

Hyper-Kamiokande: Towards New Discoveries in (Astro)Particle Physics

International Joint Workshop on the Standard Model and Beyond 3rd Gordon Godfrey Workshop on Astroparticle Physics Sydney, Australia December 12, 2024

Patrick de Perio, on behalf of the HK Collaboration pdeperio@ipmu.jp http://pdeperio.github.io

RAVLI PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Physics Program

Kei leki @ COSMO'24

Particle physics

 Atmospheric/solar neutrinos
 → Neutrino fundamental properties (mass ordering, mixing)

CP-violation in neutrino → Matter-antimatter asymmetry

Proton decay→ Grand unification

Astrophysics

Supernova Relic Neutrino (SRN) → Star formation history

Supernova burst neutrinos → Explosion mechanism

Neutrino Sources

Detector Masses and Energy Sensitivities

Kate Scholberg @ TIPP21

Neutrino Observatories Around the World

High statistics (\doteqdot large target mass) & high precision is required

 \geq 40kt liquid Argon TPC + >2MW ν_{μ} beam Data taking 2028~ (phase I)

260kt pure water + 1.3MW ν_{μ} beam Data taking **2027**~

Ocean water Data taking 2020~ (construction ongoing)

South pole ice Data taking 2005~ (upgrade planned)

Low energy threshold (~MeV) High intensity neutrino source O(km³) scale detector to detect TeV~PeV neutrinos

Next Generation Long-Baseline Experiments

Generations of Kamiokande

Generations of Kamiokande

1983 - 19961996 - ongoing2027 and beyond• Atmospheric (Atm) and solar neutrino "anomaly"• Proton decay (world-leading limits) • Neutrino oscillation (Atm, solar, beam)• Extended search for proton decay • Precision measurement of • Precision measurement of	Kamiokande	<section-header></section-header>	<section-header></section-header>
 Atmospheric (Atm) and solar neutrino "anomaly" Proton decay (world-leading limits) Neutrino oscillation (Atm, solar, beam) Extended search for proton decay (world-leading limits) Precision measurement of 	1983 - 1996	1996 - ongoing	2027 and beyond
 Supernova 1987A Birth of neutrino astrophysics Co-discovery of neutrino oscillations Neutrino astrophysics 	 Atmospheric (Atm) and solar neutrino "anomaly" Supernova 1987A Birth of neutrino astrophysics 	 Proton decay (world-leading limits) Neutrino oscillation (Atm, solar, beam) Co-discovery of neutrino oscillations	 Extended search for proton decay Precision measurement of oscillations, including CP violation Neutrino astrophysics

Hyper-Kamiokande to Scale

Far Detector Tunnel Excavation (~2022)

Far Detector Cavern Excavation

Excavation of the barrel section of the tank is ongoing!

PMT Production and Quality Assurance

- ~>11000 PMTs (out of 20000) have been delivered
- Screening and evaluation at Hamamatsu and Kamioka
 Signal check & visual inspection of the glass and sealing
 Two dark rooms testing 100 PMTs in each

Hyper-Kamiokande: Long-Baseline Neutrino Experiment เค้พับ

Neutrino Interactions

Three-Flavour Neutrino Oscillation Paradigm

Neutrino Oscillation Formalism (PMNS)

Experimental Constraints on PMNS

BSM, Sydney, Dec. 12, 2024

Hyper-Kamiokande - Patrick de Perio

Neutrino Oscillation L/E Scales

Neutrino Knowns and Unknowns

Mariam Tórtola @ NEUTRINO2024

Shao-Feng Ge, Day 5

CP Violation (\delta_{CP}) in Neutrinos

• Potential source of matter-antimatter asymmetry in the universe (leptogenesis)

BSM, Sydney, Dec. 12, 2024

Hyper-Kamiokande - Patrick de Perio

Neutrino Mass Ordering in Hyper-K

- Combination of beam and atmospheric data ightarrow Improves sensitivity to δ_{CP} and MO
- HK (2027~) determines MO at 5 σ in 6-10 years, depending on the true value of $\sin^2 \theta_{23}$
- JUNO (2025~) will reach 3σ in 5-7 years; DUNE (2031~) will reach 5σ in 1-3 years

Neutrino-Nucleus Interactions

- We cannot see neutrinos directly
- Must infer neutrino properties (energy and type) from the products of an interaction
- Challenges vary across experiments: different target nuclei and detection techniques

