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The axion-photon coupling

• Determined by the anomaly


• Qi the PQ charge, qi the electric charge of fermion


• Important for axion detection experiments…
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is an integer in this case as well.
Dynamical Dyon. A similar argument applies when

the dynamical charge is a dyon. Consistency requires
the invariance of the dyonic loops over C2 and C3 under
under x1 ! x1 + 2⇡R and x0 ! x0 + 2⇡R, respectively.
This implies the following flux quantization conditions:
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e2
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◆
= n(g,q)

1 ,

2⇡R2

✓
qB � 4⇡

e2
gE

◆
= n(g,q)

2 , (26)

where n(g,q)
1 and n(g,q)

2 are integers. Consequently, in this
case we have

Ch2 =

Z h
AFµ⌫ eFµ⌫ + BFµ⌫Fµ⌫

i
d4x

= 4(2⇡R)4
⇥
AEB � B
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= n(g,q)
1 n(g,q)

2 , (27)

which is again an integer.
Next we consider the case of two or more dynamical

charges that are mutually-non-local, e.g. a dynamical
charge and a dynamical monopole. In this case, all field
configurations in the path integral have to be simulta-
neously consistent with the quantization conditions of
the form, say, (20) and (24). For generic value of e, we
conclude that the only consistent field configurations are
trivial ones where the fluxes are zero – and these are the
only field configurations we should sum over in the path
integral. Consequently, when defining the path integral
in the presence of mutually-non-local dynamical charges,
all configurations have Ch2 = 0. Importantly, the ax-
ion coupling (3) still exists (it is a consequence of the
anomaly whether or not there are instantons in the path
integral) and is trivially invariant under a ! a+ 2⇡v.

For Abelian instantons on S2 ⇥ S2 or T 2 ⇥ S2, simi-
lar arguments apply. In the former, Abelian instantons
are described by considering a Wu-Yang monopole [23]
construction on each S2. In this case Dirac quantization
replaces the flux quantization (20) or (24), with a similar
implication for the quantization of Ch2. On T 2 ⇥ S2,
a similar conclusion stems from Dirac quantization on
the S2 combined with flux quantization on the T 2. We
conclude that for all sourceless instantons and with any
combination of dynamical fields, Ch2 is always an inte-
ger.

We also note that the quantization of the axion cou-
pling is consistent with a new type of Abelian instan-
tons recently discovered by some of the present authors
in [24]. These appear in QED in the presence of a static
scalar monopole. Specifically, Ref. [24] showed how these
Abelian instantons emerge as the leading and only gauge
saddle point contributing to fermionic correlators, and

serve as the underlying mechanism for monopole cataly-
sis of nucleon decay. Di↵erently from (sourceless) instan-
tons on T 2⇥T 2 or S2⇥S2, the relevant topology here is
AdS2⇥S2, where the boundary of AdS2 is on the world-
line of the static background monopole. The boundary of
AdS2, and the chiral fermion boundary condition on it,
lead to a significant modification of the index theorem,
namely,

A
Z

Fµ⌫ eFµ⌫ d
4x =

1

2

Z
@µj

µ
Ad

4x = 2Ch2 (AdS2 ⇥ S2)

(28)

with the RH side generically a half-integer, which makes
the index an integer. Consequently, the 2⇡v periodic
axion coupling (with several fermions and integer PQ
charges) in this case is

La = �2
a

f

X

i

QiAiF
µ⌫ eFµ⌫ (AdS2 ⇥ S2) , (29)

with the additional factor of 2 arising from the modified
index theorem (28) due to the di↵erent topology of this
setup.

ABSENCE OF A “DUAL WITTEN EFFECT”

Recently, the phenomenological viability of duality-
compatible axion electrodynamics has been called into
question [22]. Similarly to our starting point, the au-
thors of [22] start by defining the axion coupling in the
“electric” frame, which in our notation would be

La,EM = � a

Nf

X

i

Qi

✓
q2i

16⇡2
Fµ⌫ eFµ⌫

◆
, (30)

To get the axion coupling in a di↵erent duality frame,
they perform a duality transformation. Importantly, the
duality transformation in [22] was taken to act non-
trivially on a/v, with the rational that a/v plays the
same role as ✓ and should transform as part of ⌧ ac-
cording to (6). In the “dyon” frame, this leads to an
axion term which is (a) nonlinear in the axion (b) is un-
related to Ch2 and is not automatically invariant un-
der a ! a + 2⇡v; and (c) is not consistent with the PQ
anomaly. To remedy the non-invariance of the axion cou-
pling in the dyon frame, Ref. [22] ascribes a non-trivial
transformation rule for Fµ⌫ under a ! a+2⇡v, to explic-
itly restore the a ! a + 2⇡v symmetry. This presumed
transformation of Fµ⌫ would have extreme phenomeno-
logical consequences, as it would lead to a “dual Witten
e↵ect”—the acquisition of a large magnetic charge by
electrically charged particles. The latter, if true, would
have spelled phenomenological doom for the theory.
In this paper, the axion coupling in a generic duality

frame was explicitly calculated from the PQ anomaly in

If ✓ 6= 0, then the pairs should be formed using the e↵ective Witten charge (qi +
✓
2⇡gi, gi). In

this case CP invariance would imply the condition

X

i

gi(qi +
✓

2⇡
gi) = 0 . (4.10)

This condition exactly coincides with the requirement that the �-function for ✓ in Eq. (2.15)
vanishes, and is also SL(2, Z) invariant. If (4.10) does not hold then even if one starts with
✓ = 0 there would be an additive renormalization of ✓, implying that CP is an anomalous
symmetry. Of course if there are any massless charged fermions then ✓ is not a physical
parameter, since it can be removed by a chiral rotation of the massless fermion.

5 The Axial Anomaly

As a warm-up we will first consider the axial anomaly [15, 16] of a chiral dyon, this can be
computed in the Zwanziger formalism [13] from a triangle diagram with the axial current
at one vertex and U(1) gauge fields at the other two vertices. Since the axial charge of any
fermion is just one, we expect in general that the coe�cient of the axial anomaly is related
to the one-loop � function, both of which can be calculated in the Zwanziger formalism (see
Fig. 1).

Figure 1: The fermion triangle diagram which contributes to the anomaly. One must also
add the crossed graph where the gauge bosons are interchanged.

A simpler way of obtaining the anomaly is to follow the method of Argyres and Douglas
[10] of using SL(2, Z) transformations to map the theory with a dyon to a dual theory with
an electric charge, perform the calculations in the dual theory, and then map back, as we did
for the �-function in Sec. 2. Thus we want to perform SL(2, Z) transformations of the sort
(2.8)-(2.9). As in (2.11) one can map a dyon with charges (q, g) to a dual electron with charge
n, where n is the greatest common divisor of the integers q and g, using a transformation
with c = g/n and d = q/n. In the dual theory with electric charge n, the axial anomaly is

@µj
µ
A(x) =

n2

16⇡2
F 0µ⌫ ⇤F 0

µ⌫ =
n2

32⇡2
Im (F 0µ⌫ + i ⇤F 0µ⌫)2 . (5.1)
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Axion coupling quantization
• PQ axion a Goldstone boson, compact internal direction, expect  

                      discrete shift symmetry to be exact. But we have a linear 
coupling from anomaly… 


• Generally expect                     

to be quantized!  


• Due to Atiyah-Singer index theorem:


• Assuming all PQ charges integer - axion coupling quantized
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is an integer in this case as well.
Dynamical Dyon. A similar argument applies when

the dynamical charge is a dyon. Consistency requires
the invariance of the dyonic loops over C2 and C3 under
under x1 ! x1 + 2⇡R and x0 ! x0 + 2⇡R, respectively.
This implies the following flux quantization conditions:
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where n(g,q)
1 and n(g,q)

2 are integers. Consequently, in this
case we have

Ch2 =
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which is again an integer.
Next we consider the case of two or more dynamical

charges that are mutually-non-local, e.g. a dynamical
charge and a dynamical monopole. In this case, all field
configurations in the path integral have to be simulta-
neously consistent with the quantization conditions of
the form, say, (20) and (24). For generic value of e, we
conclude that the only consistent field configurations are
trivial ones where the fluxes are zero – and these are the
only field configurations we should sum over in the path
integral. Consequently, when defining the path integral
in the presence of mutually-non-local dynamical charges,
all configurations have Ch2 = 0. Importantly, the ax-
ion coupling (3) still exists (it is a consequence of the
anomaly whether or not there are instantons in the path
integral) and is trivially invariant under a ! a+ 2⇡v.

For Abelian instantons on S2 ⇥ S2 or T 2 ⇥ S2, simi-
lar arguments apply. In the former, Abelian instantons
are described by considering a Wu-Yang monopole [23]
construction on each S2. In this case Dirac quantization
replaces the flux quantization (20) or (24), with a similar
implication for the quantization of Ch2. On T 2 ⇥ S2,
a similar conclusion stems from Dirac quantization on
the S2 combined with flux quantization on the T 2. We
conclude that for all sourceless instantons and with any
combination of dynamical fields, Ch2 is always an inte-
ger.

We also note that the quantization of the axion cou-
pling is consistent with a new type of Abelian instan-
tons recently discovered by some of the present authors
in [24]. These appear in QED in the presence of a static
scalar monopole. Specifically, Ref. [24] showed how these
Abelian instantons emerge as the leading and only gauge
saddle point contributing to fermionic correlators, and

serve as the underlying mechanism for monopole cataly-
sis of nucleon decay. Di↵erently from (sourceless) instan-
tons on T 2⇥T 2 or S2⇥S2, the relevant topology here is
AdS2⇥S2, where the boundary of AdS2 is on the world-
line of the static background monopole. The boundary of
AdS2, and the chiral fermion boundary condition on it,
lead to a significant modification of the index theorem,
namely,

A
Z

Fµ⌫ eFµ⌫ d
4x =

1

2

Z
@µj

µ
Ad

4x = 2Ch2 (AdS2 ⇥ S2)

(28)

with the RH side generically a half-integer, which makes
the index an integer. Consequently, the 2⇡v periodic
axion coupling (with several fermions and integer PQ
charges) in this case is

La = �2
a

f

X

i

QiAiF
µ⌫ eFµ⌫ (AdS2 ⇥ S2) , (29)

with the additional factor of 2 arising from the modified
index theorem (28) due to the di↵erent topology of this
setup.

ABSENCE OF A “DUAL WITTEN EFFECT”

Recently, the phenomenological viability of duality-
compatible axion electrodynamics has been called into
question [22]. Similarly to our starting point, the au-
thors of [22] start by defining the axion coupling in the
“electric” frame, which in our notation would be

La,EM = � a

Nf

X

i

Qi

✓
q2i

16⇡2
Fµ⌫ eFµ⌫

◆
, (30)

To get the axion coupling in a di↵erent duality frame,
they perform a duality transformation. Importantly, the
duality transformation in [22] was taken to act non-
trivially on a/v, with the rational that a/v plays the
same role as ✓ and should transform as part of ⌧ ac-
cording to (6). In the “dyon” frame, this leads to an
axion term which is (a) nonlinear in the axion (b) is un-
related to Ch2 and is not automatically invariant un-
der a ! a + 2⇡v; and (c) is not consistent with the PQ
anomaly. To remedy the non-invariance of the axion cou-
pling in the dyon frame, Ref. [22] ascribes a non-trivial
transformation rule for Fµ⌫ under a ! a+2⇡v, to explic-
itly restore the a ! a + 2⇡v symmetry. This presumed
transformation of Fµ⌫ would have extreme phenomeno-
logical consequences, as it would lead to a “dual Witten
e↵ect”—the acquisition of a large magnetic charge by
electrically charged particles. The latter, if true, would
have spelled phenomenological doom for the theory.
In this paper, the axion coupling in a generic duality

frame was explicitly calculated from the PQ anomaly in
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We compute the axion coupling from the PQ anomaly in a theory with electrically and/or mag-
netically charged fermions. The coupling is automatically consistent with the axion being an angle.
This provides a viable scenario in which the axion-photon coupling an be significantly larger than
previously estimated.

INTRODUCTION

QCD Axions are widely studied theoretically and ex-
perimentally, as they provide an elegant solution to the
strong CP problem and may also be the main compo-
nent of dark matter. Experimental searches have relied
on a theoretical approach to axion couplings that assumes
magnetic monopoles are not part of the full Hilbert space.
As a Goldstone boson of the anomalous Peccei-Quinn
(PQ) symmetry, the axion is an angle and the action is
invariant1 under a ! a+2⇡v, where v is the VEV of the
PQ scalar. Correspondingly, the PQ anomaly-induced
axion-photon term is quantized in integer units. A more
general formulation, in which the axions are also cou-
pled to magnetically charged particles, was explored in
refs. [14–16]. This modifies the form of the axion-photon
coupling and, naively, seems to destroy its quantization.
Ref. [22] then claimed that such a lack of quantization is
internally inconsistent and proposed a fix for this appar-
ent inconsistency, by ascribing a transformation rule for
the field strength F under a ! a + 2⇡v. Unfortunately,
the latter fix leads to the theory being strongly ruled
out phenomenologically. In this paper we calculate the
axion-photon coupling directly from the PQ anomaly in
the presence of electric and magnetic charges [5]. We
argue, counter to some of the recent literature, that
the resulting coupling is automatically consistent under
a ! a+ 2⇡v, since the spacetime integral of an anomaly
is always an integer – the index of the Dirac operator.
Furthermore, by the Atiyah-Singer index theorem, this
integer is also equal to the 2nd Chern number, or instan-
ton number, of the gauge configuration. In our study
we clear out some confusions regarding the relation be-
tween 2nd Chern number an EM duality. As we show
explicitly, the 2nd Chern number is duality invariant, as
it is a topological index. When all dynamical charges are
mutually-local, we can define an “electric” duality frame
in which the field strength F is the curvature of a gauge
bundle. Expressed in terms of F , the 2nd Chern number
takes the familiar form Ch2 = 1

8⇡2

R
F ^ F . As we ar-

1 Up to 2⇡n shifts.

gue below, when there are mutually-non-local dynamical
charges, all valid field configuration in the path integral
are topologically trivial, and Ch2 = 0. This is not too
surprising and is analogous to the results of [? ] about
the screening of non-trivial instantons once non-rational
charge ratios are considered. The screening of instan-
tons resolves the seeming conundrum of how the modi-
fied Chern number could possibly depend on the charge
content of the theory, when it is supposed to characterize
the topology of the field configurations. The implications
of our study are far-reaching – if axions are coupled to
heavy magnetically charged fermions in the UV theory,
the axion-photon couplings could be significantly (by a
factor of ↵�2 ⇠ 104) stronger than currently predicted.

THE AXION-PHOTON COUPLING

The axion, a, is a Goldstone boson [1, 2] of an anoma-
lous axial symmetry—usually referred to as the Peccei-
Quinn (PQ) [3] symmetry—which is spontaneously bro-
ken at scale v. The couplings of the axion are generated
via the PQ anomaly, for example the QCD axion couples
to gluons via [4]

La,QCD = � aN

16⇡2 v
Gµ⌫ eGµ⌫ , (1)

where N is the U(1)PQSU(3)2 anomaly coe�cient. It is
customary to define the axion decay constant f ⌘ v/2N ,
and we will use it from here on. In this paper we will be
interested in the axion coupling to photons in the pres-
ence of electrically and magnetically charged fermions.
The axial anomaly in this case was first calculated in [5]

4

field configuration. This may seem add odds with (17),
since the 2nd Chern number for a gauge bundle with field
strength F is known to be (see e.g. [21])

Ch2 ⌘ 1

8⇡2

Z
F ^ F =

1

16⇡2

Z
d4xFµ⌫ eFµ⌫ . (16)

The seeming discrepancy is resolved by remembering that
F 0
µ⌫ is the field strength in the duality frame where the

dynamical fermion is a dyon, and so F 0 does not satisfy
the Bianchi identity and is not genuinely the curvature of
a gauge bundle. What is really the curvature of a gauge
bundle is the “electric-frame” field strength Fµ⌫ , related
to F 0

µ⌫ via (14). Expressed in terms of Fµ⌫ , (17) reads

nL � nR =
1

2

Z
d4x @µj

µ
A(x) = q2⇤ Ch2 , (17)

where q⇤ = gcd(|g|, |q|). Expressed this way, it is clear
that both sides are integers.

As a consequence, the axion coupling quantization in
the case of a fermion with EM charges (e, g) indeed in-
volves the full expression of the anomaly A including
the magnetic contribution proportional to �1/e4. Below
we will present several examples that will illustrate this
quantization condition, and also argue that once we have
mutually non-local charges the modified Chern number
will simply have to vanish, eliminating any possible issues
of how a topological charge can depend on the choice of
the dynamical charges.

QUANTIZATION AND ABELIAN INSTANTONS

In this section we illustrate the quantization of the RH
side of (17) by considering gauge field configurations on
compact 4-manifolds without a boundary. The examples
explored in this section do not make use of EM duality,
and so they serve as an important cross-check for the
formal arguments of the previous section.

For concreteness we consider the manifold M4 = T 4 =
T 2⇥T 2, with a similar argument applying to M4 = T 2⇥
S2 or M4 = S2⇥S2. We derive the correct quantization
of Ch2 in the presence of (a) a dynamical electric charge;
(b) a dynamical magnetic charge; and (c) a dynamical
dyon. Finally, we will show that when both dynamical
charges are present, there are no instantons that can be
consistently turned on on T 2 ⇥ T 2.

