keV dark matter detection with superfluids

The University of Melbourne Peter Cox

with C. Baker, W. Bowen, M. Dolan, M. Goryachev, G. Harris Phys. Rev. D 110 (2024) 043005

Direct detection: DM-nucleus scattering

Direct detection: DM-nucleus scattering

Direct detection: DM-nucleus scattering

Increased exposure

(bigger detectors)

Sub-GeV direct detection

detectors

Lots of ideas + R&D

+ DM absorption, boosted DM, …

Sub-GeV direct detection

Figure: 2203.08297 (Snowmass 21)

Sub-GeV DM with superfluid ⁴He

Upcoming experiments: *HeRALD, DELight*

Primary signal: *quantum evaporation*

Figure: Herald Collaboration

Lanou, Maris & Seidel '87 Guo & McKinsey '13 Ito & Seidel '13 Hertel+ '18

Sub-GeV DM with superfluid ⁴He

- Initial sensitivity to DM masses of 10s-100s MeV
- Ongoing R&D towards lower threshold calorimeters: HeRALD (transition edge sensors) DELight (magnetic micro-calorimeter)

Sub-MeV direct detection: collective excitations

Sub-MeV direct detection: collective excitations

Sub-MeV mass DM interacts directly with *collective excitations* (*e.g. phonons*)

Superfluid⁴He collective modes (phonons/rotons)

Long-lived/stable collective excitations

Peter Cox - University of Melbourne

Superfluid⁴He collective modes (phonons/rotons)

Long-lived/stable collective excitations

Superfluid phonon EFT *Son '02 Son '02*

Nicolis '11 Nicolis & Piazza '11

- Spontaneously broken $U(1)$ symmetry (particle number)
- Finite density

$$
\Phi(x) \to \Phi(x) + \alpha
$$

Son '02 Nicolis '11 Nicolis & Piazza '11

- Spontaneously broken $U(1)$ symmetry (particle number)
- Finite density

$$
\Phi(x) \to \Phi(x) + \alpha
$$

Noether current:

\n
$$
j^{\mu} \propto \partial^{\mu} \Phi \qquad \longrightarrow \qquad \langle \partial_t \Phi \rangle = \mu \qquad \qquad \mu = \text{chemical potential}
$$
\n
$$
(\langle \Phi \rangle = \mu t)
$$

Son '02 Nicolis '11 Nicolis & Piazza '11

- Spontaneously broken $U(1)$ symmetry (particle number)
- Finite density

$$
\Phi(x) \to \Phi(x) + \alpha
$$

Noether current:

\n
$$
j^{\mu} \propto \partial^{\mu} \Phi \qquad \longrightarrow \qquad \langle \partial_t \Phi \rangle = \mu \qquad \qquad \mu = \text{chemical potential}
$$
\n
$$
(\langle \Phi \rangle = \mu t)
$$

VEV spontaneously breaks boosts & time translations

Preserves linear combination
$$
\langle H-\mu N\rangle=0
$$

Peter Cox - University of Melbourne

Son '02 Nicolis '11 Nicolis & Piazza '11

Most general Lagrangian consistent with shift symmetry:

$$
\mathcal{L} = P(X) \qquad \qquad X = \sqrt{\partial^{\mu} \Phi \partial_{\mu} \Phi}
$$

Son '02 Nicolis '11 Nicolis & Piazza '11

Most general Lagrangian consistent with shift symmetry:

 $\mathcal{L} = P(X)$

 $P =$ pressure

$$
X = \sqrt{\partial^{\mu} \Phi \partial_{\mu} \Phi} \xrightarrow{\Phi = \mu t} \mu
$$

"local chemical potential"

Most general Lagrangian consistent with shift symmetry:

$$
\mathcal{L} = P(X) \qquad \qquad X = \sqrt{\partial^{\mu} \Phi \partial_{\mu} \Phi}
$$

Nambu-Goldstone phonon: $\Phi(x,t) = \mu t + \sqrt{\frac{\mu c_s^2}{\bar{n}}}\frac{\phi(x,t)}{2}$

$$
\mathcal{L} = \frac{1}{2}\dot{\phi}^2 - \frac{c_s^2}{2}(\nabla\phi)^2 + \lambda_3\,\dot{\phi}\,(\nabla\phi)^2 + \mathcal{O}(\phi^4)
$$

