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Direct detection: DM-nucleus scattering
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Direct detection: DM-nucleus scattering

cryogenic 
experiments

tonne-scale
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Direct detection: DM-nucleus scattering

How to extend 
low mass 

reach?

Increased 
exposure

(bigger 
detectors)

Figure: C. O’Hare
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Sub-GeV direct detection

PandaX-4T (2023)
SENSEI (2023)

Migdal effectElectron scattering Low-threshold 
detectors

+ DM absorption, boosted DM, …

Lots of ideas + R&D
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Sub-GeV direct detection

Figure: 2203.08297 (Snowmass 21)

This talk
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Sub-GeV DM with superfluid  He4

Lanou, Maris & Seidel ’87
Guo & McKinsey ’13

Ito & Seidel ’13
Hertel+ ‘18

Upcoming experiments:  HeRALD, DELight

Primary signal: quantum evaporation

Figure: Herald Collaboration

dark

matter
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Sub-GeV DM with superfluid  He
DELight Collaboration

Figure: Herald Collaboration

dark

matter

• Initial sensitivity to DM masses of 10s-100s MeV

• Ongoing R&D towards lower threshold calorimeters:

4

HeRALD (transition edge sensors)  
DELight (magnetic micro-calorimeter)
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Sub-MeV direct detection: collective excitations

keV MeV GeV
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dark matter mass
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Sub-MeV direct detection: collective excitations

keV MeV GeV

µm nm pm

dark matter mass

de Broglie wavelength

collective excitations nuclear (or electron) recoils

mm

eV

coherent (wave-like)

Sub-MeV mass DM interacts directly with collective excitations 
       (e.g. phonons)

phononphonon
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Superfluid  He collective modes (phonons/rotons)4

Figure: Matchev et. al ‘21

Long-lived/stable collective excitations
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Superfluid  He collective modes (phonons/rotons)4

Figure: Matchev et. al ‘21

Linear dispersion 
relation (NGB)

Long-lived/stable collective excitations



• Spontaneously broken             symmetry   (particle number)

• Finite density
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Superfluid phonon EFT Son ’02

Nicolis ’11

Nicolis & Piazza ‘11
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Superfluid phonon EFT

chemical 
potential

Son ’02

Nicolis ’11

Nicolis & Piazza ‘11

Noether current:



Peter Cox - University of Melbourne

Superfluid phonon EFT

chemical 
potential

Son ’02

Nicolis ’11

Nicolis & Piazza ‘11

Noether current:

VEV spontaneously breaks boosts & time translations

Preserves linear combination

• Spontaneously broken             symmetry   (particle number)

• Finite density
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Superfluid phonon EFT
Most general Lagrangian consistent with shift symmetry:

Son ’02

Nicolis ’11

Nicolis & Piazza ‘11



Peter Cox - University of Melbourne

Superfluid phonon EFT
Most general Lagrangian consistent with shift symmetry:

“local chemical potential”

Son ’02

Nicolis ’11

Nicolis & Piazza ‘11

𝑃 = pressure
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Superfluid phonon EFT
Most general Lagrangian consistent with shift symmetry:

Nambu-Goldstone phonon:

Sound speed, couplings can be expressed in terms of derivatives of 

Son ’02

Nicolis ’11

Nicolis & Piazza ‘11
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Dark matter–phonon EFT

Consider spin-independent DM-nucleon interaction

 
 
 DM couples to He number density
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Acanfora, Esposito, Pelosa ‘19
Dark matter–phonon EFT

Consider spin-independent DM-nucleon interaction

 
 
 DM couples to He number density
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Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors

Optomechanical systems already used to search for ultralight DM, e.g. HeLIOS
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Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors

Toy model:
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Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

Optical resonance frequency depends on cavity length
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Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

photon phonon

optomechanical 
coupling
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Superfluid cavity optomechanics

Mechanical mode: phonons in superfluid

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity Mechanical mode: phonons in superfluid

Optomechanical interaction due to 
change in refractive index

Agarwal & Jha ‘14
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Superfluid cavity optomechanics

photons phononoptomechanical 
coupling

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity
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Superfluid cavity optomechanics

photons phononoptomechanical 
coupling

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

coupling to a single phonon mode
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

pump laser enhances small 𝑔0 

coupling to a single phonon mode
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

pump laser enhances small 𝑔0 

e.g.