Dynamical charge. The classic case of an instanton on
T 2 ⇥ T 2 with a dynamical electric charge was reviewed
in [18]. We take the two tori to be in the (x0, x3) and
(x1, x2) directions, and take them to have the same radius
R for simplicity. Note that in the case of a pure electric
charge, the field strength is closed and we can define as
usual F = dA where A is the EM gauge field. Up to
gauge transformations, an Abelian instanton on T 2 ⇥ T 2

has a gauge potential of the form

Aµ = (0, 0, Bx1, Ex0) . (18)

The resulting field strength is then F 03 = E, F 12 = B so

1

4

Z

M4

dx4 Fµ⌫ eFµ⌫ =

Z

T 2

dx0dx3E

Z

T 2

dx1dx2B . (19)

To consistently define a dynamical electric charge q on

our manifold, the Wilson loops exp
n
iq
H
C2

Aµdxµ
o

and

exp
n
iq
H
C3

Aµdxµ
o

around the x2 and x3 cycles have

to be invariant under x1 ! x1 + 2⇡R and under x0 !
x0 + 2⇡R, respectively. This implies the following flux
quantization conditions:

q 2⇡R2 E = n(q)
1 , q 2⇡R2 B = n(q)

2 , (20)

where n(q)
1 and n(q)

2 are integers. Consequently, the 2nd
Chern number

Ch2 =
q2

16⇡2

Z
d4xFµ⌫ eFµ⌫

=
4q2

16⇡2
(2⇡)4R4EB = n(q)

1 n(q)
2 . (21)

is an integer.
Dynamical monopole. We now repeat the same calcu-

lation with a dynamical monopole of charge 4⇡g/e2 and
using ’t Hooft loops. Here we cannot use F = dA any-
more, but we can still compute ’t Hooft loops – i.e. the
phases incurred by the magnetically charged fermion as
it goes around a spacetime loop C. When the loop C is
contractible, the phase is simply

0tHooft loopC = exp

⇢
i
4⇡

e2
g

Z

S

eFµ⌫d�
µ⌫

�
, (22)

picking up the electric flux through its Stokes’ surface,
similarly to the way Wilson lines pick up the magnetic
flux through their Stokes’ surface. When the loop is non-
contractible, we can compute it by embedding our man-
ifold in an extra dimension (its value is independent of
the embedding), or by using a two-potential formalism as
in ( cite). Whatever method one may choose, the result
is simply

0tHooft loopC2
= exp

⇢
i
4⇡

e2
g (2⇡REx1)

�

0tHooft loopC3
= exp

⇢
i
4⇡

e2
g (2⇡RBx0)

�
. (23)

Similarly to the case of a dynamical electric charge, the
invariance of the ’t Hooft loops under x1 ! x1 + 2⇡R
and x0 ! x0 + 2⇡R implies the quantization condition

(4⇡/e2) g 2⇡R2 B = n(g)
1 , (4⇡/e2) g 2⇡R2 E = n(g)

2 ,(24)

where n(g)
1 and n(g)

2 are again integers. Consequently, the
2nd Chern number

Ch2 =
g2

e4

Z
d4xFµ⌫ eFµ⌫

=
4g2

e4
(2⇡)4R4EB = n(g)

1 n(g)
2 . (25)

3

ELECTROMAGNETIC DUALITY

Here rephrase In order to understand the quantization
of the axion coupling for a single dyon, we will need to
first briefly review the basic elements of SL(2, Z) duality
in U(1) gauge theories. In this section only we keep the
explicit ✓ terms to demonstrate the full duality invari-
ance. The free Maxwell Lagrangian is given by

Lfree = � 1

4e2
Fµ⌫Fµ⌫ � ✓

16⇡2
Fµ⌫ eFµ⌫ , (4)

which does enjoy an SL(2, Z) duality [17] that relates
an infinite set of Lagrangians, referred to as SL(2, Z)
frames, which all describe exactly the same physics.

To have simple expressions it is customary to define
the “holomorphic coupling” ⌧ which combines the gauge
coupling e and the ✓ angle:

⌧ ⌘ ✓

2⇡
+

4⇡i

e2
. (5)

Under an SL(2, Z) duality it transforms as

⌧ 0 =
a⌧ + b

c⌧ + d
. (6)

with a, b, c, d integers satisfying ad � bc = 1. With the
addition of electric and magnetic charges, these trans-
formations become non-trivial: the magnetic current Kµ

and the electric current Jµ transform as
✓

K 0µ

J 0µ

◆
= MT

✓
Kµ

Jµ

◆
, (7)

where

M =

✓
a b
c d

◆
. (8)

Similarly, the integer charges transform as
✓

g0

q0

◆
= MT

✓
g
q

◆
. (9)

The field strengths transform as [5]

⇣
F 0µ⌫ + i eF 0µ⌫

⌘
=

1

c⌧⇤ + d

⇣
Fµ⌫ + i eFµ⌫

⌘
(10)

so that the equations of motion take the same form in
any duality frame:

Im (⌧)

4⇡
@⌫

⇣
Fµ⌫ + i eFµ⌫

⌘
= Jµ + ⌧Kµ . (11)

The entire SL(2, Z) can be generated by two simple
transformations called S and T in the literature. S cor-
responds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:

E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known
to be an actual symmetry of the quantum theory since
✓ appears in the action as the coe�cient of the integer
topological index Ch2.
For future reference, let us find all duality transfor-

mations connecting a dyon with magnetic and electric
charges (g, q) and its “electric” duality frame in which it
is a positive electric charge. First, we present its charges
as q⇤(ng, nq) where q⇤ = gcd(|g|, |q|). Then the charge
in the dyons “electric” duality frame is (0, q⇤). All dual-
ity transformations taking (0, q⇤) to (g, q) are then of the
form

M(g,q)
k =

✓
agq + kng bgq + knq

ng nq

◆
. (12)

Where k is any integer and (agq, bgq) are integers satis-
fying agqng + bgqnq = 1, whose existence is guaranteed
by Bezout’s identity. This transformation gives

✓
g
q

◆
=

h
M(g,q)

k

iT ✓
0
q⇤

◆
, (13)

as well as

Fµ⌫ = nqF
0
µ⌫ +

4⇡

e2
ng

eF 0
µ⌫

eFµ⌫ = nq
eF 0
µ⌫ � 4⇡

e2
ngF

0
µ⌫ , (14)

where Fµ⌫ is the field strength in the “electric” duality
frame where the charge is (0, q⇤), and F 0

µ⌫ is the field
strength in the “dyonic” duality frame where the charge
is (g, q).

THE INDEX THEOREM AND THE
QUANTIZATION CONDITION

The quantization condition on the axion coupling (3)
can be derived from the Atiyah-Singer index theorem
[19]. Here, we generalize a “physicist’s derivation” [33] to
the case where magnetic charges are present. Integrating
both sides of (2) over spacetime we get, for a single dyon,

nL � nR =
1

2

Z
d4x @µj

µ
A(x) =

Z
d4x

⇢✓
q2

16⇡2
� g2

e2

◆
F 0µ⌫ eF 0

µ⌫ +
qg

4⇡e2
F 0µ⌫ F 0

µ⌫

�
.

(15)

The LH side in the first line is the index of the Dirac op-
erator in the EM background—the integer number of LH
minus RH zero modes. By the Atiyah-Singer index theo-
rem, the index is proportional to the 2nd Chern number,
an integer topological number characterizing the gauge
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Anomalies and monopoles
• In the presence of monopoles the anomaly is modified 


• Monopole charge due to Dirac quantization 

where g is half-integer…


• Monopoles can also run in the triangle diagram, anomaly: 


• Note that                and we set  
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4⇡g
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and is given by2

@µj
µ
A(x) = 2

X

i

⇣
AiF

0µ⌫ eF 0
µ⌫ + BiF

0µ⌫ F 0
µ⌫

⌘
,

Ai =
q2i

16⇡2
� g2i

e4
, Bi =

qigi
4⇡e2

,

eF 0µ⌫ =
1

2
✏µ⌫↵�F 0

↵� , (2)

where the sums are over all EM charged fermions with
magnetic and electric charges (gi, qi) – they could have
either, or both. Finally, F 0

µ⌫ is the electromagnetic field
strength tensor. We put the prime to remind the reader
that in the presence of magnetic charges, F 0, does not
satisfy the Bianchi identity dF 0 = 0. In the special case
where all of the fermions have mutually-local charges, we
can perform an EM duality transformation to the frame
where they are all electrically charged, and the anomaly
is given in terms of the usual closed Field strength F
satisfying the Bianchi identity. Finally, the factor of 2
in front of A and B is the famous factor of 2 relation
between the index of the Dirac operator and the anomaly
[32–34]. By a similar calculation for the PQ anomaly, the
photon-axion coupling is given by

La,EM = � a

Nf

X

i

Qi

⇣
AiF

0µ⌫ eF 0
µ⌫ + BiF

0µ⌫F 0
µ⌫

⌘
,

(3)
where we can choose without loss of generality to have
integer PQ chargesQi. [MR: maybe since we already talk
about duality frames we should stress more, here or later,
that it does not matter how a transforms under duality
transformations since what it couples to is an integer in
any duality frame and by writing the coupling in one
frame we simply define the theory with an axion.]Yes,
feel free to add.The main point of this paper is that on
any Abelian instanton and for any fermion i, the term
in the rightmost parentheses of (3) always integrates to
an integer – which is zero in the topologically trivial case
but could be nonzero otherwise. Consequently, the path
integral is invariant under a ! a + 2⇡v, and there is no
inconsistency in coupling the axion to the axial anomaly.

We have seen above that the anomaly coe�cient Ai in-
volves both electric and magnetic contributions, with the
latter proportional to � 1

e4 . Furthermore, Bi involves the
product of electric and magnetic charge, which is nonzero
for dyons. These magnetic terms are the ones responsi-
ble for the possible enhancement of the axion couplings.
[MR: Should we mention here that even though the mag-
netic coupling is non-perturbative for small electric cou-
plings, the anomaly is one-loop exact such that the en-
hanced coupling makes sense?]Yes, feel free to add.One

2 For simplicity we set ✓ = 0. We generalize to nonzero values of
✓ in the last section.

may naturally wonder, whether such terms are consis-
tent with the 2⇡ periodicity of the axion: the coupling in
(3) is a non-derivative interaction, which might violate
the a ! a + 2⇡v shift symmetry in certain non-trivial
backgrounds of E,B fields. However, we will show below
that this not the case, and argue that the axion coupling
in (3) satisfies the axion coupling quantization (which is
required to maintain the shift symmetry). The RH side
of (3) is a sum of contributions from di↵erent fermions i
and, without loss of generality, we chose the PQ charges
Qi to be integers. To prove the consistency of (3), we
begin by proving the quantization of the axion coupling
for one fermion of PQ charge Qi = 1 and EM charges
(g, q), which involves carefully identifying the relevant
2nd Chern number – which is the crux of our argument.
The general case corresponds to summing all individual
fermion contributions weighted by integer PQ charges.
If all the fermions in the theory are mutually local, then
each fermion’s contribution to the axion coupling will
be proportional to the integer 2nd Chern number, and
weighted by the PQ charges.

The situation is more interesting in a theory with
mutually-non-local fermions, which are initially mass-
less until they get their masses from the PQ scalar.
Such theories are perfectly self-consistent with gauge and
Lorentz invariance, and they arise naturally, for example,
at Argyres-Douglas (cite) fixed points of Seiberg-Witten
theory (cite). As we argue below, in such theories with
(initially massless) mutually-non-local fermions, the path
integral involves only gauge field configurations that can
be consistently coupled to these fermions. In particular,
unless the coupling is tuned, the only valid field config-
urations are topologically trivial. Consequently, the term
in parentheses on the RH side of (3) always integrates
to 0, and the axion coupling is trivially invariant under
a ! a + 2⇡v. An analogous e↵ect has been observed
in [? ], where it was found that in theories with electric
charges that are not rationally related to each other all
instanton configurations can be screened and only trivial
instantons are left.

We will revisit the case of mutually-non-local charges
below, but for now we first focus on the case with only
mutually-local charges. As we argued above, the anomaly
is just the sum of contributions from individual fermions,
so we can simply study the the case of one fermion3 with
charges (e, g) and a PQ charge Q = 1. To understand
this case, it is first useful to recall what we mean by
Electromagnetic Duality.

3 In this case we drop the i index on the charges and the anomaly
coe�cients.
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Puzzle #1
• What is the axion-photon coupling for the case of magnetic monopoles?  


• Anomalies suggest 


• Does not seem to be quantized. Also can be much larger than the usual 
coupling by factor of 


• Indeed Sokolov and Ringwald claimed this to be the size (though 
somewhat more complicated form) of the coupling  


2

and is given by2

@µj
µ
A(x) = 2

X

i

⇣
AiF

0µ⌫ eF 0
µ⌫ + BiF

0µ⌫ F 0
µ⌫

⌘
,

Ai =
q2i

16⇡2
� g2i

e4
, Bi =

qigi
4⇡e2

,

eF 0µ⌫ =
1

2
✏µ⌫↵�F 0

↵� , (2)

where the sums are over all EM charged fermions with
magnetic and electric charges (gi, qi) – they could have
either, or both. Finally, F 0

µ⌫ is the electromagnetic field
strength tensor. We put the prime to remind the reader
that in the presence of magnetic charges, F 0, does not
satisfy the Bianchi identity dF 0 = 0. In the special case
where all of the fermions have mutually-local charges, we
can perform an EM duality transformation to the frame
where they are all electrically charged, and the anomaly
is given in terms of the usual closed Field strength F
satisfying the Bianchi identity. Finally, the factor of 2
in front of A and B is the famous factor of 2 relation
between the index of the Dirac operator and the anomaly
[32–34]. By a similar calculation for the PQ anomaly, the
photon-axion coupling is given by

La,EM = � a

Nf

X

i

Qi

⇣
AiF

0µ⌫ eF 0
µ⌫ + BiF

0µ⌫F 0
µ⌫

⌘
,

(3)
where we can choose without loss of generality to have
integer PQ chargesQi. [MR: maybe since we already talk
about duality frames we should stress more, here or later,
that it does not matter how a transforms under duality
transformations since what it couples to is an integer in
any duality frame and by writing the coupling in one
frame we simply define the theory with an axion.]Yes,
feel free to add.The main point of this paper is that on
any Abelian instanton and for any fermion i, the term
in the rightmost parentheses of (3) always integrates to
an integer – which is zero in the topologically trivial case
but could be nonzero otherwise. Consequently, the path
integral is invariant under a ! a + 2⇡v, and there is no
inconsistency in coupling the axion to the axial anomaly.

We have seen above that the anomaly coe�cient Ai in-
volves both electric and magnetic contributions, with the
latter proportional to � 1

e4 . Furthermore, Bi involves the
product of electric and magnetic charge, which is nonzero
for dyons. These magnetic terms are the ones responsi-
ble for the possible enhancement of the axion couplings.
[MR: Should we mention here that even though the mag-
netic coupling is non-perturbative for small electric cou-
plings, the anomaly is one-loop exact such that the en-
hanced coupling makes sense?]Yes, feel free to add.One

2 For simplicity we set ✓ = 0. We generalize to nonzero values of
✓ in the last section.

may naturally wonder, whether such terms are consis-
tent with the 2⇡ periodicity of the axion: the coupling in
(3) is a non-derivative interaction, which might violate
the a ! a + 2⇡v shift symmetry in certain non-trivial
backgrounds of E,B fields. However, we will show below
that this not the case, and argue that the axion coupling
in (3) satisfies the axion coupling quantization (which is
required to maintain the shift symmetry). The RH side
of (3) is a sum of contributions from di↵erent fermions i
and, without loss of generality, we chose the PQ charges
Qi to be integers. To prove the consistency of (3), we
begin by proving the quantization of the axion coupling
for one fermion of PQ charge Qi = 1 and EM charges
(g, q), which involves carefully identifying the relevant
2nd Chern number – which is the crux of our argument.
The general case corresponds to summing all individual
fermion contributions weighted by integer PQ charges.
If all the fermions in the theory are mutually local, then
each fermion’s contribution to the axion coupling will
be proportional to the integer 2nd Chern number, and
weighted by the PQ charges.

The situation is more interesting in a theory with
mutually-non-local fermions, which are initially mass-
less until they get their masses from the PQ scalar.
Such theories are perfectly self-consistent with gauge and
Lorentz invariance, and they arise naturally, for example,
at Argyres-Douglas (cite) fixed points of Seiberg-Witten
theory (cite). As we argue below, in such theories with
(initially massless) mutually-non-local fermions, the path
integral involves only gauge field configurations that can
be consistently coupled to these fermions. In particular,
unless the coupling is tuned, the only valid field config-
urations are topologically trivial. Consequently, the term
in parentheses on the RH side of (3) always integrates
to 0, and the axion coupling is trivially invariant under
a ! a + 2⇡v. An analogous e↵ect has been observed
in [? ], where it was found that in theories with electric
charges that are not rationally related to each other all
instanton configurations can be screened and only trivial
instantons are left.

We will revisit the case of mutually-non-local charges
below, but for now we first focus on the case with only
mutually-local charges. As we argued above, the anomaly
is just the sum of contributions from individual fermions,
so we can simply study the the case of one fermion3 with
charges (e, g) and a PQ charge Q = 1. To understand
this case, it is first useful to recall what we mean by
Electromagnetic Duality.

