tau > 0.1$ s (BBN bound)

A. M. Sirunyan et al. (2018)

Kinetic mixing? can work, proceeds through forbidden annihilation channel $\phi\phi \to A'A'$ followed by $A' \to e^+e^-$.

R. T. D'Agnolo and J. T. Ruderman (2015)

$$
\Omega_{\phi}h^2 \sim 10^{-13} \left(\frac{m_{\phi}}{3\,\text{MeV}}\right)^2 e^{x_f \,\Delta} \,, \quad \Delta \equiv \frac{2(m_{A'} - m_{\phi})}{m_{\phi}}
$$

Summary and Outlook

- A dark sector phase transition can account for the **whole PTA signal**, but parameter space is extremely constrained.
- Leads to predictive phenomenology for the underlying model.
- Interesting implications for the DS cosmology ("can" get right DM).

Thank you for your attention!

Backup

β/H_* and α_* for SU(N)

Set $\mu = 1$ MeV and $y_D = 0$. Study trend of β/H_* and α_* in (g_D, λ) plane.

Enlarging the gauge group ($N = 2$: solid lines, $N = 3$: dashed lines) 'tilts' the parameter space!

Yukawa Coupling

Work with U(1) group with two fermions. Fix $\lambda = 0.05$ and $\mu = 1$ MeV to study trends in (g_D, y_D) plane.

Can increase g_D to compensate for negative fermionic contribution!