Sound speed, couplings can be expressed in terms of derivatives of $P(\mu)$

Son '02 Nicolis '11 Nicolis & Piazza '11

Dark matter–phonon EFT

Consider spin-independent DM-nucleon interaction

DM couples to He number density \Rightarrow

$$
\mathcal{L}_{\text{int}} = g_{\chi} n \chi^2
$$

Dark matter–phonon EFT

Acanfora, Esposito, Pelosa '19

Consider spin-independent DM-nucleon interaction

DM couples to He number density \Rightarrow

$$
\mathcal{L}_{int} = g_{\chi} n \chi^2
$$

= $g_{\chi} \left(\bar{n} + \sqrt{\frac{\bar{n}}{\mu c_s^2}} \dot{\phi} + \lambda_3 (\nabla \phi)^2 + \ldots \right) \chi^2$

Basic idea: optomechanical systems can be single phonon detectors

Optomechanical systems already used to search for ultralight DM, e.g. HeLIOS

Peter Cox - University of Melbourne

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

$$
H \supset \left(\omega_0 + \frac{\partial \omega}{\partial x}x\right) a^\dagger a
$$

Optical resonance frequency depends on cavity length

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

$$
H \supset \left(\omega_0 + \frac{\partial \omega}{\partial x}x\right) a^{\dagger} a \qquad \qquad \text{photon} \qquad \text{phonon}
$$
\n
$$
\rightarrow \left(\omega_0 + g_0(b_m + b_m^{\dagger})\right) a^{\dagger} a + \Omega_m b_m^{\dagger} b_m
$$
\n
$$
\text{optomechanical}
$$

coupling

superfluid ⁴He filled optical cavity

Figure: Kashkanova+ '16

Mechanical mode: phonons in superfluid

Figure: Kashkanova+ '16

superfluid ⁴He filled optical cavity Mechanical mode: phonons in superfluid

Optomechanical interaction due to change in refractive index

$$
\mathcal{H}_{\mathcal{OM}} = \frac{1}{2} g_1 \epsilon_0 \frac{\delta \rho}{\rho} E^2
$$

Agarwal & Jha '14

 $\Omega_m = \omega_{\gamma_2} - \omega_{\gamma_1}$

superfluid ⁴He filled optical cavity

Figure: Kashkanova+ '16

 $\Omega_m = \omega_{\gamma_2} - \omega_{\gamma_1}$

superfluid ⁴He filled optical cavity

Figure: Kashkanova+ '16

coupling to a *single* phonon mode

 $\lambda_1 \approx \lambda_2 \approx 2\lambda_m$

$$
\Omega_m=\omega_{\gamma_2}-\omega_{\gamma_1}
$$

superfluid ⁴He filled optical cavity

Figure: Kashkanova+ '16

coupling to a *single* phonon mode

 $\lambda_1 \approx \lambda_2 \approx 2\lambda_m$

$$
H_{\rm OM} = -g_0(a_{\gamma_1}^{\dagger} a_{\gamma_2} + a_{\gamma_2}^{\dagger} a_{\gamma_1})(b_m + b_m^{\dagger})
$$

$$
\rightarrow -g_0 \sqrt{N_1} (a_{\gamma_2}^{\dagger} b_m + b_m^{\dagger} a_{\gamma_2})
$$

pump laser enhances small g_0

$$
\Omega_m=\omega_{\gamma_2}-\omega_{\gamma_1}
$$

superfluid ⁴He filled optical cavity

Figure: Kashkanova+ '16

$$
H_{\rm OM} = -g_0(a_{\gamma_1}^{\dagger} a_{\gamma_2} + a_{\gamma_2}^{\dagger} a_{\gamma_1})(b_m + b_m^{\dagger})
$$

$$
\rightarrow -g_0 \sqrt{N_1} (a_{\gamma_2}^{\dagger} b_m + b_m^{\dagger} a_{\gamma_2})
$$

pump laser enhances small q_0

coupling to a *single* phonon mode

 $\lambda_1 \approx \lambda_2 \approx 2\lambda_m$

Optomechanical conversion of ~µeV phonons to ~eV photons

e.g.
$$
\gamma_1 + \Omega_m \to \gamma_2
$$
 $\Omega_m = \omega_{\gamma_2} - \omega_{\gamma_1} \ll \omega_{\gamma_{1,2}}$