3 In this case we drop the i index on the charges and the anomaly
coe�cients.
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where the sums are over all EM charged fermions with
magnetic and electric charges (gi, qi) – they could have
either, or both. Finally, F 0

µ⌫ is the electromagnetic field
strength tensor. We put the prime to remind the reader
that in the presence of magnetic charges, F 0, does not
satisfy the Bianchi identity dF 0 = 0. In the special case
where all of the fermions have mutually-local charges, we
can perform an EM duality transformation to the frame
where they are all electrically charged, and the anomaly
is given in terms of the usual closed Field strength F
satisfying the Bianchi identity. Finally, the factor of 2
in front of A and B is the famous factor of 2 relation
between the index of the Dirac operator and the anomaly
[32–34]. By a similar calculation for the PQ anomaly, the
photon-axion coupling is given by

La,EM = � a
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Qi
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0µ⌫ eF 0
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(3)
where we can choose without loss of generality to have
integer PQ chargesQi. [MR: maybe since we already talk
about duality frames we should stress more, here or later,
that it does not matter how a transforms under duality
transformations since what it couples to is an integer in
any duality frame and by writing the coupling in one
frame we simply define the theory with an axion.]Yes,
feel free to add.The main point of this paper is that on
any Abelian instanton and for any fermion i, the term
in the rightmost parentheses of (3) always integrates to
an integer – which is zero in the topologically trivial case
but could be nonzero otherwise. Consequently, the path
integral is invariant under a ! a + 2⇡v, and there is no
inconsistency in coupling the axion to the axial anomaly.

We have seen above that the anomaly coe�cient Ai in-
volves both electric and magnetic contributions, with the
latter proportional to � 1

e4 . Furthermore, Bi involves the
product of electric and magnetic charge, which is nonzero
for dyons. These magnetic terms are the ones responsi-
ble for the possible enhancement of the axion couplings.
[MR: Should we mention here that even though the mag-
netic coupling is non-perturbative for small electric cou-
plings, the anomaly is one-loop exact such that the en-
hanced coupling makes sense?]Yes, feel free to add.One

2 For simplicity we set ✓ = 0. We generalize to nonzero values of
✓ in the last section.

may naturally wonder, whether such terms are consis-
tent with the 2⇡ periodicity of the axion: the coupling in
(3) is a non-derivative interaction, which might violate
the a ! a + 2⇡v shift symmetry in certain non-trivial
backgrounds of E,B fields. However, we will show below
that this not the case, and argue that the axion coupling
in (3) satisfies the axion coupling quantization (which is
required to maintain the shift symmetry). The RH side
of (3) is a sum of contributions from di↵erent fermions i
and, without loss of generality, we chose the PQ charges
Qi to be integers. To prove the consistency of (3), we
begin by proving the quantization of the axion coupling
for one fermion of PQ charge Qi = 1 and EM charges
(g, q), which involves carefully identifying the relevant
2nd Chern number – which is the crux of our argument.
The general case corresponds to summing all individual
fermion contributions weighted by integer PQ charges.
If all the fermions in the theory are mutually local, then
each fermion’s contribution to the axion coupling will
be proportional to the integer 2nd Chern number, and
weighted by the PQ charges.

The situation is more interesting in a theory with
mutually-non-local fermions, which are initially mass-
less until they get their masses from the PQ scalar.
Such theories are perfectly self-consistent with gauge and
Lorentz invariance, and they arise naturally, for example,
at Argyres-Douglas (cite) fixed points of Seiberg-Witten
theory (cite). As we argue below, in such theories with
(initially massless) mutually-non-local fermions, the path
integral involves only gauge field configurations that can
be consistently coupled to these fermions. In particular,
unless the coupling is tuned, the only valid field config-
urations are topologically trivial. Consequently, the term
in parentheses on the RH side of (3) always integrates
to 0, and the axion coupling is trivially invariant under
a ! a + 2⇡v. An analogous e↵ect has been observed
in [? ], where it was found that in theories with electric
charges that are not rationally related to each other all
instanton configurations can be screened and only trivial
instantons are left.

We will revisit the case of mutually-non-local charges
below, but for now we first focus on the case with only
mutually-local charges. As we argued above, the anomaly
is just the sum of contributions from individual fermions,
so we can simply study the the case of one fermion3 with
charges (e, g) and a PQ charge Q = 1. To understand
this case, it is first useful to recall what we mean by
Electromagnetic Duality.

3 In this case we drop the i index on the charges and the anomaly
coe�cients.
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Electric-magnetic duality and axions

• The free Maxwell equations exhibit electric-magnetic duality


• Can extend this to full SL(2,Z) symmetry if we also introduce  the 𝝷 angle


• Most useful to introduce ``holomorphic coupling” 𝞃:  

  


3

ELECTROMAGNETIC DUALITY

Here rephrase In order to understand the quantization
of the axion coupling for a single dyon, we will need to
first briefly review the basic elements of SL(2, Z) duality
in U(1) gauge theories. In this section only we keep the
explicit ✓ terms to demonstrate the full duality invari-
ance. The free Maxwell Lagrangian is given by

Lfree = � 1

4e2
Fµ⌫Fµ⌫ � ✓

16⇡2
Fµ⌫ eFµ⌫ , (4)

which does enjoy an SL(2, Z) duality [17] that relates
an infinite set of Lagrangians, referred to as SL(2, Z)
frames, which all describe exactly the same physics.

To have simple expressions it is customary to define
the “holomorphic coupling” ⌧ which combines the gauge
coupling e and the ✓ angle:

⌧ ⌘ ✓

2⇡
+

4⇡i

e2
. (5)

Under an SL(2, Z) duality it transforms as

⌧ 0 =
a⌧ + b

c⌧ + d
. (6)

with a, b, c, d integers satisfying ad � bc = 1. With the
addition of electric and magnetic charges, these trans-
formations become non-trivial: the magnetic current Kµ

and the electric current Jµ transform as
✓

K 0µ

J 0µ

◆
= MT

✓
Kµ

Jµ

◆
, (7)

where

M =

✓
a b
c d

◆
. (8)

Similarly, the integer charges transform as
✓

g0

q0

◆
= MT

✓
g
q

◆
. (9)

The field strengths transform as [5]

⇣
F 0µ⌫ + i eF 0µ⌫

⌘
=

1

c⌧⇤ + d

⇣
Fµ⌫ + i eFµ⌫

⌘
(10)

so that the equations of motion take the same form in
any duality frame:

Im (⌧)

4⇡
@⌫

⇣
Fµ⌫ + i eFµ⌫

⌘
= Jµ + ⌧Kµ . (11)

The entire SL(2, Z) can be generated by two simple
transformations called S and T in the literature. S cor-
responds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:

E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known
to be an actual symmetry of the quantum theory since
✓ appears in the action as the coe�cient of the integer
topological index Ch2.
For future reference, let us find all duality transfor-

mations connecting a dyon with magnetic and electric
charges (g, q) and its “electric” duality frame in which it
is a positive electric charge. First, we present its charges
as q⇤(ng, nq) where q⇤ = gcd(|g|, |q|). Then the charge
in the dyons “electric” duality frame is (0, q⇤). All dual-
ity transformations taking (0, q⇤) to (g, q) are then of the
form

M(g,q)
k =

✓
agq + kng bgq + knq

ng nq

◆
. (12)

Where k is any integer and (agq, bgq) are integers satis-
fying agqng + bgqnq = 1, whose existence is guaranteed
by Bezout’s identity. This transformation gives

✓
g
q

◆
=

h
M(g,q)

k

iT ✓
0
q⇤

◆
, (13)

as well as

Fµ⌫ = nqF
0
µ⌫ +

4⇡

e2
ng

eF 0
µ⌫

eFµ⌫ = nq
eF 0
µ⌫ � 4⇡

e2
ngF

0
µ⌫ , (14)

where Fµ⌫ is the field strength in the “electric” duality
frame where the charge is (0, q⇤), and F 0

µ⌫ is the field
strength in the “dyonic” duality frame where the charge
is (g, q).

THE INDEX THEOREM AND THE
QUANTIZATION CONDITION

The quantization condition on the axion coupling (3)
can be derived from the Atiyah-Singer index theorem
[19]. Here, we generalize a “physicist’s derivation” [33] to
the case where magnetic charges are present. Integrating
both sides of (2) over spacetime we get, for a single dyon,

nL � nR =
1

2

Z
d4x @µj

µ
A(x) =

Z
d4x

⇢✓
q2

16⇡2
� g2

e2

◆
F 0µ⌫ eF 0

µ⌫ +
qg

4⇡e2
F 0µ⌫ F 0

µ⌫

�
.

(15)

The LH side in the first line is the index of the Dirac op-
erator in the EM background—the integer number of LH
minus RH zero modes. By the Atiyah-Singer index theo-
rem, the index is proportional to the 2nd Chern number,
an integer topological number characterizing the gauge
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Electric-magnetic duality and axions

• Under SL(2,Z) duality transformation:  


• a,b,c,d integers with ad-bc=1 


• If you have charges


• Physical charges 


• Usual duality called                       exchanges electric and magnetic fields 
AND charges, inverts coupling                


• NOT a traditional symmetry - different descriptions of same physics   
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so that the equations of motion take the same form in
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The entire SL(2, Z) can be generated by two simple
transformations called S and T in the literature. S cor-
responds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:

E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known
to be an actual symmetry of the quantum theory since
✓ appears in the action as the coe�cient of the integer
topological index Ch2.
For future reference, let us find all duality transfor-

mations connecting a dyon with magnetic and electric
charges (g, q) and its “electric” duality frame in which it
is a positive electric charge. First, we present its charges
as q⇤(ng, nq) where q⇤ = gcd(|g|, |q|). Then the charge
in the dyons “electric” duality frame is (0, q⇤). All dual-
ity transformations taking (0, q⇤) to (g, q) are then of the
form

M(g,q)
k =

✓
agq + kng bgq + knq

ng nq

◆
. (12)

Where k is any integer and (agq, bgq) are integers satis-
fying agqng + bgqnq = 1, whose existence is guaranteed
by Bezout’s identity. This transformation gives
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as well as

Fµ⌫ = nqF
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where Fµ⌫ is the field strength in the “electric” duality
frame where the charge is (0, q⇤), and F 0

µ⌫ is the field
strength in the “dyonic” duality frame where the charge
is (g, q).

THE INDEX THEOREM AND THE
QUANTIZATION CONDITION

The quantization condition on the axion coupling (3)
can be derived from the Atiyah-Singer index theorem
[19]. Here, we generalize a “physicist’s derivation” [33] to
the case where magnetic charges are present. Integrating
both sides of (2) over spacetime we get, for a single dyon,

nL � nR =
1

2

Z
d4x @µj

µ
A(x) =

Z
d4x
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q2

16⇡2
� g2

e2

◆
F 0µ⌫ eF 0

µ⌫ +
qg

4⇡e2
F 0µ⌫ F 0

µ⌫

�
.

(15)

The LH side in the first line is the index of the Dirac op-
erator in the EM background—the integer number of LH
minus RH zero modes. By the Atiyah-Singer index theo-
rem, the index is proportional to the 2nd Chern number,
an integer topological number characterizing the gauge
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Electric-magnetic duality and axions

• 2𝛑 shift of 𝝷 angle usual symmetry, 


• Field transform as


• Maxwell equations covariant under SL(2,Z):


• What happens when we have an axion? Sikivie axion electrodynamics      
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ELECTROMAGNETIC DUALITY

Here rephrase In order to understand the quantization
of the axion coupling for a single dyon, we will need to
first briefly review the basic elements of SL(2, Z) duality
in U(1) gauge theories. In this section only we keep the
explicit ✓ terms to demonstrate the full duality invari-
ance. The free Maxwell Lagrangian is given by

Lfree = � 1

4e2
Fµ⌫Fµ⌫ � ✓

16⇡2
Fµ⌫ eFµ⌫ , (4)

which does enjoy an SL(2, Z) duality [17] that relates
an infinite set of Lagrangians, referred to as SL(2, Z)
frames, which all describe exactly the same physics.

To have simple expressions it is customary to define
the “holomorphic coupling” ⌧ which combines the gauge
coupling e and the ✓ angle:
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2⇡
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4⇡i

e2
. (5)

Under an SL(2, Z) duality it transforms as

⌧ 0 =
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with a, b, c, d integers satisfying ad � bc = 1. With the
addition of electric and magnetic charges, these trans-
formations become non-trivial: the magnetic current Kµ

and the electric current Jµ transform as
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where
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so that the equations of motion take the same form in
any duality frame:
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⌘
= Jµ + ⌧Kµ . (11)

The entire SL(2, Z) can be generated by two simple
transformations called S and T in the literature. S cor-
responds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:

E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known
to be an actual symmetry of the quantum theory since
✓ appears in the action as the coe�cient of the integer
topological index Ch2.
For future reference, let us find all duality transfor-

mations connecting a dyon with magnetic and electric
charges (g, q) and its “electric” duality frame in which it
is a positive electric charge. First, we present its charges
as q⇤(ng, nq) where q⇤ = gcd(|g|, |q|). Then the charge
in the dyons “electric” duality frame is (0, q⇤). All dual-
ity transformations taking (0, q⇤) to (g, q) are then of the
form

M(g,q)
k =
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agq + kng bgq + knq
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. (12)
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fying agqng + bgqnq = 1, whose existence is guaranteed
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Puzzle #2: what are the duality invariant 
Maxwell-axion equations?

•  Sikivie axion electrodynamics


• With added assumption 


• However, this is clearly NOT incorporating electric-magnetic duality


• In covariant form: 


• Alternative form that seems to be duality invariant:  


• What’s going on here?     
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The Seiberg-Witten axion

•  These questions can be addressed within a calculable UV complete toy-
example: The original N=2 supersymmetric SU(2) Seiberg-Witten theory


• Matter content: N=2 vector superfield - in N=1 language a vector 
superfield + a chiral superfield in the adjoint, no superpotential


• Global symmetries: SU(2)R                       U(1)R           has R-charge 2, but 
anomalous          


when a magnetic monopole or dyon goes to zero mass. As a check we show that, under

a further perturbation, condensation of monopoles occurs precisely when confinement of

electric charge is expected. This for the first time gives a real relativistic field theory model

in which confinement of charge is explained in this long-suspected fashion. We also show

that the monodromies resulting from massless monopoles and dyons fit together in just the

right way. Then in section 6 we show that, with the assumption that the singularities come

from massless monopoles and dyons, it is possible to get a unique metric on the moduli

space (and unique formulas for particle masses) obeying all the necessary conditions.

2. Review of N=2 SUSY

2.1. Representations

All N = 2 theories have a global SU(2)R symmetry which acts on the two supercharges

of given chirality. Scale invariant N = 2 theories have also a U(1)R symmetry under which

the supercharges of positive chirality have charge minus one.

We will be studying two types of N = 2 multiplet:

1. The first is the N = 2 chiral multiplet (sometimes called a vector multiplet), con-

taining gauge fields Aµ, two Weyl fermions λ,ψ, and a scalar φ, all in the adjoint

representation. We arrange the fields as

Aµ

λ ψ

φ

(2.1)

to exhibit the SU(2)R symmetry which acts on the rows; Aµ and φ are singlets and

λ,ψ are a doublet. In terms of N = 1 supersymmetry, these fields can be organized

into a vector multiplet Wα (containing (Aµ,λ)) and a chiral multiplet Φ (containing

(φ,ψ)). In this formalism, only one generator of SU(2)R, which we will call U(1)J , is

manifest. U(1)J and U(1)R are both N = 1 R symmetries, acting as

U(1)J : Φ → Φ(e−iαθ)

U(1)R : Φ → e2iαΦ(e−iαθ) .
(2.2)
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of given chirality. Scale invariant N = 2 theories have also a U(1)R symmetry under which

the supercharges of positive chirality have charge minus one.
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1. The first is the N = 2 chiral multiplet (sometimes called a vector multiplet), con-

taining gauge fields Aµ, two Weyl fermions λ,ψ, and a scalar φ, all in the adjoint
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Aµ

λ ψ

φ

(2.1)

to exhibit the SU(2)R symmetry which acts on the rows; Aµ and φ are singlets and

λ,ψ are a doublet. In terms of N = 1 supersymmetry, these fields can be organized

into a vector multiplet Wα (containing (Aµ,λ)) and a chiral multiplet Φ (containing
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U(1)R : Φ → e2iαΦ(e−iαθ) .
(2.2)
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The Seiberg-Witten axion

•  The theory has a ``moduli space” of vacua - essentially  𝝫 has no 
potential, adjoint scalar gets a VEV breaking             


 giving rise to a Coulomb branch (ordinary QED-like theory, except it is 
N=2 supersymmetric)


•  The Coulomb branch parametrized by the gauge invariant


•  SU(2) everywhere broken,  for all values of u. Large u>>𝝠2 : SU(2) 
broken before it becomes strongly coupled - perturbative regime. The W± 

become massive, along with the charginos via the super-Higgs 
mechanism


•  For u<<𝝠2 : strongly coupled regime, non-perturbative effects important
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SU(2) ! U(1)

3

couplings to mutually non-local charges4. The IR dy-
namics of Seiberg-Witten theory involves a continuum
of degenerate N = 2 vacua parametrized by a complex
coordinate u. In all of these vacua the SU(2) gauge sym-
metry is Higgsed to U(1) by the adjoint scalar � in the
SU(2) gauge multiplet. For this reason, the continuum
of vacua is also called the Coulomb branch. The Higgsing
gives masses to W± gauge bosons and their four chargino
superpartners.