Near Detector (ND280) Upgrade

C. Giganti @

NEUTRINO2024

Further consideration (ND280++) required for Hyper-Kamiokande

- Central part upgraded in 2024: Super-FGD, High-Angle TPCs, ToF
 - Improved angular acceptance of lepton tracks, \succ lower the threshold for hadrons

The Intermediate Water Cherenkov Detector (IWCD)

- New detector at ~830 m away from the beam source
- Measure $\frac{\sigma(v_e)}{\sigma(v_{\mu})} / \frac{\sigma(\overline{v_e})}{\sigma(\overline{v_{\mu}})}$ a significant systematic for the CPV measurement
- Oscillated energy spectrum very different from unoscillated spectrum
 - Measure neutrino
 beam at different energies
 with same detector material
- nuPRISM concept: Move IWCD vertically → vary OOA → different neutrino energy spectra → improved neutrino interaction measurements

Off-axis Angle

 $OAA = ~1.6^{\circ}$

The Water Cherenkov Test Experiment (WCTE)

- Prototype of IWCD @ CERN
- Demonstrator for new photosensor, calibration, and ML event reconstruction and simulation technologies
- Constrain neutrino experiment modeling

မ ဖ

∣⊰

Gamma (y) Identification

- NCγ is a significant poorly understood background for CPV
 - Need data driven constraints

Nucleon Decay

John Gargalionis, Day 1

- Probe of new physics: GUT, SUSY-GUT
- Minimal SU(5) model is already ruled out, but SUSY GUT models are still viable

Nucleon Decay in Hyper-K

- HK advantage: large mass \rightarrow many protons, and free protons in H₂O
 - Less degradation of efficiency by Fermi motion and nuclear effects
- World-leading sensitivity in two golden channels $(p \rightarrow e^+ \pi^0, p \rightarrow \bar{\nu}K^+)$
 - JUNO and DUNE also have advantages on detecting K^+ in $p \rightarrow \bar{\nu}K^+$ channel
 - Search of sub-dominant modes helps to test different GUT groups, flavour structure

BSM, Sydney, Dec. 12, 2024

Hyper-Kamiokande - Patrick de Perio

Nucleon Decay Analysis Prospects

arXiv:2208.13188

- Ongoing reconstruction developments on analysis side to improve sensitivities
- New algorithm: Fit $\mu + \gamma$ tracks, assuming same vertex at different times

- New algorithm: Assume second vertex for additional rings after the first
- Improved background rejection (~1/3) with similar efficiency (~90%) compared to previous algorithm
 Improved background rejection (~1/3)
 Improved solution (~1/3)
 Improved

Solar Neutrinos in Hyper-K

- Recent measurements focus on (non-standard) neutrino oscillation in matter of sun and earth.
- ~1.5 σ tension exists between the Δm_{21}^2 in solar (ν_e) and reactor ($\overline{\nu_e}$) data. → CPT violation? Non-Standard Interaction (NSI) in matter?
- NSI models can also be tested in the $P(\nu_e \rightarrow \nu_e)$ spectrum "upturn".
 - \rightarrow HK can observe "upturn" at >3 σ in 10 years.

ν

Supernova Burst Neutrinos

- Neutrinos carry out 99% of the energy from supernova.
- SN1987A at 50 kpc: first and the only detection of supernova burst neutrino Confirmed that neutrinos bring most of the burst energy only in 10 sec.

BSM, Sydney, Dec. 12, 2024

Hyper-Kamiokande - Patrick de Perio

Meng-Ru Wu, Day 4

Supernova Burst Neutrinos

- Neutrinos carry out 99% of the energy from supernova.
- SN1987A at 50 kpc: first and the only detection of supernova burst neutrino Confirmed that neutrinos bring most of the burst energy only in 10 sec.
- **Explosion mechanism** is still unclear. Explosion fails in many simulations. Multi-dimensional effect such as SASI (Standing Accretion Shock Instability) is required for explosion to happen.

Meng-Ru Wu, Day 4

Supernova Burst Neutrinos in Hyper-K

- HK advantage: large statistics, direction reconstruction
 - \rightarrow Model discrimination, access to ~1 Mpc (Andromeda galaxy)
- Distinguish explosion models from rate, energy variation in time
- ~70k events expected at ~10 kpc (SN in this galaxy)

BSM, Sydney, Dec. 12, 2024

IPŇŪ

Meng-Ru Wu, Day 4

Supernova Relic Neutrinos (SRN)

- Neutrinos from past core-collapse supernova
- \rightarrow Flux depends on supernova rate, fraction of black-hole formation etc.
 - $\phi \propto [SN rate] \times [SN v emission] \times [cosmic expansion]$

large uncertainty: effect of dust, failed supernovae forming blackholes, etc.