$$
\Omega_m=\omega_{\gamma_2}-\omega_{\gamma_1}
$$

superfluid ⁴He filled optical cavity

Figure: Kashkanova+ '16

$H_{\rm OM} = -g_0(a_{\gamma_1}^{\dagger} a_{\gamma_2} + a_{\gamma_2}^{\dagger} a_{\gamma_1})(b_m + b_m^{\dagger})$ $\rightarrow -g_0\sqrt{N_1}(a_{\gamma_2}^{\dagger}b_m+b_m^{\dagger}a_{\gamma_2})$

pump laser enhances small q_0

coupling to a *single* phonon mode

 $\lambda_1 \approx \lambda_2 \approx 2 \lambda_m$

Optomechanical conversion of ~µeV phonons to ~eV photons

e.g.
$$
\gamma_1 + \Omega_m \to \gamma_2
$$
 $\Omega_m = \omega_{\gamma_2} - \omega_{\gamma_1} \ll \omega_{\gamma_{1,2}}$

Optomechanical systems have demonstrated µeV phonon counting (e.g. Patil et. al. '22)

Narrow-band detection

Superfluid optomechanical systems as dark matter detectors:

- ✓ exceptional low-energy sensitivity (~µeV)
- narrow-band detector (single phonon energy set by pump laser frequency)
- *Very low dark matter scattering rate due to restricted phase space*

Narrow-band detection & phonon lasing

Superfluid optomechanical systems as dark matter detectors:

- \checkmark exceptional low-energy sensitivity (~ μ eV)
- narrow-band detector (single phonon energy set by pump laser frequency)
- *Very low dark matter scattering rate due to restricted phase space*

Solution: *Phonon lasing*

- *Stimulated* scattering rate (proportional to phonon occupation number)
- Achieved via optomechanical interaction

Optomechanical detection

Scattering 1 DM excites ~µeV phonon in superfluid χ

Optomechanical detection

Conversion & amplification phonon interacts with pump laser, producing higher energy photon 2

Optomechanical detection

1 *Scattering* DM excites ~µeV phonon in superfluid

Conversion & amplification phonon interacts with pump laser, producing higher energy photon $\overline{2}$

Detection photon detected by single photon detector (SNSPD)

3

ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 32cm x 0.7mm

Peter Cox - University of Melbourne

ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 32cm x 0.7mm

Main detector backgrounds:

- *Thermal phonons* $(10^{-5}$ Hz at T = 4mK and Q = 10^{10})
- *SNSPD dark counts* $({\sim}6 \times 10^{-6}$ Hz)
- *Incomplete filtering of pump lasers* (especially 532nm, supressed with filter cavities)

Expected background rate ~1 event/day

Existing constraints on keV-MeV DM

Leading "model-independent" bounds from cosmology

• *DM-baryon interactions modify matter power spectrum*

suppress structure on smaller scales - probed by Lyman-, CMB, MW satellites

Existing constraints on keV-MeV DM

Leading "model-independent" bounds from cosmology

• *DM-baryon interactions modify matter power spectrum*

suppress structure on smaller scales - probed by Lyman-, CMB, MW satellites

Also expect warm dark matter bounds

Realistic models are more constrained

Example: gluon-coupled DM $\frac{\alpha_s}{8\pi}G^{a,\mu\nu}G_{a,\mu\nu}$

Contact interaction between DM and mesons

Conservative BBN/CMB bound:

 $\gamma\gamma \rightarrow \chi\chi$ out-of-equilibrium at T = 10 MeV

Realistic models are more constrained

Example: gluon-coupled DM $\frac{\alpha_s}{8\pi}G^{a,\mu\nu}G_{a,\mu\nu}$

Contact interaction between DM and mesons

Conservative BBN/CMB bound:

 $\gamma\gamma \rightarrow \chi\chi$ out-of-equilibrium at T = 10 MeV

Kaon decays lead to stronger bound:

$$
BR(K^+ \to \pi^+ \chi \chi) \lesssim 10^{-10}
$$
\n(NAG2)

- Superfluid He is a promising target for light dark matter searches
- Optomechanical detection uses conversion of *µeV phonons to eV photons*
- ODIN would be sensitive to keV mass DM
- Other applications?