The moduli space of the Coulomb branch is
parametrized by a complex coordinate u ⌘ 1

2 tr(�
2),

where u 6= 0. The IR dynamics is given in terms of
the photon5 (A, V ) or, equivalently, the “dual photon”
(AD, VD). The two are not separate degrees of freedom
but rather nonlinear functions of each other, with the
chiral superfield components related by

AD =
@F(A)

@A
, A = �@FD(AD)

@AD
. (2)

Here F(A) is the exactly calculable [16] Prepotential
and FD is its exactly calculable Legendre transform, the
dual Prepotential. The VEVs Av(u) and Av

D(u) are also
known explicitly for Seiberg-Witten theory, and are given
by

Av(u) =
p
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by

⌧ =
@2F
@A2

⌘ ✓

2⇡
+

4⇡i

e2
. (4)

Note that ⌧ is a nonlinear function of A as an N = 1
chiral superfield. To get the numerical values of e and
✓ we have to substitute the VEV A(u) from (3). The

4
See [14, 15] for excellent reviews of Seiberg-Witten theory. Here

we follow the conventions of [15].
5
The N = 2 gauge multiplet of the photon consists of an N = 1

chiral superfield A and an N = 1 vector superfield V , whose

supersymmetric field strength is W↵.

low-energy physics is completely determined by F(A),
namely

LIR =
1

8⇡i

Z
d4✓

@F
@A

A+
1

8⇡i

Z
d2✓ ⌧(A)W↵W↵ + h.c. .

(5)
The action is canonically normalized by rescaling the
fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
original fields.

We now briefly describe two important regions of the
Coulomb branch, namely, weak coupling and the strong
coupling singularities.

Weak Coupling At large |u|, the theory is Higgsed
at weak coupling, and the Coulomb branch coordinate
u coincides with 1

2 tr�
2 = A2. In this weak coupling

regime, the spectrum of the theory consists of the
massless photon multiplet A, two W± multiplets getting
their mass from the adjoint VEV u = 1

2 tr�
2 = A2,

and a tower of heavy semiclassical ’t Hooft-Polyakov
monopoles and their dyonic excitations, all BPS states
whose mass satisfies

mBPS
(g,q) = |Av(u) q +Av

D(u) g| , (6)

where (g, q) are the magnetic and electric charges of
every state in the tower.

Strong Coupling At u ⇠ ⇤2 the IR EFT, expressed
in terms of the photon A, is strongly coupled. In the
vicinity of the u = 2⇤2 singularity we can work with the
dual complexified gauge coupling ⌧D ⌘ ✓D

2⇡ + 4⇡i
e2D

, given

by ⌧D = @2FD(AD)/@A2
D and related to ⌧ via S-duality

⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
photon AD and the dual prepotential FD(AD), namely

LD
IR =

1

8⇡i

Z
d4✓

@FD

@AD
AD +

1

8⇡i

Z
d2✓ ⌧D(AD)W↵

DWD↵ + h.c. , (8)

in addition to the monopole term (7).

The exact expressions for the prepotential F(A) and
the dual prepotential FD(AD) (which is the Legendre



The Seiberg-Witten axion
• Since 𝝫 has R-charge 2, the R-symmetry will be spontaneously broken 
everywhere. There will be a PQ-axion in the spectrum (the R-axion)


• R-symmetry spontaneously broken and anomalous - a nice toy example 
to study for axion physics  


• Important: as we will see the dynamics of the SW solution will imply the 
presence of magnetic monopoles/dyons that may become light at certain 
points in the moduli space


• Monopoles/dyons do carry U(1)R charge as well - can view this as 
monopole getting mass from PQ breaking 


• Perfect example to study effect of monopoles on axion coupling!




The Seiberg-Witten solution
• Effective theory N=2 SUSY U(1) theory, can be written in terms of chiral 
superfield A + vector superfield V               OR the dual variable 


• They are not independent - there is a complicated non-linear relation 
between A and AD: 


•               is the prepotential - exactly calculable in SW


• VEVs also calculable:  
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by
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fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
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We now briefly describe two important regions of the
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coupling singularities.
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at weak coupling, and the Coulomb branch coordinate
u coincides with 1
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whose mass satisfies
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Strong Coupling At u ⇠ ⇤2 the IR EFT, expressed
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, given
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D and related to ⌧ via S-duality

⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
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chiral superfield components related by
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by
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Note that ⌧ is a nonlinear function of A as an N = 1
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The action is canonically normalized by rescaling the
fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
original fields.

We now briefly describe two important regions of the
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coupling singularities.

Weak Coupling At large |u|, the theory is Higgsed
at weak coupling, and the Coulomb branch coordinate
u coincides with 1
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charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,
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Exactly at u = 2⇤2, AD = 0 and the monopoles become
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by

⌧ =
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Note that ⌧ is a nonlinear function of A as an N = 1
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The action is canonically normalized by rescaling the
fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
original fields.
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coupling singularities.
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W = ADMfM . (7)
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where 2F1 is the Gauss hypergeometric function. Note
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BPS states become exactly massless. From the mon-
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massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
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computable on the Coulomb branch, and is given by
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fields as A ! eA. However, this should be done with
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, given
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D and related to ⌧ via S-duality

⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
photon AD and the dual prepotential FD(AD), namely
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The Seiberg-Witten solution
• A has branching point at                    - massless monopole/dyon

• AD has branching point at                   - massless dyon  
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
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fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
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⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
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caution since the prepotential is only holomorphic in the
original fields.

We now briefly describe two important regions of the
Coulomb branch, namely, weak coupling and the strong
coupling singularities.

Weak Coupling At large |u|, the theory is Higgsed
at weak coupling, and the Coulomb branch coordinate
u coincides with 1

2 tr�
2 = A2. In this weak coupling

regime, the spectrum of the theory consists of the
massless photon multiplet A, two W± multiplets getting
their mass from the adjoint VEV u = 1

2 tr�
2 = A2,

and a tower of heavy semiclassical ’t Hooft-Polyakov
monopoles and their dyonic excitations, all BPS states
whose mass satisfies

mBPS
(g,q) = |Av(u) q +Av

D(u) g| , (6)

where (g, q) are the magnetic and electric charges of
every state in the tower.

Strong Coupling At u ⇠ ⇤2 the IR EFT, expressed
in terms of the photon A, is strongly coupled. In the
vicinity of the u = 2⇤2 singularity we can work with the
dual complexified gauge coupling ⌧D ⌘ ✓D

2⇡ + 4⇡i
e2D

, given
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⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
photon AD and the dual prepotential FD(AD), namely
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The Seiberg-Witten solution
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The Strong Coupling region of SW
• Once               the IR EFT in terms of A is strongly coupled. Better to use 
dual variables in the vicinity of singularity     


• The S-dual coupling


• eD runs logarithmically to 0 near u=2𝝠2 where the (g,q)=(1,0) monopole 
becomes massless


• AD=0 at  u=2𝝠2 leading to vanishing monopole mass, the BPS formula
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
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fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
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where (g, q) are the magnetic and electric charges of
every state in the tower.

Strong Coupling At u ⇠ ⇤2 the IR EFT, expressed
in terms of the photon A, is strongly coupled. In the
vicinity of the u = 2⇤2 singularity we can work with the
dual complexified gauge coupling ⌧D ⌘ ✓D

2⇡ + 4⇡i
e2D

, given

by ⌧D = @2FD(AD)/@A2
D and related to ⌧ via S-duality

⌧D = �1/⌧ . One can verify that eD runs logarithmically
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
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BPS states become exactly massless. From the mon-
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we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
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charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
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light, and there is an additional Yukawa term in the
superpotential,
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Exactly at u = 2⇤2, AD = 0 and the monopoles become
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
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are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by

⌧ =
@2F
@A2
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4⇡i

e2
. (4)

Note that ⌧ is a nonlinear function of A as an N = 1
chiral superfield. To get the numerical values of e and
✓ we have to substitute the VEV A(u) from (3). The
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low-energy physics is completely determined by F(A),
namely

LIR =
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Z
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Z
d2✓ ⌧(A)W↵W↵ + h.c. .

(5)
The action is canonically normalized by rescaling the
fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
original fields.

We now briefly describe two important regions of the
Coulomb branch, namely, weak coupling and the strong
coupling singularities.

Weak Coupling At large |u|, the theory is Higgsed
at weak coupling, and the Coulomb branch coordinate
u coincides with 1

2 tr�
2 = A2. In this weak coupling

regime, the spectrum of the theory consists of the
massless photon multiplet A, two W± multiplets getting
their mass from the adjoint VEV u = 1

2 tr�
2 = A2,

and a tower of heavy semiclassical ’t Hooft-Polyakov
monopoles and their dyonic excitations, all BPS states
whose mass satisfies

mBPS
(g,q) = |Av(u) q +Av

D(u) g| , (6)

where (g, q) are the magnetic and electric charges of
every state in the tower.

Strong Coupling At u ⇠ ⇤2 the IR EFT, expressed
in terms of the photon A, is strongly coupled. In the
vicinity of the u = 2⇤2 singularity we can work with the
dual complexified gauge coupling ⌧D ⌘ ✓D

2⇡ + 4⇡i
e2D

, given

by ⌧D = @2FD(AD)/@A2
D and related to ⌧ via S-duality

⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
photon AD and the dual prepotential FD(AD), namely

LD
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Z
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AD +

1

8⇡i

Z
d2✓ ⌧D(AD)W↵

DWD↵ + h.c. , (8)

in addition to the monopole term (7).

The exact expressions for the prepotential F(A) and
the dual prepotential FD(AD) (which is the Legendre

4

transform of F(A)) are given by [5, 15–18]
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. (9)

The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =

✓
a b
c d

◆
, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
ity as

⌧ 0 =
a⌧ + b

c⌧ + d
, (11)

while the charges of BPS states transform as
✓

g0

q0

◆
= M�1T

✓
g
q

◆
. (12)

Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes

⌧ =
4⇡i

e2p
� 8↵

2⇡
� 1

2⇡
G (↵) (14)
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[sin (4k↵) + i cos (4k↵)] ,

where ↵ ⌘ a
f �

✓p
8 , the coe�cients b̃k�ic̃k = (4k�1)(4k�

2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep
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transform of F(A)) are given by [5, 15–18]
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =
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a b
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, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
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while the charges of BPS states transform as
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes
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2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
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is described by a matrix
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where ad � bc = 1, under which (AD, A) transform as
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.
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including collider phenomenology [31–33]. In the low-
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multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
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where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
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the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
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The Strong Coupling region of SW

• The effective theory here better described as  


• The actual expressions of the prepotential: 

3

couplings to mutually non-local charges4. The IR dy-
namics of Seiberg-Witten theory involves a continuum
of degenerate N = 2 vacua parametrized by a complex
coordinate u. In all of these vacua the SU(2) gauge sym-
metry is Higgsed to U(1) by the adjoint scalar � in the
SU(2) gauge multiplet. For this reason, the continuum
of vacua is also called the Coulomb branch. The Higgsing
gives masses to W± gauge bosons and their four chargino
superpartners.

The moduli space of the Coulomb branch is
parametrized by a complex coordinate u ⌘ 1

2 tr(�
2),

where u 6= 0. The IR dynamics is given in terms of
the photon5 (A, V ) or, equivalently, the “dual photon”
(AD, VD). The two are not separate degrees of freedom
but rather nonlinear functions of each other, with the
chiral superfield components related by

AD =
@F(A)

@A
, A = �@FD(AD)

@AD
. (2)

Here F(A) is the exactly calculable [16] Prepotential
and FD is its exactly calculable Legendre transform, the
dual Prepotential. The VEVs Av(u) and Av

D(u) are also
known explicitly for Seiberg-Witten theory, and are given
by

Av(u) =
p

u+ 2⇤2
2F1

✓
�1

2
,
1

2
, 1;

4⇤2

u+ 2⇤2

◆

Av
D(u) = i

u� 2⇤2

2⇤
2F1

✓
1

2
,
1

2
, 2;

2⇤2 � u

4⇤2

◆
, (3)

where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by

⌧ =
@2F
@A2

⌘ ✓

2⇡
+

4⇡i

e2
. (4)

Note that ⌧ is a nonlinear function of A as an N = 1
chiral superfield. To get the numerical values of e and
✓ we have to substitute the VEV A(u) from (3). The
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5
The N = 2 gauge multiplet of the photon consists of an N = 1

chiral superfield A and an N = 1 vector superfield V , whose

supersymmetric field strength is W↵.

low-energy physics is completely determined by F(A),
namely

LIR =
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Z
d4✓

@F
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A+
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8⇡i

Z
d2✓ ⌧(A)W↵W↵ + h.c. .

(5)
The action is canonically normalized by rescaling the
fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
original fields.

We now briefly describe two important regions of the
Coulomb branch, namely, weak coupling and the strong
coupling singularities.

Weak Coupling At large |u|, the theory is Higgsed
at weak coupling, and the Coulomb branch coordinate
u coincides with 1

2 tr�
2 = A2. In this weak coupling

regime, the spectrum of the theory consists of the
massless photon multiplet A, two W± multiplets getting
their mass from the adjoint VEV u = 1

2 tr�
2 = A2,

and a tower of heavy semiclassical ’t Hooft-Polyakov
monopoles and their dyonic excitations, all BPS states
whose mass satisfies

mBPS
(g,q) = |Av(u) q +Av

D(u) g| , (6)

where (g, q) are the magnetic and electric charges of
every state in the tower.

Strong Coupling At u ⇠ ⇤2 the IR EFT, expressed
in terms of the photon A, is strongly coupled. In the
vicinity of the u = 2⇤2 singularity we can work with the
dual complexified gauge coupling ⌧D ⌘ ✓D

2⇡ + 4⇡i
e2D

, given

by ⌧D = @2FD(AD)/@A2
D and related to ⌧ via S-duality

⌧D = �1/⌧ . One can verify that eD runs logarithmically
to 0 at u = 2⇤2. In the neighborhood of u = 2⇤2 the
charge (1, 0) monopole hypermultiplet (M, fM) becomes
light, and there is an additional Yukawa term in the
superpotential,

W = ADMfM . (7)

Exactly at u = 2⇤2, AD = 0 and the monopoles become
massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
photon AD and the dual prepotential FD(AD), namely
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Z
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DWD↵ + h.c. , (8)

in addition to the monopole term (7).

The exact expressions for the prepotential F(A) and
the dual prepotential FD(AD) (which is the Legendre

4

transform of F(A)) are given by [5, 15–18]
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =

✓
a b
c d

◆
, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
ity as

⌧ 0 =
a⌧ + b

c⌧ + d
, (11)

while the charges of BPS states transform as
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g0
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= M�1T
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. (12)

Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes
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2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep
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a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.
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theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
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thermore, this information is preserved under EM dual-
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c = 0 which simply shifts ✓ by 2⇡ and is well known to
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.
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of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
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multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.
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where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.
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to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
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tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
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transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
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netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix
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where ad � bc = 1, under which (AD, A) transform as
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.
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of the adjoint then plays the role of the (R-) axion. The
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including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.
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where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.
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to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep
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The Strong Coupling region of SW

• The effective theory here better described as  


• The actual expressions of the prepotential: 

3

couplings to mutually non-local charges4. The IR dy-
namics of Seiberg-Witten theory involves a continuum
of degenerate N = 2 vacua parametrized by a complex
coordinate u. In all of these vacua the SU(2) gauge sym-
metry is Higgsed to U(1) by the adjoint scalar � in the
SU(2) gauge multiplet. For this reason, the continuum
of vacua is also called the Coulomb branch. The Higgsing
gives masses to W± gauge bosons and their four chargino
superpartners.

The moduli space of the Coulomb branch is
parametrized by a complex coordinate u ⌘ 1

2 tr(�
2),

where u 6= 0. The IR dynamics is given in terms of
the photon5 (A, V ) or, equivalently, the “dual photon”
(AD, VD). The two are not separate degrees of freedom
but rather nonlinear functions of each other, with the
chiral superfield components related by

AD =
@F(A)

@A
, A = �@FD(AD)
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. (2)

Here F(A) is the exactly calculable [16] Prepotential
and FD is its exactly calculable Legendre transform, the
dual Prepotential. The VEVs Av(u) and Av

D(u) are also
known explicitly for Seiberg-Witten theory, and are given
by
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where 2F1 is the Gauss hypergeometric function. Note
that A(u) has branch points at u = ±2⇤2, while AD(u)
has branch point at u = �2⇤2. At these branch points,
BPS states become exactly massless. From the mon-
odromies of (AD(u), A(u)) from (3) around these points,
we can read-o↵ the charges of the BPS states that become
massless at these points; at u = 2⇤2 this is a monopole
hypermultiplet with EM charges (g, q) = (1, 0) (in the
language of the weak coupling), while at u = �2⇤2 they
are dyons of charge (g, q) = (1, 2). Finally, the holo-
morphic gauge coupling on the moduli space ⌧ is exactly
computable on the Coulomb branch, and is given by
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Note that ⌧ is a nonlinear function of A as an N = 1
chiral superfield. To get the numerical values of e and
✓ we have to substitute the VEV A(u) from (3). The
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low-energy physics is completely determined by F(A),
namely
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The action is canonically normalized by rescaling the
fields as A ! eA. However, this should be done with
caution since the prepotential is only holomorphic in the
original fields.

We now briefly describe two important regions of the
Coulomb branch, namely, weak coupling and the strong
coupling singularities.

Weak Coupling At large |u|, the theory is Higgsed
at weak coupling, and the Coulomb branch coordinate
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regime, the spectrum of the theory consists of the
massless photon multiplet A, two W± multiplets getting
their mass from the adjoint VEV u = 1
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where (g, q) are the magnetic and electric charges of
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massless. In this regime, we can use an equivalent, S-dual
description of the same IR physics in terms of the dual
photon AD and the dual prepotential FD(AD), namely

LD
IR =

1

8⇡i

Z
d4✓

@FD

@AD
AD +

1

8⇡i

Z
d2✓ ⌧D(AD)W↵

DWD↵ + h.c. , (8)

in addition to the monopole term (7).