Optomechanical conversion of ~µeV phonons to ~eV photons 

coupling to a single phonon mode
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

pump laser enhances small 𝑔0 

e.g.

Optomechanical conversion of ~µeV phonons to ~eV photons 

Optomechanical systems have demonstrated µeV phonon counting  (e.g. Patil et. al. ’22) 

coupling to a single phonon mode
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Narrow-band detection

Superfluid optomechanical systems as dark matter detectors:

✓ exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy set by pump laser frequency)

 Very low dark matter scattering rate due to restricted phase space



Superfluid optomechanical systems as dark matter detectors:

✓ exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy set by pump laser frequency)

 Very low dark matter scattering rate due to restricted phase space
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Narrow-band detection & phonon lasing

Solution: Phonon lasing
 
•  Stimulated scattering rate 

(proportional to phonon occupation number)

• Achieved via optomechanical interaction
detected
phonon

pumped 
phonon
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Optomechanical detection

1

excited phonon
(higher energy)

pumped phonon
(lower-energy,

high occupation)

Scattering
DM excites ~µeV phonon in superfluid



Peter Cox - University of Melbourne

Optomechanical detection

1

excited phonon
(higher energy)

pumped phonon
(lower-energy,

high occupation)

Scattering
DM excites ~µeV phonon in superfluid

Conversion & amplification
phonon interacts with pump laser, 
producing higher energy photon

2

phonon

pump laser 
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Optomechanical detection

1

excited phonon
(higher energy)

pumped phonon
(lower-energy,

high occupation)

Scattering
DM excites ~µeV phonon in superfluid

Conversion & amplification
phonon interacts with pump laser, 
producing higher energy photon

2

phonon

pump laser 

Detection
photon detected by single photon 
detector (SNSPD)

3
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ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 32cm x 0.7mm
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ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 32cm x 0.7mm

Main detector backgrounds:

• Thermal phonons

(10−5 Hz at T = 4mK and Q = 1010)

• SNSPD dark counts

(~6 × 10−6 Hz)

• Incomplete filtering of pump lasers

(especially 532nm, supressed with filter cavities)

Expected background rate ~1 event/day
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ODIN: Projected Sensitivity

Sensitivity determined by:

• Phonon occupation 

• Acoustic Q-factor (phonon lifetime)

• Intrinsic background rate

Initial “baseline” scenario 

“Improved” scenario
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Existing constraints on keV-MeV DM
Leading “model-independent” bounds from cosmology

• DM-baryon interactions modify matter power spectrum 

suppress structure on smaller scales - probed by Lyman-𝛼, CMB, MW satellites

Buen-Abad el. al. (2021)
Rogers, Dvorkin, Peiris (2021)
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Existing constraints on keV-MeV DM
Leading “model-independent” bounds from cosmology

• DM-baryon interactions modify matter power spectrum 

suppress structure on smaller scales - probed by Lyman-𝛼, CMB, MW satellites

Also expect warm dark matter bounds

Buen-Abad el. al. (2021)



Conservative BBN/CMB bound:

                     out-of-equilibrium at T = 10 MeV 

Peter Cox - University of Melbourne

PC, Matthew Dolan, Josh Wood 
2408.12144

Realistic models are more constrained 

Example: gluon-coupled DM

Contact interaction between DM and mesons



Conservative BBN/CMB bound:

                     out-of-equilibrium at T = 10 MeV 

Kaon decays lead to stronger bound:

Peter Cox - University of Melbourne

PC, Matthew Dolan, Josh Wood 
2408.12144

Realistic models are more constrained 

Example: gluon-coupled DM

(NA62)

Contact interaction between DM and mesons
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Summary

• Superfluid He is a promising target for light dark matter searches

• Optomechanical detection uses conversion 
of µeV phonons to eV photons

• ODIN would be sensitive to keV mass DM

• Other applications? 
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