• Potential to open a new window in neutrino astronomy

Supernova Relic Neutrinos (SRN) in Hyper-K

- HK aims for precise flux & spectrum measurement.
- Expect to reach >4 σ in 10 years
 - JUNO also has high sensitivity (~5 σ in 10 years for optimistic scenario)

Expected number of events

Exp.	Time	Mass ordering	CP phases	Precision Meas.	CCSN burst @ 10 kpc	DSNB	Geo-v	Solar	Proton Decay (sensitivity@10 y)
JUNO (20 kt)	2024	<mark>3-4 σ</mark> 6 y	_	$\sin^2 \theta_{12}$ (0.5%), Δm^2_{21} (0.3%), Δm^2_{31} (0.2%), 6 y	all-flavor v (IBD, eES, pES)	<mark>Зо</mark> , 3 у	~400/y	⁷ Be, pep, CNO, ⁸ B	> 9.6x10 ³³ y (v̄K ⁺)
DUNE (17 kt*4)	2030	<mark>>5 </mark>	5σ (50%) <i>10 y</i>	Δm^2_{32} ~0.4%, $\sin^2 \theta_{23}$ ~1.1% *, 15 y	⁴⁰ Ar CC & NC, eES	⁴⁰ Ar CC	—	⁸ B, hep	$\frac{>8.7 \times 10^{33} \text{ y (} e^+ \pi^0 \text{)}}{>1.3 \times 10^{34} \text{ y (} \bar{\nu}K^+ \text{)}}$
HyperK (260 kt)	2027	3-5 σ 10 y	5σ (60%) 10 y	Δm^2_{32} ~0.6%, $\sin^2 \theta_{23}$ ~1.6% *, 10 y	eES, IBD	<u>3σ, 6 y</u>	_	⁸ B, hep	>7.8x10 ³⁴ y (e ⁺ π ⁰) >3.2x10 ³⁴ y (ν̄K ⁺)
ORCA (7 Mt)	Un- known	2-4 σ 3 y	_	Δm^2_{32} ~2% , 3 y	rate excess			_	
IceCube Upgrade	2026	2-4 σ 7 y	_	Δm^2_{32} ~1.3% , 3 y	rate excess			_	

* Upper octant assumption

eES: v-electron scattering, pES: v-proton scattering, IBD: inverse beta decay

Rich Science with Future Experiments

Supernova, SRN (multi-messenger: GW...)

Solar Neutrinos

Accelerator Neutrinos

Appendix

Water Cherenkov Detector Principle

Beam Line Upgrades Towards T2K-II and Hyper-K

T2K-II Target POT (Protons-On-Target)

Hyper-K Long-Baseline Physics

BSM, Sydney, Dec. 12, 2024

Hyper-Kamiokande - Patrick de Perio

Solar Neutrinos

- Sun produces ~0-16 MeV ν_e in the nuclear fusion process.
- Measurement of neutrino flux led to the discovery of neutrino oscillation
- HK advantages: large statistics + directional sensitivity (remove radioactive BG)

Solar Neutrinos in Hyper-K

BSM, Sydney, Dec. 12, 2024

Hyper-Kamiokande - Patrick de Perio

Supernova Burst in Hyper-K

Supernova Global Alert

- Optical signals will be observed ~2 minutes to ~2 days after neutrinos
 → Supernova alert can be issued
- Pointing (~1-2°) helps multi-messenger observation
- Neutrino emission starts even before the explosion
 - \rightarrow pre-supernova alert can also be issued

Extragalactic Supernovae

SRN search window

Supernova Relic Neutrinos (SRN) in Super-K

Gd

 e^+

- Main detection channel: v_e + p → e⁺ + n
 In SK, gadolinium (Gd) was added to pure water in 2020~.
 → Significantly improved SRN efficiency by n-Gd capture signal
- Combining pure- & Gd- water data, **2.3** σ excess of the SRN signal is observed by spectrum fit of signal and sideband samples.

Hyper-K Supernova Relic Neutrinos

SRN can be observed by HK in 10y with \sim 70±17 events. It is > 4 σ for SRN signal.

15

50

Nucleon Decay

Lifetime Limit [years]

Canadian Neutrino Telescope

53

Hyper-Kamiokande - Patrick de Perio