The exact expressions for the prepotential F(A) and
the dual prepotential FD(AD) (which is the Legendre
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transform of F(A)) are given by [5, 15–18]
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
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transformations, S and T , generate SL(2, Z). S corre-
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =

✓
a b
c d

◆
, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
ity as

⌧ 0 =
a⌧ + b

c⌧ + d
, (11)

while the charges of BPS states transform as
✓

g0

q0

◆
= M�1T

✓
g
q

◆
. (12)

Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes
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2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep

6
At two isolated singularities on the moduli space there

are additional massless hypermultiplets – these are BPS

monopoles/dyons that become massless at the singularities.

Moving slightly away from these singularities, these BPS states

get a mass and we can integrate them out.
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Instanton corrections

= BPS states in loops
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FIG. 5: AD vs. A. Orange: calculated from F(A) with 25
instanton coe�cients. Gray: calculated from FD(AD) with
30 instanton coe�cients. Blue: keeping only the perturbative
contribution to F(A). Red: keeping only the perturbative
contribution to FD(AD). The black circles are (A(u), AD(u))
sample values of u, as calculated from (3). We see agreement
between the instanton expansions of F and FD. The devi-
ation around u ⇠ 10 is attributed to the loss of validity of
this finite term asymptotic series and would be alleviated by
considering additional instanton terms. Remarkably, we find
that the perturbative one-loop pieces of both expansions are
the main contributions in the segment 2  u  10 along the
real axis of the moduli space.

Appendix A: Instanton Expansion Convergence

To demonstrate the convergence of the instanton ex-
pansions for the prepotential F(A) and its Legendre
transform FD(AD) given in Eq. (9). We explicitly show
that both expansions yield the same curves (A,AD) when
varying u. In this manuscript we used the first 30 instan-
tons coe�cients recursively calculated using the method
of [15, 18]. Here we present the first six coe�cients
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In Fig. 5 we plot AD vs. A for Seiberg witten theory,
calculated from (2) using the explicit expressions (9). As
one can readily see, the instanton expansion converges
rapidly for @F/@A in the entire region, and for @FD/@AD

at u . 9⇤2. Furthermore, we see that the perturbative
one-loop pieces of F and FD are able to approximate this
curve quite well along the real axis of the moduli space.

Appendix B: Duality Invariance of a ! ��

We show explicitly that e3@⌧/@A is a duality invariant
quantity. For a holomorphic function f(z) = u(z)+ iv(z)
where u(z), v(z) are real functions the Cauchy Reimann
equations imply
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From (B1) and the canonical relation ⌧ = �⌧�1
D we find

ga�� / e3

4⇡

@⌧

@A
=

@e

@A
=

@AD

@A

@

@AD

p
4⇡|⌧D|
Im⌧D

. (B3)

However note that in Seiberg-Witten theory @AD/@A =
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D and with the help of (B2) we find
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and thus

ga�� =
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◆3

gDa�� . (B5)

The upshot is that under duality the a ! �� amplitude
changes only by a non-physical global phase.
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.
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A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes
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2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep

6
At two isolated singularities on the moduli space there

are additional massless hypermultiplets – these are BPS

monopoles/dyons that become massless at the singularities.

Moving slightly away from these singularities, these BPS states

get a mass and we can integrate them out.
7
In principle we could have also expanded in the radial fluctuation

of A about its VEV, but it is decoupled from the axion and

irrelevant for the present discussion.
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original SU(2) gauge group and the remaining U(1)), it
will have all the necessary properties to serve as a toy
model for a PQ axion. Most importantly, it is well-known
from the Seiberg-Witten solution that at a specific point
in the moduli space a magnetic monopole hypermulti-
plet becomes massless (while at another point a dyon
becomes massless). The monopole (and the dyon) also
carry a non-vanishing U(1)R charge, hence their masses
can be thought of as fully arising from the spontaneous
PQ breaking, providing a non-trivial example of an axion
model with a light magnetic monopole, which will provide
additional contributions to the photon-axion coupling.

The IR dynamics of this SW theory is described by
N = 2 Super Quantum Electrodynanamics (SQED)
which is manifestly covariant under EM SL(2, Z) duality.
In the electric frame the axion, a, is identified with the
phase of the chiral superfield A which completes the vec-
tor superfield V to a full N = 2 vector multiplet, while
in the magnetic frame the dual axion aD is the phase of
AD which completes VD. Since A and AD are related to
each other via a complicated non-linear transformation
(determined by the SW solution) so is the axion a and
the dual axion aD.

We will see that in the electric frame the axion a
couples as
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where Na is an integer and bk and ck are calculable from
Seiberg-Witten (SW) theory. The first term is the fa-
miliar linear term from the perturbative PQ anomaly,
while the second term is a non-perturbative contribution,
which is fully calculable in SW theory. Similar periodic
couplings arise for the ordinary QCD axion as well due
its mixing with the pion, see for example [6, 7].2 Its
interpretation, as pointed out in the original paper and
elaborated below, is as the sum of all quantum contribu-
tions from heavy BPS monopoles and dyons, which can
also be interpreted as a sum of instanton corrections.3

The contributions from an individual BPS state to the
anomaly were first calculated in [11] using EM duality,
and the explicit SW solution shows that they must sum
up to the periodic terms in (1). The latter axion coupling
is manifestly periodic under a ! a+2⇡f , up to the usual

2
We thank Matt Reece for emphasizing this.

3
These non-perturbative corrections to the photon-axion coupling

are the analogs of the non-perturbative corrections to the axion

potential and axion mass first calculated in [8]. These corrections

can also be underdstood in the language of generalized symme-

tries, as emerging from the UV breaking of a magnetic 1-form

symmetry participating in a higher group with PQ symmetry

[9, 10].

unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
contribution due to non-perturbative e↵ects. Once the
proper normalizations and the relation between the axion
decay constant vs. the dual decay constant are identified
one can show that physical matrix elements agree in the
electric and magnetic descriptions.
We thus have a concrete proof-of-principal for axion

electrodynamics which has

• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
dyons.

• Manifest EM duality, where the axions in di↵er-
ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
vary continuously over the moduli space of the theory.
At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
caveat that supersymmetry still ensures that the axion
remains massless). In particular, the corrections to the
axion coupling become large around the monopole point
where f . ⇤. In this regime, we expect that an addition
of supersymmetry breaking to result in an axion mass of
the same order as the SUSY breaking scale. While our
study focuses on a toy model and not a full-fledged BSM
model, it does have two major direct implications for
the search for real-world axions and axion-like particles
(ALPs). The first is that the axion coupling need not be
quantized in integer multiples of e2/16⇡2, and can even
be large, depending on the value of bk. The second is that
axion electrodynamics without any additional modifica-
tions can be manifestly covariant under EM duality, and
does not su↵er from the phenomenological deal-breakers
outlined in [4]. This also implies that the implemen-
tation of duality in the seemingly non-duality covariant
equations ubiquitous in the literature [12, 13] will have
to be reexamined.

II. OVERVIEW OF SEIBERG-WITTEN

The N = 2 supersymmetric SU(2) gauge theory with-
out fundamental matter fields, analyzed by Seiberg and
Witten [5] provides a nice laboratory to explore axion
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unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
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• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
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ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
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At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
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remains massless). In particular, the corrections to the
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where f . ⇤. In this regime, we expect that an addition
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model, it does have two major direct implications for
the search for real-world axions and axion-like particles
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be large, depending on the value of bk. The second is that
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transform of F(A)) are given by [5, 15–18]
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =

✓
a b
c d

◆
, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
ity as
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, (11)

while the charges of BPS states transform as
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes

⌧ =
4⇡i

e2p
� 8↵

2⇡
� 1

2⇡
G (↵) (14)

G(↵) ⌘
1X

k=1

(b̃k � ic̃k)

����
⇤

Av

����
4k

[sin (4k↵) + i cos (4k↵)] ,

where ↵ ⌘ a
f �

✓p
8 , the coe�cients b̃k�ic̃k = (4k�1)(4k�

2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep

6
At two isolated singularities on the moduli space there

are additional massless hypermultiplets – these are BPS

monopoles/dyons that become massless at the singularities.

Moving slightly away from these singularities, these BPS states

get a mass and we can integrate them out.
7
In principle we could have also expanded in the radial fluctuation

of A about its VEV, but it is decoupled from the axion and

irrelevant for the present discussion.
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original SU(2) gauge group and the remaining U(1)), it
will have all the necessary properties to serve as a toy
model for a PQ axion. Most importantly, it is well-known
from the Seiberg-Witten solution that at a specific point
in the moduli space a magnetic monopole hypermulti-
plet becomes massless (while at another point a dyon
becomes massless). The monopole (and the dyon) also
carry a non-vanishing U(1)R charge, hence their masses
can be thought of as fully arising from the spontaneous
PQ breaking, providing a non-trivial example of an axion
model with a light magnetic monopole, which will provide
additional contributions to the photon-axion coupling.

The IR dynamics of this SW theory is described by
N = 2 Super Quantum Electrodynanamics (SQED)
which is manifestly covariant under EM SL(2, Z) duality.
In the electric frame the axion, a, is identified with the
phase of the chiral superfield A which completes the vec-
tor superfield V to a full N = 2 vector multiplet, while
in the magnetic frame the dual axion aD is the phase of
AD which completes VD. Since A and AD are related to
each other via a complicated non-linear transformation
(determined by the SW solution) so is the axion a and
the dual axion aD.

We will see that in the electric frame the axion a
couples as
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where Na is an integer and bk and ck are calculable from
Seiberg-Witten (SW) theory. The first term is the fa-
miliar linear term from the perturbative PQ anomaly,
while the second term is a non-perturbative contribution,
which is fully calculable in SW theory. Similar periodic
couplings arise for the ordinary QCD axion as well due
its mixing with the pion, see for example [6, 7].2 Its
interpretation, as pointed out in the original paper and
elaborated below, is as the sum of all quantum contribu-
tions from heavy BPS monopoles and dyons, which can
also be interpreted as a sum of instanton corrections.3

The contributions from an individual BPS state to the
anomaly were first calculated in [11] using EM duality,
and the explicit SW solution shows that they must sum
up to the periodic terms in (1). The latter axion coupling
is manifestly periodic under a ! a+2⇡f , up to the usual
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unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
contribution due to non-perturbative e↵ects. Once the
proper normalizations and the relation between the axion
decay constant vs. the dual decay constant are identified
one can show that physical matrix elements agree in the
electric and magnetic descriptions.
We thus have a concrete proof-of-principal for axion

electrodynamics which has

• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
dyons.

• Manifest EM duality, where the axions in di↵er-
ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
vary continuously over the moduli space of the theory.
At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
caveat that supersymmetry still ensures that the axion
remains massless). In particular, the corrections to the
axion coupling become large around the monopole point
where f . ⇤. In this regime, we expect that an addition
of supersymmetry breaking to result in an axion mass of
the same order as the SUSY breaking scale. While our
study focuses on a toy model and not a full-fledged BSM
model, it does have two major direct implications for
the search for real-world axions and axion-like particles
(ALPs). The first is that the axion coupling need not be
quantized in integer multiples of e2/16⇡2, and can even
be large, depending on the value of bk. The second is that
axion electrodynamics without any additional modifica-
tions can be manifestly covariant under EM duality, and
does not su↵er from the phenomenological deal-breakers
outlined in [4]. This also implies that the implemen-
tation of duality in the seemingly non-duality covariant
equations ubiquitous in the literature [12, 13] will have
to be reexamined.
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We will see that in the electric frame the axion a
couples as
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where Na is an integer and bk and ck are calculable from
Seiberg-Witten (SW) theory. The first term is the fa-
miliar linear term from the perturbative PQ anomaly,
while the second term is a non-perturbative contribution,
which is fully calculable in SW theory. Similar periodic
couplings arise for the ordinary QCD axion as well due
its mixing with the pion, see for example [6, 7].2 Its
interpretation, as pointed out in the original paper and
elaborated below, is as the sum of all quantum contribu-
tions from heavy BPS monopoles and dyons, which can
also be interpreted as a sum of instanton corrections.3

The contributions from an individual BPS state to the
anomaly were first calculated in [11] using EM duality,
and the explicit SW solution shows that they must sum
up to the periodic terms in (1). The latter axion coupling
is manifestly periodic under a ! a+2⇡f , up to the usual

2
We thank Matt Reece for emphasizing this.

3
These non-perturbative corrections to the photon-axion coupling

are the analogs of the non-perturbative corrections to the axion

potential and axion mass first calculated in [8]. These corrections

can also be underdstood in the language of generalized symme-

tries, as emerging from the UV breaking of a magnetic 1-form

symmetry participating in a higher group with PQ symmetry

[9, 10].

unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
contribution due to non-perturbative e↵ects. Once the
proper normalizations and the relation between the axion
decay constant vs. the dual decay constant are identified
one can show that physical matrix elements agree in the
electric and magnetic descriptions.
We thus have a concrete proof-of-principal for axion

electrodynamics which has

• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
dyons.

• Manifest EM duality, where the axions in di↵er-
ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
vary continuously over the moduli space of the theory.
At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
caveat that supersymmetry still ensures that the axion
remains massless). In particular, the corrections to the
axion coupling become large around the monopole point
where f . ⇤. In this regime, we expect that an addition
of supersymmetry breaking to result in an axion mass of
the same order as the SUSY breaking scale. While our
study focuses on a toy model and not a full-fledged BSM
model, it does have two major direct implications for
the search for real-world axions and axion-like particles
(ALPs). The first is that the axion coupling need not be
quantized in integer multiples of e2/16⇡2, and can even
be large, depending on the value of bk. The second is that
axion electrodynamics without any additional modifica-
tions can be manifestly covariant under EM duality, and
does not su↵er from the phenomenological deal-breakers
outlined in [4]. This also implies that the implemen-
tation of duality in the seemingly non-duality covariant
equations ubiquitous in the literature [12, 13] will have
to be reexamined.

II. OVERVIEW OF SEIBERG-WITTEN

The N = 2 supersymmetric SU(2) gauge theory with-
out fundamental matter fields, analyzed by Seiberg and
Witten [5] provides a nice laboratory to explore axion

Usual coupling from anomaly 
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transform of F(A)) are given by [5, 15–18]
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =

✓
a b
c d

◆
, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
ity as

⌧ 0 =
a⌧ + b

c⌧ + d
, (11)

while the charges of BPS states transform as
✓
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◆
= M�1T

✓
g
q

◆
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Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes

⌧ =
4⇡i

e2p
� 8↵

2⇡
� 1

2⇡
G (↵) (14)
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����
4k

[sin (4k↵) + i cos (4k↵)] ,

where ↵ ⌘ a
f �

✓p
8 , the coe�cients b̃k�ic̃k = (4k�1)(4k�

2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep

6
At two isolated singularities on the moduli space there

are additional massless hypermultiplets – these are BPS

monopoles/dyons that become massless at the singularities.

Moving slightly away from these singularities, these BPS states

get a mass and we can integrate them out.
7
In principle we could have also expanded in the radial fluctuation

of A about its VEV, but it is decoupled from the axion and

irrelevant for the present discussion.
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f =
p
2|Av|/e
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original SU(2) gauge group and the remaining U(1)), it
will have all the necessary properties to serve as a toy
model for a PQ axion. Most importantly, it is well-known
from the Seiberg-Witten solution that at a specific point
in the moduli space a magnetic monopole hypermulti-
plet becomes massless (while at another point a dyon
becomes massless). The monopole (and the dyon) also
carry a non-vanishing U(1)R charge, hence their masses
can be thought of as fully arising from the spontaneous
PQ breaking, providing a non-trivial example of an axion
model with a light magnetic monopole, which will provide
additional contributions to the photon-axion coupling.

The IR dynamics of this SW theory is described by
N = 2 Super Quantum Electrodynanamics (SQED)
which is manifestly covariant under EM SL(2, Z) duality.
In the electric frame the axion, a, is identified with the
phase of the chiral superfield A which completes the vec-
tor superfield V to a full N = 2 vector multiplet, while
in the magnetic frame the dual axion aD is the phase of
AD which completes VD. Since A and AD are related to
each other via a complicated non-linear transformation
(determined by the SW solution) so is the axion a and
the dual axion aD.

We will see that in the electric frame the axion a
couples as
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where Na is an integer and bk and ck are calculable from
Seiberg-Witten (SW) theory. The first term is the fa-
miliar linear term from the perturbative PQ anomaly,
while the second term is a non-perturbative contribution,
which is fully calculable in SW theory. Similar periodic
couplings arise for the ordinary QCD axion as well due
its mixing with the pion, see for example [6, 7].2 Its
interpretation, as pointed out in the original paper and
elaborated below, is as the sum of all quantum contribu-
tions from heavy BPS monopoles and dyons, which can
also be interpreted as a sum of instanton corrections.3

The contributions from an individual BPS state to the
anomaly were first calculated in [11] using EM duality,
and the explicit SW solution shows that they must sum
up to the periodic terms in (1). The latter axion coupling
is manifestly periodic under a ! a+2⇡f , up to the usual

2
We thank Matt Reece for emphasizing this.

3
These non-perturbative corrections to the photon-axion coupling

are the analogs of the non-perturbative corrections to the axion

potential and axion mass first calculated in [8]. These corrections

can also be underdstood in the language of generalized symme-

tries, as emerging from the UV breaking of a magnetic 1-form

symmetry participating in a higher group with PQ symmetry

[9, 10].

unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
contribution due to non-perturbative e↵ects. Once the
proper normalizations and the relation between the axion
decay constant vs. the dual decay constant are identified
one can show that physical matrix elements agree in the
electric and magnetic descriptions.
We thus have a concrete proof-of-principal for axion

electrodynamics which has

• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
dyons.

• Manifest EM duality, where the axions in di↵er-
ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
vary continuously over the moduli space of the theory.
At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
caveat that supersymmetry still ensures that the axion
remains massless). In particular, the corrections to the
axion coupling become large around the monopole point
where f . ⇤. In this regime, we expect that an addition
of supersymmetry breaking to result in an axion mass of
the same order as the SUSY breaking scale. While our
study focuses on a toy model and not a full-fledged BSM
model, it does have two major direct implications for
the search for real-world axions and axion-like particles
(ALPs). The first is that the axion coupling need not be
quantized in integer multiples of e2/16⇡2, and can even
be large, depending on the value of bk. The second is that
axion electrodynamics without any additional modifica-
tions can be manifestly covariant under EM duality, and
does not su↵er from the phenomenological deal-breakers
outlined in [4]. This also implies that the implemen-
tation of duality in the seemingly non-duality covariant
equations ubiquitous in the literature [12, 13] will have
to be reexamined.

II. OVERVIEW OF SEIBERG-WITTEN

The N = 2 supersymmetric SU(2) gauge theory with-
out fundamental matter fields, analyzed by Seiberg and
Witten [5] provides a nice laboratory to explore axion
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in the moduli space a magnetic monopole hypermulti-
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carry a non-vanishing U(1)R charge, hence their masses
can be thought of as fully arising from the spontaneous
PQ breaking, providing a non-trivial example of an axion
model with a light magnetic monopole, which will provide
additional contributions to the photon-axion coupling.

The IR dynamics of this SW theory is described by
N = 2 Super Quantum Electrodynanamics (SQED)
which is manifestly covariant under EM SL(2, Z) duality.
In the electric frame the axion, a, is identified with the
phase of the chiral superfield A which completes the vec-
tor superfield V to a full N = 2 vector multiplet, while
in the magnetic frame the dual axion aD is the phase of
AD which completes VD. Since A and AD are related to
each other via a complicated non-linear transformation
(determined by the SW solution) so is the axion a and
the dual axion aD.

We will see that in the electric frame the axion a
couples as

� e2

16⇡2f
Fµ⌫

eFµ⌫ ⇥

(
Naa�

1X

k=1


bk sin

✓
4ka

f

◆
+ ck cos

✓
4ka

f

◆�)
, (1)

where Na is an integer and bk and ck are calculable from
Seiberg-Witten (SW) theory. The first term is the fa-
miliar linear term from the perturbative PQ anomaly,
while the second term is a non-perturbative contribution,
which is fully calculable in SW theory. Similar periodic
couplings arise for the ordinary QCD axion as well due
its mixing with the pion, see for example [6, 7].2 Its
interpretation, as pointed out in the original paper and
elaborated below, is as the sum of all quantum contribu-
tions from heavy BPS monopoles and dyons, which can
also be interpreted as a sum of instanton corrections.3

The contributions from an individual BPS state to the
anomaly were first calculated in [11] using EM duality,
and the explicit SW solution shows that they must sum
up to the periodic terms in (1). The latter axion coupling
is manifestly periodic under a ! a+2⇡f , up to the usual
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can also be underdstood in the language of generalized symme-

tries, as emerging from the UV breaking of a magnetic 1-form

symmetry participating in a higher group with PQ symmetry

[9, 10].

unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
contribution due to non-perturbative e↵ects. Once the
proper normalizations and the relation between the axion
decay constant vs. the dual decay constant are identified
one can show that physical matrix elements agree in the
electric and magnetic descriptions.
We thus have a concrete proof-of-principal for axion

electrodynamics which has

• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
dyons.

• Manifest EM duality, where the axions in di↵er-
ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
vary continuously over the moduli space of the theory.
At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
caveat that supersymmetry still ensures that the axion
remains massless). In particular, the corrections to the
axion coupling become large around the monopole point
where f . ⇤. In this regime, we expect that an addition
of supersymmetry breaking to result in an axion mass of
the same order as the SUSY breaking scale. While our
study focuses on a toy model and not a full-fledged BSM
model, it does have two major direct implications for
the search for real-world axions and axion-like particles
(ALPs). The first is that the axion coupling need not be
quantized in integer multiples of e2/16⇡2, and can even
be large, depending on the value of bk. The second is that
axion electrodynamics without any additional modifica-
tions can be manifestly covariant under EM duality, and
does not su↵er from the phenomenological deal-breakers
outlined in [4]. This also implies that the implemen-
tation of duality in the seemingly non-duality covariant
equations ubiquitous in the literature [12, 13] will have
to be reexamined.

II. OVERVIEW OF SEIBERG-WITTEN

The N = 2 supersymmetric SU(2) gauge theory with-
out fundamental matter fields, analyzed by Seiberg and
Witten [5] provides a nice laboratory to explore axion
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the terms relevant for the axion-photon coupling
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(15)

where the instanton corrections are encapsulated in the
G(↵) function (see Section VI for more details about the
generation of these terms).

In these expressions the vacuum ✓ angle is kept for
generality, and to manifest EM duality. As usual in the-
ories with axions and massless fermions, ✓ is not physical,
since Re(⌧) can always be set to zero by a U(1)R trans-
formation8.

Expanding ⌧ around a = 0 we find the canonically
normalized9 IR axion EFT Lagrangian
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(16)

where the derivative of ⌧ is with respect to the holomor-
phically normalized field. We define the complex axion
coupling as

ga��
4

=
e2

16⇡2f
ca�� =

ip
2

e3

8⇡

@⌧

@A
, (17)

where Re{ca��} is identified with the coe�cient

of (e2/16⇡2f)aF eF and Re{ga��} the coe�cient of

(1/4)aF eF , both ubiquitous in the literature. Since we
have not set ✓ = 0 we have the additional parity vi-
olating aF 2 coupling, which generically appears in the
one-loop anomaly of dyonic states [11]. In terms of the
prepotential instanton expansion we can explicitly iden-
tify the perturbative and non-perturbative contributions
to the axion coupling

ca�� = �8�
1X

k=1

4k(b̃k � ic̃k)

✓
⇤
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◆4k

. (18)

The �8 in (18) is the perturbative anomaly coming
from the four gauginos in W± which have electric charge
2, whereas the instantons account for the contributions

8
To see this note that Re(⌧) depends only on ↵, the instanton

coe�cients dk are all real (see Eq. (A1) for the first few), and

that the axion potential is zero, meaning that a ! (✓pf/8) + a
sets Re(⌧) = 0.

9
We choose to work in units where electric and magnetic charges

are integers. In these units the photon kinetic term is normalized

by 1/2.

FIG. 1: The real and imaginary part of the axion coupling
coe�cient ca�� in the electric duality frame. The coupling is
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Ev-
idently, Re{ca��} ! �8 and Im{ca��} ! 0 at weak cou-
pling �u ! 1. Re{ca��} diverges at the monopole point
�u = 0. Similarly Im{ca��} diverges at the monopole point
for ✓�u 6= 0.

from the BPS states. In Fig. 1 we present the values
of ca�� . We find that the coupling diverges near the
monopole point where u ! 2⇤2. As we will show in
more detail in Section V this divergence is associated
with the anomaly contribution from the strongly coupled
magnetic monopole of mass ⇠

p
u� 2⇤2.

IV. THE S-DUAL AXION

To understand this divergence better we can go to the
S-dual description where the monopole is perturbatively
coupled to the photon, referred to as the magnetic duality
frame. The axion is once again the phase of the scalar
superpartner of the photon AD, and its coupling can be
discerned from the prepotential FD. We emphasize that
this identification of the axion is uniquely determined by
the anomalous U(1)R symmetry. In other words, the
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have not set ✓ = 0 we have the additional parity vi-
olating aF 2 coupling, which generically appears in the
one-loop anomaly of dyonic states [11]. In terms of the
prepotential instanton expansion we can explicitly iden-
tify the perturbative and non-perturbative contributions
to the axion coupling
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The �8 in (18) is the perturbative anomaly coming
from the four gauginos in W± which have electric charge
2, whereas the instantons account for the contributions
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sets Re(⌧) = 0.
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FIG. 1: The real and imaginary part of the axion coupling
coe�cient ca�� in the electric duality frame. The coupling is
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Ev-
idently, Re{ca��} ! �8 and Im{ca��} ! 0 at weak cou-
pling �u ! 1. Re{ca��} diverges at the monopole point
�u = 0. Similarly Im{ca��} diverges at the monopole point
for ✓�u 6= 0.

from the BPS states. In Fig. 1 we present the values
of ca�� . We find that the coupling diverges near the
monopole point where u ! 2⇤2. As we will show in
more detail in Section V this divergence is associated
with the anomaly contribution from the strongly coupled
magnetic monopole of mass ⇠

p
u� 2⇤2.

IV. THE S-DUAL AXION

To understand this divergence better we can go to the
S-dual description where the monopole is perturbatively
coupled to the photon, referred to as the magnetic duality
frame. The axion is once again the phase of the scalar
superpartner of the photon AD, and its coupling can be
discerned from the prepotential FD. We emphasize that
this identification of the axion is uniquely determined by
the anomalous U(1)R symmetry. In other words, the
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The first term in F(A) corresponds to a one-loop con-
tribution from the massive gauge multiplets, while the
first term in FD(AD) corresponds to the one-loop con-

tribution from the light monopoles M, fM . We refer to
these contributions as perturbative, denoting them with
a p subscript. The dk and dDk are known instanton co-
e�cients calculated indirectly in [17, 19] and directly in
[16]. We computed their explicit values up to 25 and 30
instantons respectively using the method of [15, 18]. We
demonstrate the convergence of these instanton expan-
sions in Appendix A.

We have seen that the IR dynamics of Seiberg Witten
theory is encapsulated in the analytic structure of the
function A(u), AD(u) given in (3) (in fact, only from
their monodromies around their branch points). Fur-
thermore, this information is preserved under EM dual-
ity transformations in the duality group SL(2, Z). Two
transformations, S and T , generate SL(2, Z). S corre-
sponds to taking a = d = 0, b = 1, and c = �1, and
thus implements the textbook symmetry of electromag-
netism that interchanges the electric and magnetic fields:
E ! B, B ! �E. T corresponds to a = b = d = 1 and
c = 0 which simply shifts ✓ by 2⇡ and is well known to
be an exact symmetry. A general duality transformation
is described by a matrix

M =

✓
a b
c d

◆
, a, b, c, d 2 Z , (10)

where ad � bc = 1, under which (AD, A) transform as
(AD, A) ! M(AD, A). By (4), ⌧ transforms under dual-
ity as

⌧ 0 =
a⌧ + b

c⌧ + d
, (11)

while the charges of BPS states transform as
✓

g0

q0

◆
= M�1T

✓
g
q

◆
. (12)

Note that duality preserves the masses of the BPS states
(6) regardless of our identification of the axion in the low
energy EFT of SW theory.

III. THE SEIBERG-WITTEN R-AXION

SW theory has an anomalous U(1)R symmetry, which
is spontaneously broken by the VEV and plays the role

of a Peccei-Quinn [20] symmetry. In the UV, the phase
of the adjoint then plays the role of the (R-) axion. The
R-axion has been studied in di↵erent contexts [21–30]
including collider phenomenology [31–33]. In the low-
energy e↵ective theory there is only6 an N = 2 gauge
multiplet, A, whose scalar component has charge 2 under
the IR R-symmetry [19]. The IR axion a(x) is then a
spatially dependent phase of that scalar component of
A, i.e.

A(x) = Av(u) ei
a(x)
f(u) . (13)

where Av(u) is the (generally complex) VEV of A as a
function of the Coulomb branch coordinate u, and f(u) =p
2|Av(u)|/e(u) is the axion decay constant, chosen so

that the axion kinetic term is canonically normalized7.
To reduce notational clutter, for the rest of the discussion
we will suppress the explicit u dependence of Av, f, e,
and ✓.

First note that the SW solution fixes
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8 , the coe�cients b̃k�ic̃k = (4k�1)(4k�

2) dk are related to the instanton coe�cients dk in (9),
e2p = ⇡2/ log(2|Av|/3⇤) is the perturbative contribution
to the coupling, and ✓p = �8 argAv is the perturbative
theta angle. The coe�cients bk and ck from Eq. (1) are
related to b̃k and c̃k by a rescaling of (⇤/Av)4k. From
the expression (14) for ⌧ we learn that it has: (a) a real
term which is linear in the axion – this will give the per-
turbative part of the axion coupling; as well as (b) real
and imaginary terms that are trigonometric in the axion.
These constitute an explicit breaking of the axion shift
symmetry by the instanton corrections, and are automat-
ically consistent with the a ! a+2⇡f shift of the axion.
The attentive reader may note that the real part of ⌧
couples to F eF in the Lagrangian, while the imaginary
part couples to F 2. To see this explicitly, we plug in the
expansion (14) in the e↵ective Lagrangian (5) and keep

6
At two isolated singularities on the moduli space there

are additional massless hypermultiplets – these are BPS

monopoles/dyons that become massless at the singularities.

Moving slightly away from these singularities, these BPS states

get a mass and we can integrate them out.
7
In principle we could have also expanded in the radial fluctuation

of A about its VEV, but it is decoupled from the axion and

irrelevant for the present discussion.
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the terms relevant for the axion-photon coupling
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where the instanton corrections are encapsulated in the
G(↵) function (see Section VI for more details about the
generation of these terms).

In these expressions the vacuum ✓ angle is kept for
generality, and to manifest EM duality. As usual in the-
ories with axions and massless fermions, ✓ is not physical,
since Re(⌧) can always be set to zero by a U(1)R trans-
formation8.

Expanding ⌧ around a = 0 we find the canonically
normalized9 IR axion EFT Lagrangian
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where the derivative of ⌧ is with respect to the holomor-
phically normalized field. We define the complex axion
coupling as
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where Re{ca��} is identified with the coe�cient

of (e2/16⇡2f)aF eF and Re{ga��} the coe�cient of

(1/4)aF eF , both ubiquitous in the literature. Since we
have not set ✓ = 0 we have the additional parity vi-
olating aF 2 coupling, which generically appears in the
one-loop anomaly of dyonic states [11]. In terms of the
prepotential instanton expansion we can explicitly iden-
tify the perturbative and non-perturbative contributions
to the axion coupling
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The �8 in (18) is the perturbative anomaly coming
from the four gauginos in W± which have electric charge
2, whereas the instantons account for the contributions

8
To see this note that Re(⌧) depends only on ↵, the instanton

coe�cients dk are all real (see Eq. (A1) for the first few), and

that the axion potential is zero, meaning that a ! (✓pf/8) + a
sets Re(⌧) = 0.

9
We choose to work in units where electric and magnetic charges

are integers. In these units the photon kinetic term is normalized

by 1/2.

FIG. 1: The real and imaginary part of the axion coupling
coe�cient ca�� in the electric duality frame. The coupling is
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Ev-
idently, Re{ca��} ! �8 and Im{ca��} ! 0 at weak cou-
pling �u ! 1. Re{ca��} diverges at the monopole point
�u = 0. Similarly Im{ca��} diverges at the monopole point
for ✓�u 6= 0.

from the BPS states. In Fig. 1 we present the values
of ca�� . We find that the coupling diverges near the
monopole point where u ! 2⇤2. As we will show in
more detail in Section V this divergence is associated
with the anomaly contribution from the strongly coupled
magnetic monopole of mass ⇠

p
u� 2⇤2.

IV. THE S-DUAL AXION

To understand this divergence better we can go to the
S-dual description where the monopole is perturbatively
coupled to the photon, referred to as the magnetic duality
frame. The axion is once again the phase of the scalar
superpartner of the photon AD, and its coupling can be
discerned from the prepotential FD. We emphasize that
this identification of the axion is uniquely determined by
the anomalous U(1)R symmetry. In other words, the
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where the instanton corrections are encapsulated in the
G(↵) function (see Section VI for more details about the
generation of these terms).

In these expressions the vacuum ✓ angle is kept for
generality, and to manifest EM duality. As usual in the-
ories with axions and massless fermions, ✓ is not physical,
since Re(⌧) can always be set to zero by a U(1)R trans-
formation8.

Expanding ⌧ around a = 0 we find the canonically
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where the derivative of ⌧ is with respect to the holomor-
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where Re{ca��} is identified with the coe�cient

of (e2/16⇡2f)aF eF and Re{ga��} the coe�cient of

(1/4)aF eF , both ubiquitous in the literature. Since we
have not set ✓ = 0 we have the additional parity vi-
olating aF 2 coupling, which generically appears in the
one-loop anomaly of dyonic states [11]. In terms of the
prepotential instanton expansion we can explicitly iden-
tify the perturbative and non-perturbative contributions
to the axion coupling
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The �8 in (18) is the perturbative anomaly coming
from the four gauginos in W± which have electric charge
2, whereas the instantons account for the contributions
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FIG. 1: The real and imaginary part of the axion coupling
coe�cient ca�� in the electric duality frame. The coupling is
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Ev-
idently, Re{ca��} ! �8 and Im{ca��} ! 0 at weak cou-
pling �u ! 1. Re{ca��} diverges at the monopole point
�u = 0. Similarly Im{ca��} diverges at the monopole point
for ✓�u 6= 0.

from the BPS states. In Fig. 1 we present the values
of ca�� . We find that the coupling diverges near the
monopole point where u ! 2⇤2. As we will show in
more detail in Section V this divergence is associated
with the anomaly contribution from the strongly coupled
magnetic monopole of mass ⇠

p
u� 2⇤2.

IV. THE S-DUAL AXION

To understand this divergence better we can go to the
S-dual description where the monopole is perturbatively
coupled to the photon, referred to as the magnetic duality
frame. The axion is once again the phase of the scalar
superpartner of the photon AD, and its coupling can be
discerned from the prepotential FD. We emphasize that
this identification of the axion is uniquely determined by
the anomalous U(1)R symmetry. In other words, the



The Axion Coupling - Electric frame 

• For large u recover perturbative  
answer from gauginos


• For u=2𝝠2   (𝝙u=0) diverges - due to 
massless monopole


•  Divergence due to contribution of 
light monopole to anomaly as 
expected initially 
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FIG. 1: The real and imaginary part of the axion coupling
coe�cient ca�� in the electric duality frame. The coupling is
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Ev-
idently, Re{ca��} ! �8 and Im{ca��} ! 0 at weak cou-
pling �u ! 1. Re{ca��} diverges at the monopole point
�u = 0. Similarly Im{ca��} diverges at the monopole point
for ✓�u 6= 0.

from the BPS states. In Fig. 1 we present the values
of ca�� . We find that the coupling diverges near the
monopole point where u ! 2⇤2. As we will show in
more detail in Section V this divergence is associated
with the anomaly contribution from the strongly coupled
magnetic monopole of mass ⇠

p
u� 2⇤2.

IV. THE S-DUAL AXION

To understand this divergence better we can go to the
S-dual description where the monopole is perturbatively
coupled to the photon, referred to as the magnetic duality
frame. The axion is once again the phase of the scalar
superpartner of the photon AD, and its coupling can be
discerned from the prepotential FD. We emphasize that
this identification of the axion is uniquely determined by
the anomalous U(1)R symmetry. In other words, the



The Axion Coupling - Electric frame 

• Coupling to F2: only if theta angle 
non-zero (can rotate away)


• For large u always vanishes 


• For u=2𝝠2   (𝝙u=0) diverges - due to 
massless monopole
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coe�cient ca�� in the electric duality frame. The coupling is
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Ev-
idently, Re{ca��} ! �8 and Im{ca��} ! 0 at weak cou-
pling �u ! 1. Re{ca��} diverges at the monopole point
�u = 0. Similarly Im{ca��} diverges at the monopole point
for ✓�u 6= 0.

from the BPS states. In Fig. 1 we present the values
of ca�� . We find that the coupling diverges near the
monopole point where u ! 2⇤2. As we will show in
more detail in Section V this divergence is associated
with the anomaly contribution from the strongly coupled
magnetic monopole of mass ⇠

p
u� 2⇤2.

IV. THE S-DUAL AXION

To understand this divergence better we can go to the
S-dual description where the monopole is perturbatively
coupled to the photon, referred to as the magnetic duality
frame. The axion is once again the phase of the scalar
superpartner of the photon AD, and its coupling can be
discerned from the prepotential FD. We emphasize that
this identification of the axion is uniquely determined by
the anomalous U(1)R symmetry. In other words, the



The SW Axion - Magnetic frame 

• We can go to the magnetic duality frame, and define axion there! 


• This axion non-linearly related to original axion (and also the massless 
radial modes) - NOT the same field. 


• Can calculate its couplings similarly to that of the electric axion:
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axion transforms under duality. To better di↵erentiate
between fields defined in the two frames, in this paper we
use the naming convention of the electric duality frame,
i.e. we put a “D” subscript on the axion, photon and
superpotential of the magnetic frame. Expanding AD(x)
as
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where the coe�cients b̃Dk � ic̃Dk = (k + 1)(k + 2)dDk
are determined by the instanton coe�cients in (9) and
✓D,p = arg(Av

D)� ⇡
2 . Since in this frame the monopole is

weakly coupled the constant term in cDa�� is interpreted
as the perturbative chiral anomaly from the magnetic
monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
Fig. 2 we present the axion coupling cDa�� in the magnetic
frame. We find that the dominant contribution is the per-
turbative coupling from the monopole. As we will sub-
sequently show in Section V the seeming inconsistency
between ca�� and cDa�� is resolved by the di↵erent pref-
actors e2/f and e2D/fD in the two frames.

V. DUALITY INVARIANCE AND a ! ��
DECAY RATE

The two Lagrangians (16) and (20) provide two equiv-
alent (in this case S-dual) descriptions of the same IR
physics. Therefore, we expect that all canonically nor-
malized physical observables computed from these equiv-
alent Lagrangians agree. In particular, this implies that
canonically normalized amplitudes should be identical up
to a phase [34]. In this section we will prove analytically
that this is the case for the rate for a ! ��, which is
of central importance in axion physics. Moreover we will
show that this rate becomes large close to the monopole

FIG. 2: The real and imaginary parts of the axion coupling
coe�cient cDa�� in the magnetic duality frame. The factors are
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Evi-
dently, Re
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! 0 at the monopole

point �u = 0, and significantly deviates from these values at
weak coupling.

singularity, in stark contrast with the standard PQ sce-
nario. Analyzing the situation in both the electric and
magnetic duality frame will provide a complete under-
standing of why this rate becomes large.
Note that in the presence of a non-zero vacuum theta

angle ✓, the axion couples also to FF in (15) (and sim-
ilarly to FDFD in the magnetic frame). Thus, when we
compute the rate for a ! ��, we have to sum over the
squares of the amplitudes M+�,�+ generated by aF eF
and M++,�� generated by aFF . Altogether the rate is
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Where we omit all constant numerical factors and the
phase space integral, which are irrelevant to prove the
duality invariance of the rate. In the magnetic frame we
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weakly coupled the constant term in cDa�� is interpreted
as the perturbative chiral anomaly from the magnetic
monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
Fig. 2 we present the axion coupling cDa�� in the magnetic
frame. We find that the dominant contribution is the per-
turbative coupling from the monopole. As we will sub-
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malized physical observables computed from these equiv-
alent Lagrangians agree. In particular, this implies that
canonically normalized amplitudes should be identical up
to a phase [34]. In this section we will prove analytically
that this is the case for the rate for a ! ��, which is
of central importance in axion physics. Moreover we will
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Where we omit all constant numerical factors and the
phase space integral, which are irrelevant to prove the
duality invariance of the rate. In the magnetic frame we

•  1: perturbative contribution of magnetic monopole

•  Instantons here represent contributions of 
gauginos and other BPS states in this frame



The Axion Coupling - Magnetic frame 

• For u=2𝝠2   (𝝙u=0) recover 
perturbative result due to monopole


• For large u diverges  


•  Divergence due to contribution of 
light gaugino to anomaly which in this 
frame becomes strongly coupled
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monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
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Where we omit all constant numerical factors and the
phase space integral, which are irrelevant to prove the
duality invariance of the rate. In the magnetic frame we



The Axion Coupling - Magnetic frame 

• Coupling to F2: only if theta angle 
non-zero (can rotate away)


• For u=2𝝠2   (𝝙u=0) always vanishes  


• For large u diverges - the effect of 
strongly coupled gauginos  


 

6

axion transforms under duality. To better di↵erentiate
between fields defined in the two frames, in this paper we
use the naming convention of the electric duality frame,
i.e. we put a “D” subscript on the axion, photon and
superpotential of the magnetic frame. Expanding AD(x)
as

AD(x) = iAv
D ei

aD(x)
fD , (19)

where fD =
p
2|Av

D|/eD and the factor of i is chosen such
that Av

D(u) is positive and real for u > 2 along the real
line. Repeating the same procedure as before we find the
e↵ective Lagrangian

LD
IR � �1

2
@µaD@µaD � 1

16⇡
Im

n⇥
e2D⌧D

⇤
aD=0

(Fµ⌫
D + i eFµ⌫

D )2
o

� aD
16⇡

Im

(
� e3Dp

2

@⌧D
@AD

�

aD=0

(Fµ⌫
D + i eFµ⌫

D )2
)

+ ... ,

(20)

and the magnetic frame analog axion couplings

gDa��
4

=
e2D

16⇡2fD
cDa�� = � 1p

2

e3D
8⇡

@⌧D
@AD

,

cDa�� = 1 +
1X

k=1

k

2

⇣
b̃Dk � ic̃Dk

⌘✓Av
D

⇤

◆k

(21)

where the coe�cients b̃Dk � ic̃Dk = (k + 1)(k + 2)dDk
are determined by the instanton coe�cients in (9) and
✓D,p = arg(Av

D)� ⇡
2 . Since in this frame the monopole is

weakly coupled the constant term in cDa�� is interpreted
as the perturbative chiral anomaly from the magnetic
monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
Fig. 2 we present the axion coupling cDa�� in the magnetic
frame. We find that the dominant contribution is the per-
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Where we omit all constant numerical factors and the
phase space integral, which are irrelevant to prove the
duality invariance of the rate. In the magnetic frame we



Duality invariance of a→𝝲𝝲 rate? 

• We have seen couplings in two frames seem to be very different. 
However duality merely gives different descriptions to SAME physics. So 
physical quantities better be duality invariant.


• a→𝝲𝝲 rate is physical observable. They have to agree in the two frames!


• Check this. If 𝝷≠0 we have both               and                couplings.    
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weakly coupled the constant term in cDa�� is interpreted
as the perturbative chiral anomaly from the magnetic
monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
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Where we omit all constant numerical factors and the
phase space integral, which are irrelevant to prove the
duality invariance of the rate. In the magnetic frame we
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as the perturbative chiral anomaly from the magnetic
monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
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weakly coupled the constant term in cDa�� is interpreted
as the perturbative chiral anomaly from the magnetic
monopole, whereas the instanton contributions describe
contributions from the gauginos and other BPS states. In
Fig. 2 we present the axion coupling cDa�� in the magnetic
frame. We find that the dominant contribution is the per-
turbative coupling from the monopole. As we will sub-
sequently show in Section V the seeming inconsistency
between ca�� and cDa�� is resolved by the di↵erent pref-
actors e2/f and e2D/fD in the two frames.

V. DUALITY INVARIANCE AND a ! ��
DECAY RATE

The two Lagrangians (16) and (20) provide two equiv-
alent (in this case S-dual) descriptions of the same IR
physics. Therefore, we expect that all canonically nor-
malized physical observables computed from these equiv-
alent Lagrangians agree. In particular, this implies that
canonically normalized amplitudes should be identical up
to a phase [34]. In this section we will prove analytically
that this is the case for the rate for a ! ��, which is
of central importance in axion physics. Moreover we will
show that this rate becomes large close to the monopole

FIG. 2: The real and imaginary parts of the axion coupling
coe�cient cDa�� in the magnetic duality frame. The factors are
plotted as a function of the distance �u from the monopole
singularity, at di↵erent angles in the complex u plane. Evi-
dently, Re

�
cDa��

 
! 1 and Im

�
cDa��

 
! 0 at the monopole

point �u = 0, and significantly deviates from these values at
weak coupling.

singularity, in stark contrast with the standard PQ sce-
nario. Analyzing the situation in both the electric and
magnetic duality frame will provide a complete under-
standing of why this rate becomes large.
Note that in the presence of a non-zero vacuum theta

angle ✓, the axion couples also to FF in (15) (and sim-
ilarly to FDFD in the magnetic frame). Thus, when we
compute the rate for a ! ��, we have to sum over the
squares of the amplitudes M+�,�+ generated by aF eF
and M++,�� generated by aFF . Altogether the rate is

�el
a!�� /

X

h,h0

|Mhh0 |2 / 2
�
|M+�|2 + |M++|2

�

/ e4

f2
|ca�� |2 / |ga�� |2 (22)

Where we omit all constant numerical factors and the
phase space integral, which are irrelevant to prove the
duality invariance of the rate. In the magnetic frame we
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The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find
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meaning the amplitudes in the two frames are the same
up to a phase (for more detail see Appendix B). Conse-
quently, we have

�el
a!�� = �mag

a!�� , (25)

as had to be the case, since the two frames describe the
same physics. In Figure 3 we plot the duality-invariant
sum of a amplitudes |M+�|2 + |M++|2 as a function of
the Coulomb branch coordinate u. Remarkably, we see
that the squared amplitude diverges as we approach the
monopole point. This is very di↵erent from the usual PQ
mechanism! Furthermore, we see that near the monopole
point the decay rate is dominated by the monopole
anomaly contribution, and far from the monopole point
the decay rate is dominated by the gaugino anomaly.

We emphasize that the key for the matching between
frames is the identification of the axion in the di↵erent
Eqs. (13) and (19), which was not a choice but rather
uniquely determined by U(1)R. We note that with this
identification there is no “dual Witten e↵ect”, since the
BPS mass spectrum (6) remains invariant under all du-
ality transformations.

Nevertheless one could define ”non-standard axion
electrodynamics” in the spirit of [4] by remaining in the
electric frame, yet performing a non-linear field redef-
inition a ! aD. It is perfectly consistent to perform
such a nonlinear field redefinition in the path integral,
though it does obscure the N = 2 supersymmetry of the
theory. Furthermore, the U(1)R that aD is a pseudo-
Goldstone of is not linearly realized on the fields of the
electric frame. In the field-redifined theory with field
content aD, Fµ⌫ , . . ., one could ask how the mass of the
charginos in the electric frame depends on aD. Indeed,
the chargino mass is M = |A|, which depends nontriv-
ially on aD, in what Ref. [4] called a “dual Witten e↵ect”
of non-standard axion electrodynamics. Note, however,
that from the point of view of the “normal” electric frame
axion a, fluctuations in aD are simply a mix of fluctua-
tions in a and the radial mode |A|. From that point of
view, what the “dual Witten e↵ect” in aD really tells us is
that fluctuations in the radial mode A are phenomenolog-
ically disfavored, and we will not consider them further.

VI. AXION COUPLING FROM INSTANTONS

The axion-photon coupling receives perturbative and
non-perturbative contributions. While the perturbative

FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])
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The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find
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meaning the amplitudes in the two frames are the same
up to a phase (for more detail see Appendix B). Conse-
quently, we have

�el
a!�� = �mag

a!�� , (25)

as had to be the case, since the two frames describe the
same physics. In Figure 3 we plot the duality-invariant
sum of a amplitudes |M+�|2 + |M++|2 as a function of
the Coulomb branch coordinate u. Remarkably, we see
that the squared amplitude diverges as we approach the
monopole point. This is very di↵erent from the usual PQ
mechanism! Furthermore, we see that near the monopole
point the decay rate is dominated by the monopole
anomaly contribution, and far from the monopole point
the decay rate is dominated by the gaugino anomaly.

We emphasize that the key for the matching between
frames is the identification of the axion in the di↵erent
Eqs. (13) and (19), which was not a choice but rather
uniquely determined by U(1)R. We note that with this
identification there is no “dual Witten e↵ect”, since the
BPS mass spectrum (6) remains invariant under all du-
ality transformations.

Nevertheless one could define ”non-standard axion
electrodynamics” in the spirit of [4] by remaining in the
electric frame, yet performing a non-linear field redef-
inition a ! aD. It is perfectly consistent to perform
such a nonlinear field redefinition in the path integral,
though it does obscure the N = 2 supersymmetry of the
theory. Furthermore, the U(1)R that aD is a pseudo-
Goldstone of is not linearly realized on the fields of the
electric frame. In the field-redifined theory with field
content aD, Fµ⌫ , . . ., one could ask how the mass of the
charginos in the electric frame depends on aD. Indeed,
the chargino mass is M = |A|, which depends nontriv-
ially on aD, in what Ref. [4] called a “dual Witten e↵ect”
of non-standard axion electrodynamics. Note, however,
that from the point of view of the “normal” electric frame
axion a, fluctuations in aD are simply a mix of fluctua-
tions in a and the radial mode |A|. From that point of
view, what the “dual Witten e↵ect” in aD really tells us is
that fluctuations in the radial mode A are phenomenolog-
ically disfavored, and we will not consider them further.

VI. AXION COUPLING FROM INSTANTONS

The axion-photon coupling receives perturbative and
non-perturbative contributions. While the perturbative

FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])
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The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find
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meaning the amplitudes in the two frames are the same
up to a phase (for more detail see Appendix B). Conse-
quently, we have

�el
a!�� = �mag

a!�� , (25)

as had to be the case, since the two frames describe the
same physics. In Figure 3 we plot the duality-invariant
sum of a amplitudes |M+�|2 + |M++|2 as a function of
the Coulomb branch coordinate u. Remarkably, we see
that the squared amplitude diverges as we approach the
monopole point. This is very di↵erent from the usual PQ
mechanism! Furthermore, we see that near the monopole
point the decay rate is dominated by the monopole
anomaly contribution, and far from the monopole point
the decay rate is dominated by the gaugino anomaly.

We emphasize that the key for the matching between
frames is the identification of the axion in the di↵erent
Eqs. (13) and (19), which was not a choice but rather
uniquely determined by U(1)R. We note that with this
identification there is no “dual Witten e↵ect”, since the
BPS mass spectrum (6) remains invariant under all du-
ality transformations.

Nevertheless one could define ”non-standard axion
electrodynamics” in the spirit of [4] by remaining in the
electric frame, yet performing a non-linear field redef-
inition a ! aD. It is perfectly consistent to perform
such a nonlinear field redefinition in the path integral,
though it does obscure the N = 2 supersymmetry of the
theory. Furthermore, the U(1)R that aD is a pseudo-
Goldstone of is not linearly realized on the fields of the
electric frame. In the field-redifined theory with field
content aD, Fµ⌫ , . . ., one could ask how the mass of the
charginos in the electric frame depends on aD. Indeed,
the chargino mass is M = |A|, which depends nontriv-
ially on aD, in what Ref. [4] called a “dual Witten e↵ect”
of non-standard axion electrodynamics. Note, however,
that from the point of view of the “normal” electric frame
axion a, fluctuations in aD are simply a mix of fluctua-
tions in a and the radial mode |A|. From that point of
view, what the “dual Witten e↵ect” in aD really tells us is
that fluctuations in the radial mode A are phenomenolog-
ically disfavored, and we will not consider them further.

VI. AXION COUPLING FROM INSTANTONS

The axion-photon coupling receives perturbative and
non-perturbative contributions. While the perturbative

FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])
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The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find
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meaning the amplitudes in the two frames are the same
up to a phase (for more detail see Appendix B). Conse-
quently, we have

�el
a!�� = �mag

a!�� , (25)

as had to be the case, since the two frames describe the
same physics. In Figure 3 we plot the duality-invariant
sum of a amplitudes |M+�|2 + |M++|2 as a function of
the Coulomb branch coordinate u. Remarkably, we see
that the squared amplitude diverges as we approach the
monopole point. This is very di↵erent from the usual PQ
mechanism! Furthermore, we see that near the monopole
point the decay rate is dominated by the monopole
anomaly contribution, and far from the monopole point
the decay rate is dominated by the gaugino anomaly.

We emphasize that the key for the matching between
frames is the identification of the axion in the di↵erent
Eqs. (13) and (19), which was not a choice but rather
uniquely determined by U(1)R. We note that with this
identification there is no “dual Witten e↵ect”, since the
BPS mass spectrum (6) remains invariant under all du-
ality transformations.

Nevertheless one could define ”non-standard axion
electrodynamics” in the spirit of [4] by remaining in the
electric frame, yet performing a non-linear field redef-
inition a ! aD. It is perfectly consistent to perform
such a nonlinear field redefinition in the path integral,
though it does obscure the N = 2 supersymmetry of the
theory. Furthermore, the U(1)R that aD is a pseudo-
Goldstone of is not linearly realized on the fields of the
electric frame. In the field-redifined theory with field
content aD, Fµ⌫ , . . ., one could ask how the mass of the
charginos in the electric frame depends on aD. Indeed,
the chargino mass is M = |A|, which depends nontriv-
ially on aD, in what Ref. [4] called a “dual Witten e↵ect”
of non-standard axion electrodynamics. Note, however,
that from the point of view of the “normal” electric frame
axion a, fluctuations in aD are simply a mix of fluctua-
tions in a and the radial mode |A|. From that point of
view, what the “dual Witten e↵ect” in aD really tells us is
that fluctuations in the radial mode A are phenomenolog-
ically disfavored, and we will not consider them further.

VI. AXION COUPLING FROM INSTANTONS

The axion-photon coupling receives perturbative and
non-perturbative contributions. While the perturbative

FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])
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The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find
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meaning the amplitudes in the two frames are the same
up to a phase (for more detail see Appendix B). Conse-
quently, we have

�el
a!�� = �mag

a!�� , (25)

as had to be the case, since the two frames describe the
same physics. In Figure 3 we plot the duality-invariant
sum of a amplitudes |M+�|2 + |M++|2 as a function of
the Coulomb branch coordinate u. Remarkably, we see
that the squared amplitude diverges as we approach the
monopole point. This is very di↵erent from the usual PQ
mechanism! Furthermore, we see that near the monopole
point the decay rate is dominated by the monopole
anomaly contribution, and far from the monopole point
the decay rate is dominated by the gaugino anomaly.

We emphasize that the key for the matching between
frames is the identification of the axion in the di↵erent
Eqs. (13) and (19), which was not a choice but rather
uniquely determined by U(1)R. We note that with this
identification there is no “dual Witten e↵ect”, since the
BPS mass spectrum (6) remains invariant under all du-
ality transformations.

Nevertheless one could define ”non-standard axion
electrodynamics” in the spirit of [4] by remaining in the
electric frame, yet performing a non-linear field redef-
inition a ! aD. It is perfectly consistent to perform
such a nonlinear field redefinition in the path integral,
though it does obscure the N = 2 supersymmetry of the
theory. Furthermore, the U(1)R that aD is a pseudo-
Goldstone of is not linearly realized on the fields of the
electric frame. In the field-redifined theory with field
content aD, Fµ⌫ , . . ., one could ask how the mass of the
charginos in the electric frame depends on aD. Indeed,
the chargino mass is M = |A|, which depends nontriv-
ially on aD, in what Ref. [4] called a “dual Witten e↵ect”
of non-standard axion electrodynamics. Note, however,
that from the point of view of the “normal” electric frame
axion a, fluctuations in aD are simply a mix of fluctua-
tions in a and the radial mode |A|. From that point of
view, what the “dual Witten e↵ect” in aD really tells us is
that fluctuations in the radial mode A are phenomenolog-
ically disfavored, and we will not consider them further.

VI. AXION COUPLING FROM INSTANTONS

The axion-photon coupling receives perturbative and
non-perturbative contributions. While the perturbative

FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])
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The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find
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meaning the amplitudes in the two frames are the same
up to a phase (for more detail see Appendix B). Conse-
quently, we have

�el
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a!�� , (25)

as had to be the case, since the two frames describe the
same physics. In Figure 3 we plot the duality-invariant
sum of a amplitudes |M+�|2 + |M++|2 as a function of
the Coulomb branch coordinate u. Remarkably, we see
that the squared amplitude diverges as we approach the
monopole point. This is very di↵erent from the usual PQ
mechanism! Furthermore, we see that near the monopole
point the decay rate is dominated by the monopole
anomaly contribution, and far from the monopole point
the decay rate is dominated by the gaugino anomaly.

We emphasize that the key for the matching between
frames is the identification of the axion in the di↵erent
Eqs. (13) and (19), which was not a choice but rather
uniquely determined by U(1)R. We note that with this
identification there is no “dual Witten e↵ect”, since the
BPS mass spectrum (6) remains invariant under all du-
ality transformations.

Nevertheless one could define ”non-standard axion
electrodynamics” in the spirit of [4] by remaining in the
electric frame, yet performing a non-linear field redef-
inition a ! aD. It is perfectly consistent to perform
such a nonlinear field redefinition in the path integral,
though it does obscure the N = 2 supersymmetry of the
theory. Furthermore, the U(1)R that aD is a pseudo-
Goldstone of is not linearly realized on the fields of the
electric frame. In the field-redifined theory with field
content aD, Fµ⌫ , . . ., one could ask how the mass of the
charginos in the electric frame depends on aD. Indeed,
the chargino mass is M = |A|, which depends nontriv-
ially on aD, in what Ref. [4] called a “dual Witten e↵ect”
of non-standard axion electrodynamics. Note, however,
that from the point of view of the “normal” electric frame
axion a, fluctuations in aD are simply a mix of fluctua-
tions in a and the radial mode |A|. From that point of
view, what the “dual Witten e↵ect” in aD really tells us is
that fluctuations in the radial mode A are phenomenolog-
ically disfavored, and we will not consider them further.

VI. AXION COUPLING FROM INSTANTONS

The axion-photon coupling receives perturbative and
non-perturbative contributions. While the perturbative

FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])



Duality invariance of a→𝝲𝝲 rate 7

get analogously

�mag
a!�� /

��gDa��
��2 . (23)

The point is that |ga�� |2 is in fact duality invariant. Us-
ing the canonical relation ⌧ = �⌧�1

D , the Seiberg-Witten
relation @A/@AD and the holomorphic properties of the
prepotential we find

e3
@⌧

@A
=

✓
� ⌧D
|⌧D|

◆3

e3D
@⌧D
@AD

, (24)

meaning the amplitudes in the two frames are the same
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FIG. 3: The duality-invariant sum |M++|2 + |M+�|2 as cal-
culated in di↵erent frames. Orange: calculated from ⌧(A)
with 25 instanton terms. Gray: calculated from ⌧D(AD) with
30 instanton terms. Blue: keeping only the perturbative con-
tribution to ⌧(A). Red: keeping only the perturbative con-
tribution to ⌧D(AD). Near the monopole point we see that
the non-perturbative instanton contributions in the electric
frame sum up exactly to the perturbative contribution in the
magnetic frame.

contribution is readily understood in terms of the trian-
gle anomaly of the U(1)R current, the non-perturbative,
2⇡f -shift-symmetric contributions originate from instan-
tons in the UV theory which generate terms in the holo-
morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
estimated using power counting rules (see e.g. [39])
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``dual Witten effect”. But it just means these types of fluctuations in the 
electric frame are experimentally constrained, while a is not… 
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morphic pre-potential F(A). In the following we will
sketch how the one-instanton contribution is obtained.
We work in the weak-coupling regime far out in moduli
space, where a semi-classical instanton expansion is valid
and where the low-energy degrees of freedom can be triv-
ially identified with the UV degrees of freedom along the
unbroken direction. For more details see [35–38].

In N = 1 language the UV theory contains a vector
multiplet (va,�a, Da) and a chiral multiplet (Aa, a, F a),
both in the adjoint representation of SU(2). In the in-
stanton background the gauginos and the fermions in the
chiral multiplet have four zero modes each, two classi-
cal and two supersymmetric/superconformal. When the
scalar Aa gets a VEV, which we take to be Aa ⌘ A�a3,
it breaks SU(2) to U(1), what makes the instanton
calculation IR finite and lifts the four superconformal
zero modes via the Yukawa interaction ig✏abc a�bĀc and
mixes classically massless �̄ ⌘ �̄3 and  ̄ ⌘  ̄3 with su-
persymmetric zero modes  SS and �SS, respectively. The
instanton thus contributes to the U(1)R violating corre-
lator h ̄ ̄�̄�̄i via the diagram shown in Figure 4. Using
the diagram, the parametric dependence can be easily
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of monopoles/other BPS states


• Other interpretation: instanton effects


• Instantons break U(1)R explicitly. Can identify contribution to correlator


• For large u - weak coupling, adjoint VEV provides IR regulator - finite 
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original SU(2) gauge group and the remaining U(1)), it
will have all the necessary properties to serve as a toy
model for a PQ axion. Most importantly, it is well-known
from the Seiberg-Witten solution that at a specific point
in the moduli space a magnetic monopole hypermulti-
plet becomes massless (while at another point a dyon
becomes massless). The monopole (and the dyon) also
carry a non-vanishing U(1)R charge, hence their masses
can be thought of as fully arising from the spontaneous
PQ breaking, providing a non-trivial example of an axion
model with a light magnetic monopole, which will provide
additional contributions to the photon-axion coupling.

The IR dynamics of this SW theory is described by
N = 2 Super Quantum Electrodynanamics (SQED)
which is manifestly covariant under EM SL(2, Z) duality.
In the electric frame the axion, a, is identified with the
phase of the chiral superfield A which completes the vec-
tor superfield V to a full N = 2 vector multiplet, while
in the magnetic frame the dual axion aD is the phase of
AD which completes VD. Since A and AD are related to
each other via a complicated non-linear transformation
(determined by the SW solution) so is the axion a and
the dual axion aD.

We will see that in the electric frame the axion a
couples as
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Fµ⌫
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where Na is an integer and bk and ck are calculable from
Seiberg-Witten (SW) theory. The first term is the fa-
miliar linear term from the perturbative PQ anomaly,
while the second term is a non-perturbative contribution,
which is fully calculable in SW theory. Similar periodic
couplings arise for the ordinary QCD axion as well due
its mixing with the pion, see for example [6, 7].2 Its
interpretation, as pointed out in the original paper and
elaborated below, is as the sum of all quantum contribu-
tions from heavy BPS monopoles and dyons, which can
also be interpreted as a sum of instanton corrections.3

The contributions from an individual BPS state to the
anomaly were first calculated in [11] using EM duality,
and the explicit SW solution shows that they must sum
up to the periodic terms in (1). The latter axion coupling
is manifestly periodic under a ! a+2⇡f , up to the usual

2
We thank Matt Reece for emphasizing this.

3
These non-perturbative corrections to the photon-axion coupling

are the analogs of the non-perturbative corrections to the axion

potential and axion mass first calculated in [8]. These corrections

can also be underdstood in the language of generalized symme-

tries, as emerging from the UV breaking of a magnetic 1-form

symmetry participating in a higher group with PQ symmetry

[9, 10].

unphysical 2⇡N shift of the action. In the magnetic dual
theory one obtains a similar expression for the coupling of
the dual axion to the dual photons, where now the con-
tribution of the magnetic monopole will be interpreted
in terms of the perturbative anomaly, while the e↵ects of
the electrically charged objects will give another periodic
contribution due to non-perturbative e↵ects. Once the
proper normalizations and the relation between the axion
decay constant vs. the dual decay constant are identified
one can show that physical matrix elements agree in the
electric and magnetic descriptions.
We thus have a concrete proof-of-principal for axion

electrodynamics which has

• Additional periodic coupling terms (1) gener-
ated non-perturbatively from BPS monopoles and
dyons.

• Manifest EM duality, where the axions in di↵er-
ent duality frames are non-linearly related to each
other.

The properties of the SW axion studied in this paper
vary continuously over the moduli space of the theory.
At weak coupling the scale f of spontaneous R-symmetry
breaking is much larger than the scale ⇤, in which the
theory becomes strongly coupled. In this regime the SW
axion resembles the QCD-axion, for which ⇤QCD/fPQ ⌧
1. As one moves closer to the strongly coupled regime,
the scale separation between f and ⇤ is lost, and the SW
axion becomes an analog of ⌘0 state for QCD (with the
caveat that supersymmetry still ensures that the axion
remains massless). In particular, the corrections to the
axion coupling become large around the monopole point
where f . ⇤. In this regime, we expect that an addition
of supersymmetry breaking to result in an axion mass of
the same order as the SUSY breaking scale. While our
study focuses on a toy model and not a full-fledged BSM
model, it does have two major direct implications for
the search for real-world axions and axion-like particles
(ALPs). The first is that the axion coupling need not be
quantized in integer multiples of e2/16⇡2, and can even
be large, depending on the value of bk. The second is that
axion electrodynamics without any additional modifica-
tions can be manifestly covariant under EM duality, and
does not su↵er from the phenomenological deal-breakers
outlined in [4]. This also implies that the implemen-
tation of duality in the seemingly non-duality covariant
equations ubiquitous in the literature [12, 13] will have
to be reexamined.

II. OVERVIEW OF SEIBERG-WITTEN

The N = 2 supersymmetric SU(2) gauge theory with-
out fundamental matter fields, analyzed by Seiberg and
Witten [5] provides a nice laboratory to explore axion
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FIG. 4: One-instanton contribution to the correlator h ̄ ̄�̄�̄i
which can be matched to the operator Im
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which allows us to identify one-instanton generated non-
perturbative contributions to the pre-potential. Arrows de-
note chirality flow and crosses the insertion of the scalar VEV
Ā.
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(⇤⇢)4Ā6⇢12 e�4⇡2AĀ⇢2
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where SF (xi � x0) is a fermion propagator and we left
the spinor indices and gauge couplings implicit. Note
that the instanton size integral makes the result holo-
morphic, providing a non-trivial consistency check for its
contribution to the pre-potential.

Eq. (5) indeed contains a term

LIR � 1

4⇡
Im


�1

4

@4F
@A4

 2�2
�
, (27)

which induces a fermionic correlator equivalent to
Eq. (26). One can match the two correlators to determine
d1, the coe�cient of the A2(⇤/A)4 term in F(A). Care-
fully accounting all coe�cients one finds [36] dk = 1/2,
what agrees with the determination from the analytic so-
lution of Seiberg-Witten theory in Eq. (A1), what estab-
lishes that the first non-perturbative coe�cient in F(A)
is generated by a one-instanton configuration in the UV
theory. Note that the fermion correlator in Eq. (26) is
related to a bosonic correlator, also generated by instan-
tons, containing the axion and two photons through a
supersymmetry transformation. However, practically it
is simpler to obtain the fermion correlator, as done above.

VII. CONCLUSIONS

In this paper we gave a concrete proof-of-principle
showing that axion couplings to photons need not be
quantized, as it is often assumed, or even small. The
additional contributions originate from non-perturbative
e↵ects due to monopoles (and other BPS states), which
can also be interpreted as a sum of instanton corrections.
These terms are periodic functions of the axion hence the
coupling quantization arguments do not apply to them.
Theories with magnetic monopoles, like Seiberg-Witten,
give a concrete realization of the issues involved and are
consistent with the one-loop-exact holomorphic calcula-
tion of the anomaly given in ref. [11]. Our results have
many implications for axion searches that we hope to fol-
low up in future work. What are the correct equations of
motion for axion electrodynamics when the Bianchi iden-
tity is not imposed? What is a safe and self-consistent
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Ā.

h ̄(x1) ̄(x2)�̄(x3)�̄(x4)i

/
Z

d4x0

Z
d⇢

⇢5
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(⇤⇢)4Ā6⇢12 e�4⇡2AĀ⇢2
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Lessons learned 

•  Axion couplings not always quantized, additional terms could sometimes 
be large 


• Additional terms due to monopoles/BPS states - can also be interpreted 
as instantons. Will give periodic terms in the axion


• Seiberg-Witten gives concrete calculable toy model with light monopoles


• Key point: axion itself transforms under electric-magnetic duality, explains 
previous issues with axion vs. duality


• What is the right duality transformation of Maxwell-axion Sikivie 
equations? Guess is it should be secretly duality invariant if transformation 
of axion properly taken into account…



